More wires and fewer LUTs: A design methodology for FPGAs

Atsushi Takaharaf, Toshiaki Miyazakif, Takahiro Murookal, Masaru Katayamal,
Kazuhiro Hayashif, Akihiro Tsutsuif, Takaki Ichimorifand Ken-nosuke Fukami’
TNTT Optical Network Systems Laboratories
{taka, miyazaki, murooka, katy }@aecl.ntt.co.jp
{kazu, akihiro}@exa.onlab.ntt.co.jp
INTT Network Service Systems Laboratories
Ichimori.Takaki@nslab.ntt.co.jp
§NTT Science and Core Technology Laboratory Group
fukami@aecl.ntt.co.jp

Abstract

In designing FPGAs, it is important to achieve a good bal-
ance between the number of logic blocks, such as Look-Up
Tables (LUTs), and wiring resources. It is difficult to find
an optimal solution. In this paper, we present an FPGA
design methodology to efficiently find well-balanced FPGA
architectures. The method covers all aspects of FPGA de-
velopment from the architecture-decision process to physical
implementation. It has been used to develop a new FPGA
that can implement circuits that are twice as large as those
implementable with the previous version but with half the
number of logic blocks. This indicates that the methodology
is effective in developing well-balanced FPGAs.

1 Introduction

Today, FPGAs (Field Programmable Gate Arrays) are widely
used in various applications. One of the advantages of using
them is the short turnaround time for implementing given
circuits compared to that with traditional gate arrays. How-
ever, the size of a circuit that can be implemented in an
FPGA is limited. Although many types of FPGAs are com-
mercially available now [10], a frequently asked question is:
How many gates can be implemented in an FPGA? The up-
per limit for the number of logic blocks is specified in each
FPGA manual, but this is often not enough information for
users. For instance, when a circuit uses all the logic blocks
in an FPGA it is difficult to route all the nets in the circuit.
Consequently, users find that they have to modify their cir-
cuits or buy more FPGAs to implement them. Moreover,
even if the routing process is a success and 100% of the nets
are routed, the operating speed of the implemented circuit
may not meet the specifications.

The ideal FPGA would be one in which any number of
logic blocks, within the upper limit, can be used to imple-
ment a circuit and the circuit meets the timing specifica-
tions. It is very difficult to design such an ideal FPGA for
any type of circuit. Our first try led to the application-
specific FPGA called PROTEUS [9]. The architecture of
PROTEUS was determined by analyzing the logic functions

used in telecommunications systems. In this analysis, the
functionalities (counter, state machine, pattern matching)
and the ratio of latches/Boolean gates in various telecommu-
nications circuits were examined. The circuits implemented
in PROTEUS can operate at the desired speed and they
operate faster than circuits implemented in commercial FP-
GAs [13].

From our experience with PROTEUS, we became aware
of some limitations in implementing circuits in the top-down
manner, such as generating circuits for FPGAs from Reg-
ister Transfer Level descriptions. PROTEUS has 2048 3-
input Look-Up Tables (LUTSs), but the average LUT uti-
lization rate is around 20% using its dedicated CAD sys-
tem. This means 80% of LUTSs are not used efficiently, or in
other words, that the architecture is extremely redundant
for top-down design. We found that if some of these unused
LUTs were replaced by wires and switches, routability was
improved and more LUTs were usable. Essentially, this has
become our design policy, i.e., “more wires and fewer LUTs”.
The current FPGA trend is to implement more LUTs than
ever before[11, 3]. The wiring area should also be extended
to avoid wasting the implemented LUTs. Therefore, we have
to consider a balance between the number of LUTs and the
number of wires and switches.

The question then is: How many wires and switches are
adequate to improve the routability of a given number of
LUTs? For FPGAs, we need to consider not only the ar-
chitecture but also the CAD system used to implement ap-
plication circuits. In designing PROTEUS, we could not
determine the effects of the CAD system because we devel-
oped the CAD system in parallel. This caused disadvantages
in top-down design. The methods of evaluation are impor-
tant in finding a good balance among wires, switches and
LUTs because there are so many parameters involved and
the evaluation of a single portion of these parameters only
leads to a local optimal solution.

