
1. ABSTRACT
In the development of new FPGA architec-
tures, a designer must balance speed, density
and routing flexibility. In this paper, we dis-
cuss a new FPGA architecture based on a
patented [1], novel, segmented routing fabric
that is targeted to high performance and pre-
dictability but does not sacrifice routability or
area efficiency. Current segmented architec-
tures allow much flexibility in routing, but
incur large delay penalties when a signal has
high fanout or must traverse medium to long
distances to reach its target. Reducing the
number of programmable interconnect points
(PIPs) that a signal must traverse to reach its
target, while eliminating the RC delay
buildup due to signal fanout, improves design
performance and offers highly predictable
signal delays.

1.1 Keywords
FPGA, Programmable Logic, Routing.

2. INTRODUCTION
Since the introduction of the FPGA in 1985 [2], the number
and scope of applications in which FPGAs are used have
increased dramatically. One reason for this dramatic growth
has been the shrinking gap between FPGAs and application
specific integrated circuits (ASICs) in terms of capacity,
cost, usability, and performance. It follows that the goal of
architects creating a new FPGA is to reduce and eventually
eliminate this dwindling gap. This paper examines one
aspect of FPGA architectural design, design of the routing
fabric, and presents a patented [1], novel, segmented routing
architecture, that has significant advantages in performance
and usability while balancing the demands of cost and
capacity.

We organize the balance of this paper as follows: In the next
section, we describe the goals and key ideas behind our new
routing architecture. We then set the context for the routing
architecture by providing an overview of the FPGA of which
it is a part and a brief description of how the routing
architecture evolved. This is followed by the core of the
paper, which describes the routing fabric and presents some
results from our analysis of it. Finally we close with some
conclusions.

3. GOALS AND BACKGROUND
Our new FPGA routing architecture is designed to maximize
performance and predictability, while maintaining high
routability and efficient area utilization. These new goals —
performance, predictability, routability, and area efficiency
— result from applying the more general goals of capacity,
cost, usability, and performance to the FPGA routing design
problem. For some of these goals, the effect is readily
apparent: routing performance, the delay of the interconnect
from one logic element to the next, directly influences the
overall performance of a user’s design in an FPGA. In
FPGAs, routing delays have always been important in
computing overall performance, and as process minimum
feature sizes continue to shrink, routing delays increasingly
dominate logic delays. Similarly, the effect of area efficiency
on cost is direct, since the cost of an FPGA is proportional to
its die area. For predictability, the relationship to the more
general goals is not so obvious. Predictability is the ease and
accuracy with which interconnect delay can be estimated for
a design when the gates have been placed in the logic
elements on the FPGA but the routing has not been
completed. Good predictability makes it easier to write
software that can quickly implement a user’s design on the
FPGA, significantly impacting its usability. Routability also
influences usability. Routability is a measure of how easy it
is to interconnect the necessary logic elements to complete
the implementation of the user’s design on the FPGA. Again,
greater routability makes it easier to write efficient routing
software, thereby increasing usability. Routability also
impacts cost and capacity. If there are insufficient routing
resources to interconnect all the placed logic elements,
routability can be the limiting factor in the capacity of a
device. Similarly, since cost is directly proportional to die
area, for a given amount of logic that can be interconnected,
a routing architecture that consumes more area is more
expensive.

Now that we have established the relationship between our
routing specific goals — performance, predictability,

A Novel Predictable Segmented FPGA Routing Architecture
Emil S. Ochotta, Patrick J. Crotty, Charles R. Erickson, Chih-Tsung Huang,

Rajeev Jayaraman, Richard C. Li, Joseph D. Linoff, Luan Ngo, Hy V. Nguyen,
Kerry M. Pierce, Douglas P. Wieland, Jennifer Zhuang, and Scott S. Nance

Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124 USA
408-559-7778

emil@xilinx.com

routability, and area efficiency — and our more general
goals for FPGA architecture design, it is important to
identify specific areas for improvement in existing FPGA
routing architectures. One of the most important of these is
the build-up of RC signal delay through unbuffered
segments of the programmable interconnect. This delay can
have a dramatic negative effect on performance, particularly
for high-fanout nets, where each load contributes additional
delay. Signal delay also can be exacerbated by poor
routability because a connection may be relegated to a
suboptimal path due to signal congestion in the local area.
The non-linear nature of RC trees also makes the delays on
routes with many unbuffered segments difficult to predict.
When the problem is further complicated by the possibility
that a signal may be forced to route around congestion,
predictability becomes nearly impossible. Because of these
weaknesses, a key idea behind our work is to eliminate
unbuffered segments from the routing architecture.

Another key idea in our routing architecture comes from
trying to capture the best features of interconnect structures
that are too costly to build. The ideal FPGA routing
architecture for performance, predictability, and routability
is a fully populated crossbar switch, which allows any logic
element to connect to any other logic element on the FPGA
through a minimum number of programmable
interconnection points (PIPs), the programmable
connections between wires. Unfortunately, the amount of
wiring needed for a crossbar grows quadratically with the
number of logic elements, so a full crossbar switch is not
area efficient. For an FPGA with a capacity of more than a
few thousand gates, a crossbar is too expensive; however,
we have captured some of the flavor of a crossbar in our
routing architecture without paying the high area cost.

Our new routing architecture combines the key idea of
buffering segments with the flavor of a crossbar structure. In
a somewhat whimsical allusion to the Gordian knot, the
architecture is called “Alexander”, a name we shall use for
convenience in the balance of this paper. Our Gordian knot
was the problem of achieving our performance and
predictability objectives while maintaining routability and
area efficiency. However, Alexander cut through his knot
problem and so shall we. We begin the description of our
solution with the most general view of the Alexander
routing architecture and the FPGA of which it was a part,
then motivate some of the features in the architecture by
outlining its evolution, and finally describe the architecture
in detail.

4. FPGA OVERVIEW
Before we describe the Alexander routing architecture in
detail, we first provide a context for the routing architecture
by describing the rest of the FPGA of which it was a part.
The general arrangement of the Alexander FPGA is shown
in Fig. 1 and is similar to the coarse grain static RAM
architecture of the Xilinx XC4000 Family [3]. The
architecture consists of a two-dimensional array of logic
elements called Configurable Logic Blocks (CLBs), that are
interconnected by the Alexander routing. A single CLB and

its associated routing resources are collectively referred to
as a tile. As shown in Fig. 1, the CLB tiles form the core of
the FPGA and are surrounded by a ring of programmable I/
O buffers. The CLBs implement the user’s logic, and the I/O
buffers provide the interface between the FPGA core and
the external world.

As shown in Fig. 2, each CLB consists of two logic cells.
These logic cells are largely independent: they have separate
data inputs and outputs but share the control signals on the
flip flops. As shown in Fig. 2, each logic cell consists of a
function generator that can be configured to produce any
function of its four inputs, and an edge-triggered D flip flop
that can act as a storage element.

Fig. 3 presents a somewhat more detailed view of a logic
cell. Combinational logic is implemented in the function
generator, and the flip flop can store a single bit of state
information. The function generator and flip flop in a logic
cell are arranged in series such that the output of the
function generator can be used as the input to the flip flop.
To provide fast and compact arithmetic, the logic cell

Figure 1. Architecture Layout.

CLB
Tile

I/O
Ring

F

XQ

G

YQ

Cout

Cin

F1
F2
F3
F4
Dx

G1
G2
G3
G4
Dy
Clk
S/R

Logic Cell 1

Logic Cell 2

Figure 2. Configurable Logic Block (CLB)

implements full adder circuitry and a fast carry chain. The
carry circuitry uses the function generator inputs as the
operands and a carry-in signal propagated from the logic
cell immediately below it, generating carry-out for the logic
cell above it. The Dx pin on the logic cell provides a direct
path to the flip flop, allowing it to be used independently of
the function generator. As we describe in Section 6, the
simple but powerful combination of features in the logic cell
are a good match for the Alexander routing architecture.

