
-- --

A Synthesis Procedure for Flexible Logic Functions

Irith Pomeranz and Sudhakar M. Reddy+

Electrical and Computer Engineering Department
University of Iowa

Iowa City, IA 52242

1. Introduction
In most applications of digital logic circuits, the circuit function
is either specified (0,1) or unspecified (do n′t − care) for every
input condition. However, there are also applications where any
one of a subset of functions is an acceptable solution, even
though it is not possible to represent all the functions in terms of
output don’t-cares. In this case, we say that the function isflexi-
ble. Flexible functions were considered before in [1]. In this
work, we propose a synthesis procedure for flexible functions
based on functional blocks called comparison units [2]. The
main differences between the proposed procedure and the proce-
dures of [1] are the following. (1) We do not require a closed-
form representation of all the flexibility that exists in specifying
the function f . We only require that a procedure would exist to
check whether a given function belongs to the class of acceptable
functions. (2) We use a specific architecture for the implementa-
tion of flexible functions. This architecture, based on comparison
units [2], is particularly suitable for implementing flexible func-
tions, since the correspondence between circuit size and certain
properties of the implemented function is strong and easy to uti-
lize for the minimization of the implementation. The proposed
synthesis procedure starts from an acceptable functionf ′ that
may be used to implementf . It then modifiesf ′ so as to change
certain properties off ′ that lead to smaller comparison unit
based implementations. Before any modification off ′ is
accepted, a check is made to make sure that the modified func-
tion is an acceptable implementation off . Modifications are
made as long as it is possible to change the properties off ′ that
lead to a reduction in the implementation size.

We also demonstrate that implementations using compari-
son units for conventional, non-flexible functions are an effective
intermediate step for synthesis. For this purpose, we apply the
synthesis tool suite SIS from the University of California at
Berkeley in two ways. (1) To a comparison unit implementation
of a function, and (2) directly starting from the truth table of the
function. In most cases, the area of the circuit derived from a
comparison unit based implementation is smaller.

2. Application problem and implementation
The application we consider is that of synthesizing an
autonomous finite-state machine as a test pattern generator
(TPG) for a given circuit [3]. In the configuration we consider,
the TPG drives a shift-register, and the inputs of the circuit-
under-test (CUT) are driven from the shift-register. The output
sequenceS generated by theTPG is designed to produce, when
shifted into the shift-register and applied to theCUT, a test set
that detects every detectable fault in theCUT.

To implement aTPG with an output sequenceS of length
k, we use a counter withNFF = log2 k flip-flops. When the
counter is in the state with state assignmenti , the TPG output
valuez(i) is equal to the valuesi in positioni of S for 0 ≤ i < k.
In addition,z(i) = − for k ≤ i < 2NFF . This determines the truth

+ Research supported in part by NSF Grant No. MIP-9357581, and by NSF
Grant No. CDA-9601503.

table of z as a function of the present state variables of the
counter, y1, y2, . . . , yNFF

. Synthesis of the truth table is
described next.

The basic building blocks for implementing a function in
[2] are referred to ascomparison blocks. There are two types of
comparison blocks, the≥ L block and the≤ U block. A ≥ L
block produces the output 1 when supplied with an input combi-
nation whose decimal value is larger than or equal toL. A ≤ U
block produces the output 1 when supplied with an input combi-
nation whose decimal value is smaller than or equal toU. A
comparison function is a function whose minterms {m} satisfy
L ≤ m ≤ U for someL andU [2]. A comparison function can be
implemented by ANDing a≥ L block and a≤ U block. This
structure is called acomparison unit[2].

The minterms of a function may not all fall within a con-
secutive range [L,U]. For a function withr ranges of consecu-
tive 1s, {[Li ,Ui]: 1 ≤ i ≤ r }, we OR the outputs ofr comparison
units where thei th one implements the range [Li ,Ui].

Given the comparison unit based implementation as the
target of the synthesis procedure forTPGs, the number of gates
required to implement theTPG can be reduced if one can per-
form one of two modifications to the output functionz, and con-
sequently to the output sequenceS. (1) Replace two ranges of
consecutive 1s, [Li ,Ui] and [Li+1,Ui+1], by a single range
[Li ,Ui+1]. This implies complementingz in the range
[Ui + 1, Li+1 − 1]. (2) Remove a range [Li ,Ui] of consecutive 1s
by complementingz from Li to Ui .