In this paper, we present an FPGA design methodol-
ogy that covers all aspects of FPGA development from the
architecture-decision process to implementation techniques,
considering the enhancement of the routability of the PRO-
TEUS FPGA chip. First, several architecture candidates
are evaluated using the FPGA architecture and CAD sys-
tem testing environment (FACT [7]). FACT is similar to
the evaluation tool proposed by Betz et al.[1]. They con-
centrated on the number of tracks considering the shapes
of an FPGA. In our evaluation, the specific switch patterns
are also considered. The routability of circuits is examined
by changing the number of wires and switches and the fi-
nal architecture is determined based on this examination.

We then consider the physical implementation aspects, i.e.,
the chip size and the propagation delay. Since we increase
the number of wires and switches, the layout structure of
a chip is much more complicated. We modify the switch
structures and the number of LUTSs taking physical imple-
mentation into consideration.

Based on the above considerations, we developed a new
FPGA chip (PROTEUS-Lite)[6] using 0.5um CMOS pro-
cess technology with three metal layers. Since there are in-
numerable wires and switches, we prepared design tools to
handle the relationship between these complicated switch
structures and their control memories. Moreover, FPGA
testing is very difficult. Although sophisticated method for
testing LUTSs has been proposed [4, 12], testing methods for
wires and switches have not yet been discussed in depth. We
developed a semi-automatic test pattern generator for wires
and switches that generates 100% coverage test patterns us-
ing the structural information of an FPGA. The results of
our evaluation indicated that our new FPGA achieves near
100 % routability within an 80% LUT utilization rate in
our top-down CAD systems. This confirms that our design
policy of “more wires and fewer LUTS” is effective.

The rest of this paper is organized as follows: Section 2
explains our architecture evaluation method. Section 3 dis-
cusses the physical considerations of chip size and propaga-
tion delay. Section 4 presents the PROTEUS-Lite FPGA, its
specifications; and our FPGA-specific design tools, i.e., the
verification tool and the semi-automatic test pattern gener-
ation tool. Section 5 evaluates our new FPGA architecture
with practical telecommunications circuits. Section 6 con-
cludes the paper.

2 Architecture Evaluation

An FPGA consists of logic blocks for logic functions and a
wiring area containing wires and switches that connect the
logic blocks. Here, we assume that an FPGA consists of the
set of logic blocks, surrounding wires and switches shown in
Fig. 1. Our logic block consists of four 3-input LUTSs, a 5-

m =

LUT liﬂ | \
3 E{]_ FE Switch
liﬂ | Matrix
E Logic
Block |
= W
b N
— Wires
clock ¥ /
enable T
4

]]

Figure 1: An FPGA structure

input AND gate, five FFs; and selectors. Each block has 14
inputs and five outputs in total. This is the same structure

as for PROTEUS.

2.1 Wiring Structure Candidates

The routability of an FPGA depends on the number of wires
and switches. We evaluated the wiring structure with re-
spect to the following three points.

1. The I/O bandwidth of a logic block. This parameter
indicates how many alternative connections are possi-
ble for the inputs and outputs of a logic block.

2. The number of wires.
3. The number of switches.

The I/O bandwidth of a logic block represents the possibility
of connecting one logic block to another. If inputs have con-
nections in two different directions, for instance, north and
south, this extends routing possibilities. Since the wires are
also used to connect other logic blocks that are not adjacent
to them, there are more horizontal/vertical wires than the
number of logic block inputs and outputs. Regarding the
number of switches, the maximum number is proportional
to the number of wires and the I/O bandwidths of a logic
block. This number would be very huge in the case where
any connection between wires is possible. Consequently, the
number of switches should be reduced and the effect of this
reduction on routability should be minimized.