For those intimately familiar with other FPGAs, it is likely
apparent that we are neglecting details of the CLB in Fig. 2
and Fig. 3. In fact, there are several features of the
Alexander FPGA that we do not detail because they are only
indirectly related to our novel routing architecture, yet some
of these features are worth mentioning for completeness.
First, there are several global clocks for distribution of clock
signals and other very high fanout nets. Second, there are
fast dedicated direct connects from each logic cell to its
neighbor on the right, to allow construction of functions
wider than the four-inputs allowed by the function
generators. Finally, there are long-lines that provide
additional routing resources throughout the FPGA. We
exclude all these resources from further discussion.

5. GENESIS OF THE ROUTING FABRIC
Before we present the details of the Alexander routing
architecture, we first motivate our discussion with a
simplified history of its evolution. The goal of the
Alexander routing architecture was to improve on the
routability, performance, and predictability of the Xilinx
XC4000 architecture, and for this we were willing to pay a
modest area overhead. As a starting point for this new
architecture, we began with a crossbar interconnection
scheme as shown in Fig. 4. This conceptual diagram depicts
CLBs with only a single input and output. The greatest
advantage of this scheme is the performance benefit of
being able to connect any two CLBs with only a single PIP.
In Fig. 4, connecting the CLB in the upper left hand corner
to the CLB in the lower right hand corner requires enabling
only the circled PIP. However, there are significant
drawbacks that make a full crossbar interconnection scheme
impractical for large, commercial FPGAs. The first of these
is the amount of chip area consumed by the routing. A chip-
length wire is required for each input or output from each
CLB, and a PIP is required between every input and output

wire. With hundreds or thousands of CLBs, the three-by-
three arrays of PIPs in Fig. 4 would quickly grow until they
were economically impractical. Another important result of
a full crossbar is that wires that run from one edge of the
FPGA to the other are required for each input and output.
These wires would be slow for large devices simply because
of their length and the large electrical load due to the many
PIPs on them, as can be clearly seen in other non-segmented
routing architectures, negating the advantage of the single-
PIP connections. Finally, a more practical concern of the
crossbar is that it cannot be tiled, which means that creating
a ten percent larger device of the same family would require
a complete re-layout, which is time-consuming and
expensive. The genesis of the Alexander architecture was to
try to overcome these area and tileability deficiencies while
preserving the primary advantage of the crossbar — the
ability to interconnect any two CLBs with a single PIP.

The first step towards the Alexander architecture was to
simply cut the input and output wires in Fig. 4 so that
instead of running the length of the chip they covered only
two tiles. The result is the routing scheme in Fig. 5. This
routing scheme preserves single-PIP connectivity to nearby
CLBs but is tileable (ignoring the edge effects visible in
Fig. 5). In addition to edge effects, the simplified routing
fabric in Fig. 5 has a directionality bias because each CLB
has a single input and output. The first step towards making
this idea practical was to increase the number of inputs and
outputs, balancing them so that they extend in all directions
from the CLB. As we shall see when we describe the
routing architecture in detail, this characteristic pattern
(visible in Fig. 6) is still a part of the routing fabric.

From this simple beginning, the routing architecture evolved
through five major changes and several minor revisions.
This evolutionary process was guided primarily by routing
experiments performed with Xilinx’ PPR software that was
modified to route each new version of the Alexander
architecture. To measure the success of each new variant,

F1
F2
F3
F4

Cout

F

XQ
Dx
Clk

Cin

S/R

Function generator Carry

Flip flop

Figure 3. Logic Cell

Figure 4. Crossbar interconnection scheme. Connecting the
upper-right CLB to the lower-left CLB requires enabling only

the circled PIP.