To determine whether or not a modification can be per-
formed in the context of theTPG problem, we must determine
its effects on the fault coverage of theTPG output sequence. If
the modification does not reduce the fault coverage, it is
accepted, resulting in a reduction in the number of comparison
blocks needed to implement the function.

3. The synthesis procedure
The definition of a comparison function in [2] allows the inputs
of the function to be permuted such that the minterms create a
consecutive sequence of 1s (or 0s in the case of a complemented
comparison function). In this section, we use input permutations
to reduce the number of ranges of consecutive 1s (0s) inz, thus
reducing the size of the logic realizing theTPG in the applica-
tion considered here.

After permuting the inputs, the don’t-cares that result
from the fact that the original length ofS was smaller than 2NFF

are interleaved with the other values. Therefore, the synthesis
procedure must first determine their values. We use the follow-
ing notation to describe the determination of the don’t-cares.

We represent the permuted input combinations by their
decimal values. For combinationi , the TPG output value is
denoted byz(i). The number of counter flip-flops is denoted by
NFF, making the last input combination 2NFF − 1. Suppose that
the output values for the permuted input combinations in the
range [i1, i2] are don’t-cares. The don’t-care values are deter-
mined using one of the following rules. (1) Ifi1 = 0, we set
z(i) = z(i2 + 1) for 0≤ i ≤ i2. This causes the range of don’t-

-- --

cares to be merged with the range that follows it. We obtain a
new range that has the all-0 pattern as its lower bound. Thus, its
≥ L comparison block does not require any gates. (2) If
i2 = 2NFF − 1, we setz(i) = z(i1 − 1) for i1 ≤ i ≤ 2NFF − 1. This
causes the range of don’t-cares to be merged with the range that
precedes it. We obtain a new range that has the all-1 pattern as its
upper bound. Thus, its≤ U comparison block does not require
any gates. (3) Ifz(i1 − 1) = z(i2 + 1), we combine the range that
ends at i1 − 1 with the range that starts ati2 + 1 by setting
z(i) = z(i1 − 1) for i1 ≤ i ≤ i2. (4) If z(i1 − 1) ≠ z(i2 + 1), we
select an indexi0, and then setz(i) = z(i1 − 1) for i1 ≤ i ≤ i0 and
z(i) = z(i2 + 1) for i0 + 1 ≤ i ≤ i2. We selecti0 such that the com-
parison blocks≤ i0 and≥ i0 + 1 would require a minimum num-
ber of gates. This is achieved by selectingi0 that ends with the
maximum number of 1s [2].

The truth-table obtained can be further modified to elimi-
nate some of the ranges. This requires us to derive the newTPG
output sequenceS′ from z by first undoing the input permutation.
By simulatingS′, we can find out whether the patterns it applies
to theCUT detect all the faults in theCUT, and the modification
can be accepted.

To select a permutation of the inputs, we try the original
order of the counter flip-flops and 99 randomly selected permuta-
tions. For each one, we compute the initial number of ranges
after setting the don’t-care values. We select the original permu-
tation, and 10 permutations that have the smallest number of
ranges (possibly including the original permutation, for a total of
10 or 11 permutations). Each one of the selected permutations
goes through synthesis. The permutation that yields the smallest
number of gates is then selected.

4. Experimental results
We applied the procedure described above to ISCAS-85 bench-
mark circuits. The test sets for the circuits are the ones gener-
ated by the procedure of [4]. After applying the proposed proce-
dure, we applied MIS-II followed by the technology mapping
procedure in SIS. This reduces the size of theTPG by sharing
gates among its various comparison units. In Table 1, after cir-
cuit name we show the initial length ofS and the number of
counter flip-flops. Using the best permutation of the inputs, we
show the number of ranges and the corresponding number of
gates obtained after applying SIS to the comparison unit based
implementation. These are shown under columnproposed, sub-
columnsrang andSIS. All the gate counts are given in terms of
two-input gates. Under columnproposedsubcolumnw. count
we show the number ofTPG gates when the gates to implement
the counter are taken into account.