In this paper, we consider the three types of structures
shown in Fig. 2. Type A was prepared in order to evaluate

u]
"%~ Horizontal Wires

m)[J=— Switch Matrix

~*— Virtical Wires

W E

Type B Type C

Figure 2: Switch pattern types

the effect of the number of switches without changing the
number of wires. In types B and C, the I/O bandwidths of
the logic blocks are different. In both, horizontal lines are
used for the input/output connections of logic blocks and
vertical lines are used for the connecting wires.

For each type, we evaluate several structures which have
the different numbers of lines and switches. The specifica-
tions for these structures are in Table 1.

2.2 Co-Evaluation

The candidate structures are evaluated using the FACT sys-
tem. Each candidate structure is described in an Architec-

Table 1: Design candidates

Type No. of lines 1/0 Direction No. of

H VI N| W] S|E switches
A 20 20 [19 [14] 0 [5 [374—1170
B 30—32 [8—16 |19 O[] 0 [0] 384-797
C 30-32 [10—16 [19] O [19 0] 399—410

(H:horizontal, V:vertical)

ture Definition Format (ADF) from which FACT can pro-
duce the evaluation environment. Using this environment,
we estimated the routability of each structure using practi-
cal circuits.

The results for type A candidate structures are in Table
2. In the experiments, the number of switches was varied. In

Table 2: The effect of the number of switches

structure | N-W [W-LB | N-LLB [E-LB | Total | U.N.
v6 40 90 170 80 410 11T

v8 40 100 150 50 390 55
v10 58 133 100 33 374 47
v12 400 380 280 100 | 1170 0

U.N.:unrouted Nets

the table, “v12” is a rich switch pattern in which there are
switches on all points where lines cross. This is the upper
limit for the number of switches. In the other structures, we
reduce the number of switches. Table 2 suggests the pos-
sibility of finding a “fewer-switches” pattern that preserves
efficient routability.

The routability of type B structures is in Fig. 3. Here,
the number of horizontal/vertical wires is varied. In type

I
200 gy3o -

No. of No. of
I Vertical X Horizontal —|

[y
a1
o

12X32 12%32

a
o

The number of
unrouted nets
(=
o
o

384 384 399 406 609 797
The number of switches

Figure 3: The effect of the number of switches and the num-
ber of wires in type B

B structures, the inputs and outputs of a logic block are
connected to horizontal lines on the north side. The number
of vertical wires also affected the final routing results. These
wires provide effective alternate routes for the routing tools
to improve the routability of nets, but this routability is not
greatly improved compared to the optimal circuits of type A.
Due to the limited I/O bandwidth, the routing tool uses the
same horizontal lines. This causes congestion in the routing
resources, which degrades routability.

In type C, the I/O of a logic block is connected to north-
side horizontal lines as well as south-side horizontal lines.
This makes the routing path for the inputs and outputs of a
logic block richer than for type B. The effect of the number
of wires was examined with the switch pattern fixed. The
results are in Fig. 4. Routability largely depends on the

180
I
160
140 10x30 i
© % 120 | B
8 .g 1001 No. of = No. of =
g Joi 80 Vertical X Horizontal
3 [12x30 7]
S 60 X 12x30 -
£5 40| B
20| 12x32 16x32
0 \ \ \ \ —t—
399 399 405 406 410

(v19) (v20) (v21) (v22) (v23)
The number of switches

Figure 4: The effect of the number of switches and the num-
ber of wires in type C

number of wires. “v22” and “v23” are optimal for all candi-
date structures. The number of switches each in “v22”and
“v23” is almost four times that in PROTEUS, which has
109 switches with 13 vertical lines and five horizontal lines.
Using the PROTEUS structure, 875 wires are not routed, so
the routability of our optimal candidates is much improved.

From the above evaluation, we can obtain better routabil-
ity in both type B and type C when the ratio between the
number of horizontal wires and vertical wires is 2:1. This
finding is the same as that of [1]. On the number of switches,
type C achieves good routability with fewer switches than
the other types.

3 Physical Implementation Aspects

The physical implementation aspects have not been con-
sidered in previous discussions. Increasing the number of
switches and wires affects chip size and the propagation de-
lay of signals.