CLB CLB

CLB CLB

CLB

CLB

CLB CLB CLB

Connection

PIP

Input

Output

Enabled PIP

statistical comparisons of routability were performed using
a suite of 56 designs that were placed and routed. These
designs were selected both because they were difficult to
route in XC4000 devices, and because they covered a broad
range of customer design styles. After each modification of
the routing architecture, designs that routed poorly were
examined in detail and changes were proposed to address
the specific weaknesses found. These changes were then
analyzed to predict the impact on FPGA area and on
performance. This evolutionary step was repeated until the
architecture converged to the form we describe in the
balance of this paper.

6. ROUTING FABRIC
Now that we have described the path by which the
Alexander routing architecture evolved, we present a
detailed description of the routing fabric itself. The
Alexander routing fabric is created from three inter-woven
elements: the extended input pin (EIP), the multiplexor
complex (Mux-C), and the output complex wire (OCW). To
understand the overall fabric, it is essential to first
understand each of these threads in isolation and then
understand their interconnection.

The first element in the routing fabric is the extended input
pin (EIP). Recall from Fig. 2, that each CLB has twelve
inputs pins. These pins are divided into four groups of three
pins each. As shown in Fig. 6 each group of three input pins
extends for a distance of two tiles towards a different edge
of the FPGA. As can be seen by comparing Fig. 6 with
Fig. 5, the EIPs have not changed significantly from the
original concept for the architecture. However, the same
cannot be said for the outputs from the CLBs.

Instead of a structure like the EIPs, the outputs from the
CLB drive the second of the elements in the routing fabric:
the Mux-C. The Mux-C is the intersection where signals can
change direction or extend themselves on their way from
CLB output to CLB input. Recall from Fig. 2, that each
CLB has four outputs to the routing fabric. Although there

is a single Mux-C and a single CLB in each tile, the arrows
in Fig. 7 show that each of the CLB outputs drives a
different one of the four Mux-Cs that surround it. Fig. 8
shows in greater detail how the CLB outputs connect to the
surrounding Mux-Cs. Each function generator and flip flop
in the CLB has two possible ways of connecting to the
adjacent Mux-Cs. This is shown in Fig. 8 where the F
function generator connects to two Mux-Cs: one in the
upper-right and the other in the lower-left. Similarly, the G
function generator, the XQ, and YQ flip flop outputs
connect to two Mux-Cs as shown in the figure. Note the
asymmetry between the connection of the two logic cells in
a logic block. The fact that the two logic cells in a logic
block are identical in all respects except their connectivity to

Figure 5. Modification of the crossbar that is the foundation of
the Alexander routing architecture.

CLB CLB

CLB CLB

CLB

CLB

CLB CLB CLB

PIP

Input

Output

Figure 6. Extended input pins bring inputs directly into the
CLB from a distance of two tiles away.

CLBCLBCLB CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB CLB

CLB

CLB CLB

CLB

Tile

3 Extended
Input Pins

3

3

3

3

CLB

Figure 7. The multiplexor complex (Mux-C) collects outputs
from each of the 4 surrounding CLBs.

CLB

Mux-C

CLB

Mux-C

CLB

Mux-C

CLB

Mux-C

CLB

Mux-C

CLB

Mux-C

CLB

Mux-C

CLB

Mux-C

Tile

Mux-C

the Mux-Cs provides the flexibility to fix routing problems
with small placement changes. Because all CLB outputs go
to a Mux-C, it acts as a collection point from which signals
leaving the CLB are distributed to other routing resources.

The third element in the routing fabric is the output complex
wire (OCW). A single OCW is shown in Fig. 9. As shown in
Fig. 10, four OCWs begin at each Mux-C, each one of the
four extending towards a different edge of the FPGA. Thus,
a signal leaving a CLB output goes through a Mux-C and on
to an OCW. The OCW is the element that ties the routing
architecture together because it is driven by a Mux-C and
connects to EIPs and other Mux-Cs. To describe how the
connections to the EIPs are made, we must describe the
component wires that make up the OCW. Referring to
Fig. 9, an OCW is in fact composed of five different wires:
two double-PIP (DP) and one each of double-metal (DM),
quad-PIP (QP), and quad metal (QM). A wire is called a
double or a quad depending on whether its length is two or
four tiles respectively. Thus, a double-PIP wire is a wire that
extends across two tiles and has several PIPs on it. In the
Alexander routing architecture, the EIPs are connected by
PIPs to the double-PIP and quad-PIP wires. As shown in
Fig. 11, the double-PIP wires are connected with PIPs to
every EIP that they cross. The quad-PIP wires are connected
only to the EIPs they cross in the third and fourth tile they
traverse. Wires with PIPs are flexible resources but slower
than wires without PIPs because each PIP adds an electrical