Table 1: Experimental results
proposed SIS SIS

circuit S-len FF rang gates SIS w.count t.tab FSM
c432 440 9 5 69 53 70 71 397
c499 461 9 5 60 50 67 72 376
c880 597 10 11 148 102 121 130 NA
c1355 2034 11 7 124 106 127 142 NA
c1908 3163 12 37 605 380 403 NA NA
c3540 4248 13 151 2228 839 863 NA NA
c6288 103 7 2 19 14 27 16 120

For comparison, we applied ESPRESSO followed by
MIS-II and the technology mapping procedure in SIS to the truth
tables obtained before going through the comparison unit based
implementation. The gate counts obtained are shown in Table 1
under columnSIS t.tab (these numbers do not include the
counter gates). They should be compared to the results obtained
by the proposed method, reported under columnproposedsub-
columnSISof Table 1. From the comparison we conclude that
the proposed implementation using comparison units provides a
better starting point for SIS than the truth tables.

To further assess the effectiveness of the proposed synthe-
sis procedure, we used SIS to synthesize finite-state machines
that produce the initial sequencesS. The number of two-input
gates is shown in Table 1 under columnSIS FSM. The number
of gates should be compared to the number of gates obtained by
the proposed procedure under columnproposed subcolumn
w. count. The proposed synthesis procedure yields significantly
smallerTPGs than the conventional synthesis approach. In addi-
tion, the conventional approach cannot always be applied if the
state table obtained for theTPG is too large.

From the comparison with SIS, one may view the pro-
posed synthesis procedure and the proposed architecture based
on comparison units as effective guidelines in selecting an
implementation for a logic function. To further demonstrate the
advantages of comparison unit based implementations as part of
the synthesis flow, we considered conventional (non-flexible)
functions. For each function, we followed two synthesis paths.
(1) We obtained a comparison unit based implementation by per-
muting the inputs as above, and selecting one of the best permu-
tations to define the ranges for the comparison units. We then
applied SIS to minimize the implementation. (2) We applied
ESPRESSO followed by SIS to the truth table (without going
through a comparison unit based implementation).

We considered 15 random functions each having 10
inputs and one output. The probability of a 1 on the output is 0.5
for the first five functions, 0.25 for the next five functions, and
0.125 for the last five functions. The results are reported in
Table 2 as follows. Each one of the 15 random functions is repre-
sented by a number. For each function, we show the number of
ranges, and the number of gates after SIS (Synthesis option 1
above). In the last column we show the results of applying
ESPRESSO and SIS to the truth tables directly (Synthesis option
2 above). In most cases, using comparison unit based implemen-
tations is preferable to direct synthesis.

Table 2: Results for non-flexible functions
proposed SIS proposed SIS

f rang SIS t.tab f rang SIS t.tab

1 240 573 663 6 183 564 520
2 237 598 647 7 178 505 533
3 243 564 661 8 178 503 523
4 237 591 641 9 186 474 528
5 233 578 679 10 190 491 550

2904 3291 2537 2654

proposed SIS
f rang SIS t.tab
11 116 299 393
12 98 401 333
13 111 365 388
14 102 279 361
15 108 285 388

1629 1863

References
[1] E. Sentovich, V. Singhal and R. Brayton, "Multiple Boolean

Relations", Intl. Workshop on Logic Synthesis, 1993.
[2] I. Pomeranz and S. M. Reddy, "On Synthesis-for-Testability of

Combinational Logic Circuits", 32nd Design Automation Conf.,
June 1995, pp. 126-132.

[3] V. D. Agrawal, C. R. Kime and K. K. Saluja, "A Tutorial on
Built-In Self-Test Part 1: Principles", IEEE Design and Test of
Computers, March 1993, pp. 73-82.

[4] S. Kajihara, I. Pomeranz, K. Kinoshita and S.M. Reddy, "Cost-
Effective Generation of Minimal Test Sets for Stuck-at Faults in
Combinational Logic Circuits", IEEE Trans. on Computer-Aided
Design, Dec. 1995, pp. 1496-1504.

	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