3.1 Area

Since the maximum chip size is limited, it is inevitable that
the number of logic blocks will have to be decreased when
more wires and switches are implemented to enhance routabil-
ity. This limitation underlies our design policy, which is to
increase the number of wires and decrease the number of
logic blocks.

Here, we present an area comparison of our two FPGA
designs to show how the area increases when more wires and
switches are implemented. Table 3 is an area comparison
between PROTEUS and PROTEUS-Lite chips whose wire
structure is the same as “v23” in Section 2. The numbers
for Switches, Wires and Memories are the numbers of each
item of the Basic Element (BE), which is a repeated layout
block in each chip. Here, Memories include LUT memories
and control memories for switches. The Area is the ratio of
the two chips. The area of PROTEUS-Lite is twice that of
PROTEUS.

Table 3: Area comparison between PROTEUS and
PROTEUS-Lite

PROTEUS | PROTEUS-Lite | Ratio

Switches 185 425 2.29

Wires 37 63 1.70

Memories 256 425 2.53
[Area T 1] 212] 212

The area-increase ratio is slightly lower than that of
switches and memories, but it is higher than that of wires.
We compared the number of wires visible to users in each
chip. In an actual layout, additional wires connecting wires
and switches, or switches and memories are required. The
area taken up by these wires should be considered in the
area penalty. This is an example of implementation; differ-
ent implementations have a different ratio. Currently, we
use three metal layers. The area penalty may be decreased
by using more metal layers. At this time, we paid a double
penalty for the area.

3.2 Delay

Another important aspect is the signal propagation delay
of wires and switches. Signal propagation delay depends on
the number of switches that the signal passes through [2].
This is partially true. The unused switches or off-switches
affect the propagation delay as well.

To avoid increases in propagation delay caused by unused
switches, we installed a buffered switch consisting of two
tristate drivers between the cascading switch matrixes. This
localizes the load and limits the propagation delay.

Consider the propagation delay of the switch matrix shown
in Fig. 5. There are 16 x 64 normal switches, which are di-

Switch

O OFF
® ON

Buffered
Switch

4

Figure 5: Sample circuit using buffered switches

vided by buffered switches. Figure 6 shows the propagation
delay through 64 normal switches and buffered switches cal-
culated by SPICE simulation, where the number of buffered
switches is varied from 0 to 15. In this example, if the num-
ber of buffered switches is less than 4, the propagation delay
decreases because the buffered switches can effectively drive
the signal against the load of the unused switch. On the
other hand, if the number of buffered switches is more than
4, the propagation delay increases because the intrinsic de-
lay of the buffered switches becomes dominant. Here, we
exploit the ratio between the number of buffered switches
and normal switches. Consequently, a buffered switch was
inserted at every 16 vertical lines of the circuit depicted in

.
6| |

a5 -

S 4 i

c

S 3

g 3 |

2 2

g 2 |

5 1L _
oL 1 0 g

0 2 4 6 8 10 12 14 16
The number of buffered switches

Figure 6: The effect of buffered switches

Fig. 5 to minimize the propagation delay.

The buffered switches have another function: They di-
vide a wire into several segmented wires. This provides more
alternative routes.

4 Implementation

We designed the new FPGA chip, PROTEUS-Lite, based
on our design policy after doing the evaluations previously
explained. This section describes the specifications for
PROTEUS-Lite and our design flow.

4.1 PROTEUS-Lite Chip

A unique feature of the PROTEUS-Lite chip is that the
wiring area is much larger than the logic area. Figure 7
shows the logical structure of the Basic Elements (BEs)
of the PROTEUS-Lite chip. The inputs and outputs of a
logic block are connected to 32 upper/lower middle wires.
These wires can be separated by buffered switches, which
are located between the input switch matrix and the output
switch matrix, because logic block inputs and outputs are
usually connected to different wires.