load to the wire. In contrast, the double-metal and quad-
metal wires are express lines that have connection points
only at their ends. In the context of the OCW, we can now
show how the reach of the EIPs provides not only
routability, but additional speed as well. The two-tile input
reach on the pin provides a direct (i.e. fast) path directly into
the CLB from a greater distance. Experimental results show
that the extended input pins also create additional routing
flexibility by providing convenient routing paths from the
OCW to CLBs in any of the adjacent rows of tiles, as shown
in Fig. 11. The combination of OCW and EIP is both
flexible and efficient because it provides the PIP wires to
maximize routability and the metal wires to maximize
speed.

The Mux-C, OCW and EIP are interwoven in a segmented
routing fabric that is difficult to draw because of its
complexity. In this fabric, each tile contains a CLB driven
by four EIPs and a Mux-C that drives four OCWs. Because

Figure 8. Connections to the routing fabric

F
YQ

F
XQ

G

G

YQ

XQ

Mux-C

Mux-C Mux-C

Mux-C

CLB

Mux-C Mux-CMux-C

DMDP

Tile 0 Tile 1 Tile 2 Tile 3 Tile 4 Tile 5 Tile 6 Tile 7 Tile 8

DP
QP

QM

OCW

Figure 9. The output complex wire is composed of two double-PIP wires (DP) and one each of double-metal (DM), quad-PIP (DP),
and quad metal (QM).

CLB CLB CLB CLB CLB CLB CLB CLBCLB

Figure 10. An OCW extends from each of the four sides
of every Mux-C.

Mux-C

OCW

Tile

a given OCW has a reach of eight tiles, and OCWs proceed
in all four directions, each tile actually contains wires from
32 different OCWs. Similarly, there are actually 24 EIPs in
the tile and 288 PIPs to interconnect the OCWs and EIPs.

It is also worth pointing out that this combination of Mux-C,
OCW, and EIP still retains some of the flavor of a crossbar
switch because many CLB-to-CLB connections can be
made with a single PIP. Although the connectivity is not
complete, as we can see in Fig. 11, each CLB is densely
connected to the CLBs nearby via a single PIP connection
between the OCW and the EIPs. This nearest neighbor
connectivity is what is needed to efficiently route the
majority of signals in a typical design. As the distance from
source to target increases, the amount of connectivity
decreases, and the structure looks less like a crossbar. The
drastic reduction in the number of PIPs reflects the need for
an area-efficient routing architecture. To maintain good
connectivity for long routes (typically signals with high
fanout) the OCW provides the metal wires to quickly
traverse the FPGA.

When a signal must travel a long distance, the OCW is fast
because of the double-metal and quad-metal wires. Signals
that extend beyond eight tiles use more than a single OCW
by routing through additional Mux-Cs. To facilitate this, as
shown in Fig. 9, the OCW is connected to the nearest Mux-
C at the end of the OCW’s double-metal wire and its quad-
metal wire. From the Mux-C, the signal can take any of the
four OCWs it drives, allowing the signal to change
directions and get to any corner of the FPGA very quickly.

A more detailed view of a single edge of a Mux-C is shown
in Fig. 12. Since there are three wires at the beginning of
each OCW and four OCWs driven by each Mux-C, there are
twelve multiplexors in each OCW, and each set of three
OCW-driving multiplexors is identical. Each multiplexor is

an 8-to-1, with four inputs driven by the outputs of the
adjacent CLBs, as shown in Fig. 8, and the remaining four
inputs driven by other OCWs. For the four OCWs whose
QM wire terminates in this tile, a route can be extended to
the OCW that starts here through the topmost DP
multiplexor. There will also be four DM wires that terminate
in this tile, and signals on those wires can muliplex onto the
OCW that starts here through either the lower DP
multiplexor or the QP multiplexor. The decision to extend
the QM wires through only the DP multiplexor is typical of
the kinds of engineering trade-offs that must be made when
designing a routing architecture. Since the QP line is
typically faster than the DP lines, some speed might be
gained by increasing the width of the QP multiplexor to
allow the QM extensions to connect to the QP wire.
However, the additional width of the multiplexor would
slow down all the connections through the multiplexor due
to the additional loading and would increase the area of the
chip. The increased area would directly impact cost and
could slightly reduce speed because of the increased lengths
of wires. In the end, the decision to design the Mux-C as
shown in Fig. 12 was based on place and route experiments
that showed that the additional connections would not
provide a significant routability advantage.

Another feature of the routing architecture important for
difficult routing tasks is the route-thru, the ability to enter
and exit a CLB without using its logic resources. This route-
thru ability can be used to bypass congested areas and get to
an adjacent Mux-C. Because it was designed as a last resort,
use of a route-thru is an indicator of insufficient local
routing and was used early in the design process to guide the
addition of resources. In the final version of the routing
architecture, route-thrus are used infrequently.

Figure 11. Connectivity between an OCW and nearby EIPs.
The short angled marks are PIPs.

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

DMDP
DP
QP

QM

M
ux

-C

Figure 12. Detailed view of a single edge of a Mux-C.

{Outputs from
Adjacent CLBs

(see Fig. 8)

{QM Outputs from
terminating OCWs

(see Fig. 9)

DP

DP

QP

{Outputs from
Adjacent CLBs

(see Fig. 8)

{DM Outputs from
passing OCWs

(see Fig. 9)

{Outputs from
Adjacent CLBs

(see Fig. 8)

{DM Outputs from
passing OCWs

(see Fig. 9)

OCW

An important feature of the Alexander routing architecture
is that every route is buffered. Recall that eliminating the
unpredictable delays that result from unbuffered
interconnect segments is one of the key ideas behind the
Alexander architecture. To accomplish this, every output
from the Mux-C and every PIP connecting to an EIP is
buffered. As a result every signal is buffered at least twice:
once when it emerges from the Mux-C, and once when it
enters a logic block via an EIP.

As a result of this buffering, a signal connection that is
routed using a Mux-C and an EIP will incur a delay equal to
the sum of the delays of the buffers in the Mux-C and the
EIP, plus a fixed overhead. We can use this method to
compute the delay of any route as long as we know the
number of Mux-Cs that the route uses. Note that due to the
buffering, this delay is largely independent of the signal
fanout.

7. ANALYSIS AND RESULTS
In this section, we analyze the characteristics of the routing
architecture in terms of our goals — performance,
predictability, routability, and area efficiency — and present
specific results from analyses of the architecture that
highlight its capabilities. We also discuss the affect of the
routability and predictability on the CAD software that must
implement users’ designs on the FPGA fabric.

We begin with an example route that shows how the three
elements of the routing fabric — Mux-C, OCW, and EIP —
work together to complete a route. In Fig. 13, the source
CLB is in the upper left-hand corner of the array of tiles,
and it drives two target CLBs. The thicker lines indicate
routing resources that were used to route the signal, leaving
the thinner lines and other resources not shown to be used