Two other kinds of wires, long ones and local ones, were
also prepared. Horizontal/vertical wires whose lengths are
half the chip are mainly used to connect logic blocks to
primary I/Os. The local wires are used to connect adja-
cent logic blocks. Table 4 shows the statistical data for the
switches, memories and wires in a BE.

Table 4: Statistical data for switches, memories and wires

Wires

Switch | Memory | Long [Middle | Local
HIVIH]V

425 648 bit [6 | 4 [32 [16 5

H:horizontal, V:vertical

The PROTEUS-Lite chip consists of 28 x 10 BEs. Figure
8 is a photograph of the chip along with its specifications
which are compared to those of the PROTEUS chip.

4.2 Design Verification Flow

PROTEUS-Late is a full custom chip, and it was designed
manually. Verification of the design is critical due to its com-

Vertical Middle Wire

Vertical Long Wire

Vertica Middlewire

Vertica Long Wire
2

Buffered Switch 125%6% %% %% %2 LkonmWir:e %1%5%6%7 %% %% %1%
T LO L1 L2 L3 LO L1 L2 L3
00 H 8 00
2 0 %. . 8 %
03 B O O s
04 i o) o) 04
05 H [[05
6 H o, o, o
07 H [©) [©) 8 07
08 m o) o) 08
09 B O O 09
0a = o) o) oa
0Ob H O O Ob
oc o, o, o
od % o5 8 *u
08 o 0 0 08 o
10 o 0y © 10
1 H Q Q 11 Horizontal
12 H O, O,
213 H % 9% 8 Piswide
15 H % % 15 Wire
%7 H 0. O %7
18 H ¢ O 18
19 B % 9% 8 19
la H la
b H O O b
1c H Q Q 1c
e H %, %, e ld
€t O o] o] o] €1t
01 01 Horizontal
23 3 Long Wire
45 45
. DD' Loca Wire
= . . o -
o [oe
o D . . (e} '
o [oe
5] @ 1 .)\ 14
o @ . . (e} '
i)gﬂ“’) ?
Logic Block OO IO I Logic Block
A O O 0.0 O O O 00
H % S 0% % % 8 pn
o (o) o) o) o) o) 03
o) o) o o) o) 04
o) o o o) o) o5
o) o) 0. O o) o) 06
Oo Oo Oo (o] Oo Oo 8 07
=t 08
5 (o) o) o) o) 09
o o) o) o) o) 0a
5 % % o % % o
H o % % %. %. 8 % od
5 o) o) ° o) o) 0e ¢
| O O, [®) O, 10 N
O OO OO o OO OO 11 Horizontal
=t 2
& SN % O 8 Li3midde
= o o) o) o) o) 15w
m o) o) o) o, 0 1615 Wire
| O O O [®} 17
O, O, O O, O, 18
%, %, %, %. 8 19
o) %, % 9% 1315
1c® Ho “o "o, o o) o) (o) e} c
4 0o 0. o o) e} o) o) o o) o) 2d
e B 0,0 0 o % % % % 9% 9% e
0 o o o o o o o 0)
21 O % % % %, % % 21 Horizontal
3 o co OO OO o (€] OO OO o (€] 3 Long Wire
4g o) o) o) o) o) o) o) 4g
02468 02 kim n 02468ace g
1%375°7°0 0 a % "1 13579bdf "3
Figure 7: PROTEUS-Lite switch pattern
Die Photograph Specifications
PROTEUS-Lite PROTEUS
FPGA Type SRAM type FPGA SRAM type FPGA
Process 0.5pCMOS(3 metals) | 0.5pCMOS(3 metals)
Chip size 17.1mmx15.3mm 15.0mmx15.0mm
1/0 136 (bi-directional) 192 (bi-directional)
Logic Blocks 280 (28x10) 512 (32x16)
Flip Flops 1672 2722
Configuration memory | 223K bit 140K bit
Packages QFP/CSP/PGA PGA

Figure 8: PROTEUS-Lute chip

plicated switch patterns. Moreover, it is hard to provide the
correct specifications for the layout design. To overcome
these difficulties, we developed design tools to generate the
correct specifications. Our design method uses the FACT
system for evaluation. In this system, the FPGA architec-
ture is formally defined in the Architecture Definition For-
mat (ADF), in which the logical structure of the switches,
wires and their connections as well as the structure of the
logic blocks are described. In the evaluation phase, the ADF
is verified by applying many sample circuits. Consequently,
the correct specifications for the PROTEUS-Lite chip can
be obtained from the ADF.

Our design verification flow is shown in Fig. 9. Netlist
information on PROTEUS-Lite is generated from the ADF
as well as the library, in which LUTs, FFs, and switches are
defined. In the ADF), there is no information on the configu-
ration of memory structures, so these structures are defined
in the memory definition file (MDF). In the MDF, the rela-
tionship between each switch and its memory addresses are
defined. The PROTEUS-Lite design was verified by com-
paring the netlist extracted from the layout patterns with
the netlists generated from the ADF, MDF, and library.

4.3 Semi-automatic Test Pattern Generation

Another important aspect of designing FPGAs is how to
test the memories, logic blocks, wires and switches. The
memories can be tested using the standard memory testing
method, and there are several techniques to test the logic
blocks. However, it is difficult to develop a general testing
method for the wires and switches because the test method
largely depends on their structures. Our approach is to test
semi-automatically using the information in the ADF.

Our testing method is explained here using the 3 x 3
switch matrices in Fig. 10. The fault patterns of wires and
switches are categorized into 1) stuck-at faults in switches
and 2) bridge/open faults in wires. These faults are tested
by feeding the patterns that satisfy the following conditions.

Condition 1 Any input to the switch matrix is
fed by patterns 0 and 1.

Condition 2 Any input to the switch matrix is
fed by patterns in which there are signal
transitions of 1 — 0 and 0 — 1.

Condition 3 Each input signal pair (a,b) is fed
by two patterns (a,b) = {(1,0),(0,1)}.

The above patterns can be obtained by generating m-out-of-
n codes, where m is the number of inputs to a switch matrix
and n is equal to m/2. The patterns in which m/2 0s and 1s
are continuous are not used because both signal transitions
(0—1, 1—0) are not included in these patterns.

To test switches and wires, the specific circuits in which
the test patterns are fed to the switch/wire under test should
be configured in the FPGA. Each switch should be set to
on and off. For efficient testing, the circuit should cover as
many switches as possible, but only one of switches in hori-
zontal and vertical wires can be tested at a time. Therefore,
we have to find patterns which satisfy this condition. For
the case in Fig. 10, four circuits are required in order to test
9 switches/wires in this switch matrix.

Our developed tool generates the circuits for testing switches

and wires from both the ADF and a typical switch matrix
pattern library in which the templates for position indepen-
dent switch patterns are defined. This tool finds the specific
switch patterns that match one of the templates in the li-
brary and generates the circuits for testing switches in the

target switch matrix. 25130 circuits are generated by our
tool to test 100% of the switches in PROTEUS-Lite. A
chip is tested by repeating the configuration for each circuit
and feeding the test pattern. Since the number of circuits is
large, we use the Direct Memory Programming Mode, which
can configure arbitrary bits of the configuration memory.
Each circuit is configured by only writing different bits of
the configuration memory from that of the previous circuit
for efficient testing.

5 Evaluations and discussions

We evaluated PROTEUS-Lite by comparing it to PROTEUS,
which has more LUTSs but fewer wires than PROTEUS- Lute.
In this evaluation, we used practical telecommunications
circuits designed to handle ATM protocols. The routabil-
ity of each chip is shown in Fig. 11, where the X-axis is
the number of used LUTs compared to that of LUTs im-
plemented in a chip and the Y-axis is the routability ratio
between routed nets and all nets in each circuit. These re-

(%)
100

% PROTEUS-Lite
80|
70|

60|

Routability

50| PROTEUS
40|

30|

20 \ \ \ \ \ \ \ \ \
0 10 20 30 40 50 60 70 80 90 100 (%)
The usage of LUTs

Figure 11: Routability comparison

sults were generated using each dedicated CAD tool. The
current PROTEUS-Lite CAD system is an extension of our
original PROTEUS CAD system [13]. Our placement tool
uses the simulated annealing method which considers the
distance between LUTs and directions of signals in its eval-
uation function. Our routing tool consists of several rout-
ing procedures that are based on the line-search method
or the Dijkstra method. Each procedure uses architecture-
dependent heuristics to achieve both high-quality routing
results and a short processing time[8].