for routing other signals. Tracing the signal in our example,
it is first routed from the source CLB to the Mux-C in the
adjacent tile. To reach the nearest target, the signal uses a
PIP on the double-PIP wire to connect to an EIP and directly
into the CLB. This connection is crossbar-like because it
requires a single PIP. To reach the far target, the signal must
connect to the Mux-C five tiles from the signal’s source so
that it can turn downwards towards the target. To connect
between the two Mux-C elements, the signal uses a double-
PIP (DP) followed by a double-metal wire (DM). Note that
since the DM is lightly loaded, it is a very fast path between
Mux-C components. Once in the second Mux-C, the signal
leaves via the OCW heading downwards. In this case, the
signal uses the quad-PIP (QP) wire, so that it can connect
directly to the EIP and so to the target CLB, completing the
route. This example also shows the importance of the fully
buffered interconnect. Because of the buffering, the delays
to each of the targets are independent of one another and can
be computed by simply summing buffer delays. In contrast,
in an unbuffered routing scheme, the delays could not be
calculated until all the targets had been connected, and the
calculation would be a non-linear function of all the
resistances and capacitances seen by the interconnect. This
example shows not only how the Mux-C, OCW, and EIP
work together, but how the buffering provides fanout
independence.

The combination of Mux-C, OCW, and EIP also provides
excellent routability. High signal routability is ensured by
providing extensive routing resources and by adhering to a
strict paradigm of PIP placement. The paradigm dictates
lower flexibility for a signal to get from a CLB into the
Mux-C, but extremely high flexibility for a signal to connect
from the routing fabric to another CLB. By ensuring that all
signals have ample access to the routing fabric, all

D
M

D
P

D
P

Q
P

Q
M

Figure 13. Routing example: this route from the source CLB to the target CLB uses 2 Mux-C components, 2 OCWs, 1 EIP at the
input to the target CLB.

Tile

CLB

CLB

DMDP
DP
QP

QM
Mux-C Mux-C

Source

Target

CLBTarget

connections can be made. One evaluation of routability is
given in Fig. 14, which shows the number of single-PIP
routing paths from the Y output of the grayed CLB in the
center of the diagram to the other CLBs in the diagram. As
with the other figures, the grid is the array of tiles that
compose the FPGA, and each tile contains a single CLB.
The number shown above the CLB in each tile is the number
of distinct paths to that CLB from the grayed CLB in the
center of the figure. This is an impressive result because this
counts only the paths that require a single PIP, so there are
many more available paths that require more than one PIP.
The single-PIP paths are important because a single PIP
connection looks like a crossbar and has less interconnect
delay. This result shows how the combination of Mux-C,
OCW, and EIP provide abundant fast routing resources on
the FPGA.

The Alexander Architecture is a high performance
architecture. This comes mainly from the ability of the
OCW to route signals within a distance of four tiles with
very low delay and to extend signals in increments of eight
additional tiles with minimal incremental delay. The fully
buffered interconnect also eliminates the high RC buildup
due to fanout. The routing fabric gives a high degree of
connectivity enabling signal connections to span several
tiles while the buffering ensures that the connection delays
remain largely independent of the distance that they span
and the fanout of the signal. To illustrate this point Fig. 15
plots a map of the direction and distance that a signal can
travel with respect to the delay that it incurs. In Fig. 15 we
consider the unit of delay as the delay incurred in passing

through a single Mux-C. Regardless of the number of Mux-
Cs traversed, every signal will incur additional fixed delays
entering the first Mux-C from the driving CLB and entering
the load CLB via an EIP.

Notice the gradation of delay that occurs with distance from
the source. There are two important facts to note here: the
slow and predictable degradation of delay as the distance
from the source increases, and the discrete steps in which
the delay increases. This predictability comes from the
architecture’s two significant features: the connectivity of
the routing fabric and its buffering scheme.

Using a similar methodology used in the construction of
Fig. 15 we can generate tables that can be used to estimate
delays. Accurate delay estimates enable better evaluation of
design trade-offs during manual logic design or automatic
logic synthesis. This approach also results in very accurate
delay estimates during the placement phase of the
implementation of a user’s design on the FPGA. Further,
since the delay estimates can be made using simple table
lookup the delay estimation is considerably faster than
traditional RC tree analysis methods. These characteristics
greatly improve the efficiency and ease of writing software
tools to implement users’ designs on the Alexander FPGA.