From the results in Fig. 11, nets of circuits which use
up to 80% of the LUTs are almost completely routed by
the PROTEUS-Lite dedicated CAD system. In PROTEUS,
nets in circuits which use up to 20% of the LUTSs are routed
by its dedicated CAD system. Let us consider these results
from the view point of wasted LUTs. There are 2048 LUTSs
in PROTEUS and 1120 LUTs in PROTEUS-Lite. Let us
calculate the number of realistically usable LUTSs according
to the above results. PROTEUS’ realistic LUT usability is

2048 x 20% = 409.6
and PROTEUS-Lite’s realistic LUT usability is

1120 x 80% = 896.

Patternl

N

outputs

Pattern3

— Evaluation
FACT Syste

— =Verification

Master
Netlists
—

Figure 9: Design verification flow of PROTFEUS-Lite

> Tristate On
©)

% Tristate Off
% Observe Point

@ SwitchOn

O Switch Off

Figure 10: Configuration patterns for testing a switch matrix

The number of usable PROTEUS-Lite LUTs is nearly twice
the number of usable PROTEUS LUTs, while the total num-
ber of LUTs implemented in PROTEUS-Lite is half that
in PROTEUS. A chip with fewer LUTs can realize larger
circuits. This confirms the validity of our design policy of
“more wires and fewer LUTSs”.

We compared PROTEUS-Lite to a commercial FPGA.
The gate capacity of PROTEUS-Lite is about 19.8K gates
using Xilinx’s calculation method where a 3-input LUT is
3.2 gates, a 4-input LUT is 7 gates and an FF is 10 gates.
XC4010E, which has 18.1K gates, is similar to PROTEUS-
Lite, while PROTEUS is similar to XC4013E, which has
25.3K gates. Table 5 shows the critical path delay of sev-
eral telecom circuits which are implemented in PROTEUS-
Lite and XC4010E-5. These results were obtained us-

Table 5: A comparison of critical path delay

Circuit PROTEUS-Lite XCJ010E-5°

of | # of ela of | Dela
LUTs | FFs (nsg LUTs (nsg
fcount 45 13 31.7 31 36.8
rts_mng 46 17 27.2 21 54.9
v_atgp 49 15 39.3 29 37.3
s_vtg 50 13 33.5 32 36.0
sc_mng 70 11 40.1 39 40.1
audgen 75 21 414 51 48.5
hec 85 48 22.3 63 22.6
vcdgen 89 13 59.5 56 59.3
cellgen 136 54 53.8 98 55.1
aall_t 214 59 51.1 125 59.5
stmlgen 228 93 76.2 159 75.3

ing their specific CAD tools. The implemented circuits in
PROTEUS-Lite are faster or equal to those in XC4010E-
5. The delay calculated by our method is accurate com-
pared to the actual delay [5] while Xilinx’s delay calcula-
tion tool (xdelay) sometimes estimates critical path delay
that is shorter than the actual delay, from our experience.
PROTEUS-Lite has numerous wires so that placement af-
fects critical path delay. We are developing a new placement
tool that will take the application circuit structure into con-
sideration. This tool will make critical path delay shorter
using the advantages of PROTFEUS-Lite’s structure.

6 Conclusions

We presented a design methodology for FPGAs that covers
their development from the architecture-evaluation process
to implementation. The underlying policy of the method-
ology is “more wires and fewer LUTs”. PROTEUS-Lite,
which was designed accordingly, demonstrated an optimal
solution for FPGA architecture that is usable for top-down
design methods. The total number of LUTs is half that in
our previous chip, but there is twice the number of usable
LUTs. This confirms that our design methodology is effec-
tive and it shows that the balance between logic blocks and
wiring resources is very important in designing FPGAs.

Acknowledgments

The authors would like to thank Mr. Takumi Watanabe and
Mr. Kenji Ogura for their useful comments on the physical
layout of the chip. They also wish to thank Dr. Naohisa

1The speed grade is 5.
2The number of FFs is the same as that in PROTEUS-Lite.

Ohta, Mr. Tadanobu Nikaido, Dr. Junji Suzuki and Mr.
Kazuyoshi Matsuhiro for discussions and encouragement.

References

[1] BETZ, V., AND ROSE, J. Directional Bias and Non-
Uniformity in FPGA Global Routing Architectures.
Proc. ICCD’96 (1996), 652—659.

[2] BROWN, S., KHELLAH, M., AND VRANESIC, Z. Mini-
mizing FPGA Interconnect Delays. IEEE Design and
Test of computers Winter (1996), 16-23.

[3] Bursky, D. Programmable Arrays Mix FPGA and
ASIC Blocks. Electronic Design (October 1996), 69—
74.

[4] HERMANN, M., AND HOFFMANN, W. Fault Modeling
and Test Generation for FPGAs. Proc. 4th Interna-
tional Workshop on Field-Programmable Logic and Ap-
plications, FPL ’94 (1994), 1-10.

[65] KaTayAMA, M., TAKAHARA, A., MIYAZAKI, T., AND
Fukami, K. Delay Calculation Method for SRAM-
based FPGAs. IEICE Trans. Fundamentals E80-A, 9
(1997), 60-65.

[6] Mivazaki, T., TAKAHARA, A., KaAravama, M.,
Murooka, T., IcummMori, T., Fukawmi, K., TsuTsul,
A., AND HAvasHI, K. CAD-oriented FPGA and Dedi-
cated CAD System for Telecommunications. Proc. 7th
International Workshop on Field-Programmable Logic

and Applications, FPL’97 (LNCS 1304) (1997), 11-20.

[7] Mivazaki, T., TsuTsul, A., IsHi, K., AND OHTA,
N. FACT: Co-evaluation Environment for FPGA Ar-
chitecture and CAD System. Proc. 6th International
Workshop on Field-Programmable Logic and Applica-
tions, FPL’96 (1996), 34—43.

[8] MUROOKA, T., TAKAHARA, A., MIvAazAKI, T., AND
TsuTsul, A. An architecture-oriented routing method
for FPGAs having rich hierarchical routing resources.

Proc. ASP-DAC’98 (1998), to be published.

[9] OHTA, N., NAKADA, H., TSUTSUI, A., AND MIYAZAKI,
T. PROTEUS: Programmable Hardware for Telecom-
munication Systems. Proc. ICCD’94 (1994), 178-183.

[10] OPTIMAGIC. Programmable Logic Jump Station,
hitp://www.optimagic.com/.

[11] REDDY, S., CLIFF, R., JEFFERSON, D., LANE, C.,
Sung, C. K., WaNG, B., Huang, J., Copg, T.,
McCLINTOCK, C., LEONG, W., AHANIN, B., AND
TURNER, J. High Density Embedded Array Pro-
grammable Logic Architecture. Proc. IEEE Custom
Integrated Circuits Conference (1996), 251-254.

[12] STROUD, C., LEE, E., KONALA, S.;, AND ABRAMOVICI,
M. Using ILA Testing for BIST in FPGAs. Proc. IEEE
International Test Conference (1996), 68-75.

[13] TsutTsul, A., AND Mivyazaki, T. An Efficient De-
sign Environment and Algorithms for Transport Pro-
cessing FPGA. Proc. ASP-DAC’95/CHDL’95/VLSI’95
(1995), 791-798.

	Main Page
	FPGA98
	Front Matter
	Table of Contents
	Session Index