Although experimental software was developed to evaluate
alternatives as the Alexander architecture evolved, this
software was not tuned for production, nor were the
conservative timing values used for experiments optimized
to match silicon. For these reasons, timing results from
placed and routed designs are open to a certain amount of
interpretation, and we refrain from quoting detailed results
here. We consider it a validation of the architecture that 97
of 114 designs from a typical design suite had better clock
performance when placed and routed with experimental
Alexander software than when placed and routed with the

Figure 14. Number of available routing paths that use only 1
PIP from Y output to F input of nearby CLBs.

16 15

1415

15

9

3

1

8

2

0

1

3

9

2

4

9

149

0

1

5

0

2

8

14

2

9

8

5

15

14

9

4

1 2

8

1

2

5

0

0

1

2

1

9

9

5

3

4

2

0

0 0

0

0

0

0

1

2

1

0

0

0

0

1

2

1

0

0

0

0

0

0

2

4

3

2

1

0

0

Tile
CLB

Figure 15. Reach of the Alexander routing fabric. Mux-Cs re-
quired to reach a given CLB from the start CLB.

5 10 15 20

5 10 15 20

5

10

15

20

5

10

15

20

Start

1Mux-C

2Mux-C

3Mux-C

4Mux-C

5Mux-C

production software for a XC4000E in the same fabrication
technology.

Even with the somewhat reduced confidence level in the
timing data, the fanout independence of the architecture is
clearly validated by the graph in Fig. 16. This graph shows
maximum clock frequency for a family of special test
designs placed and routed with experimental Alexander
software and production XC4000E software. These test
designs were a single flip-flop driving a large number of
other flip-flops. The graph shows that as the fanout to the
load flip-flops increases, the maximum achievable clock
frequency on the XC4000E degrades substantially while the
clock frequency for Alexander remains largely constant.

To understand better several aspects of the Alexander
FPGA, complete layout and fabrication was undertaken.
The CLB tile in the Alexander architecture was less than
40% larger than the XC4000E tile when laid out in the same
process. However, this increased area was paid for not only
by increased speed but by increased routability over the
XC4000E. The Alexander project culminated with the
creation of the completely functional test chip shown in
Fig. 17. Many of the key innovations from the routing fabric
and other aspects of the architecture are leveraged in the
Xilinx XC4000EX, XC4000XL, XC4000XV families and
in the recently released Virtex family.

8. CONCLUSIONS
The Alexander routing architecture provides fast,
predictable routing interconnect. The architecture is woven
together with an interconnection of Mux-Cs, OCWs, and
EIPs, giving the architecture the flavor of a cross-bar. The
performance is attained by reducing the number of PIPs
required to reach a destination. The predictability is a result
of the fanout independence of the buffered interconnect, as
well as the predetermined number of interconnections
required for routing signals between any logic blocks in the
array. This architecture lends itself to an efficient silicon
solution that integrates well with place and route design
tools, to provide a vehicle for high performance FPGA
design.

9. REFERENCES
[1] K. Pierce, C. Erickson, C. Huang, and D. Wieland,

“Interconnect Architecture for Field Programmable
Gate Array”. United States Patent No. 5,581,199.
December 3, 1996.

[2] W. Carter, K. Duong, R. H. Freeman, H. Hsieh, J. Y. Ja,
J. E. Mahoney, L. T. Ngo, and S. L. Sae, “A User Pro-
grammable Reconfigurable Gate Array,”Proc. 1986
Custom Integrated Circuits Conference, May 1986, pp.
233-235.

[3] The Programmable Logic Data Book, Xilinx Inc., 1996.

Figure 16. Maximum clock frequency comparison for high-
fanout nets

10.0 20.0 30.0 40.0 50.0
30.0

40.0

50.0

60.0

70.0

80.0

Alexander

XC4000E

M
ax

im
um

 C
lo

ck
 F

re
qu

en
cy

 (
M

H
z)

Fanout (Number of Loads)

Figure 17. Photograph of fabricated test chip.

	Main Page
	FPGA98
	Front Matter
	Table of Contents
	Session Index

