Asynchronous Scheduling and Allocation

Anatoliy Prihodzhy
University of Informatics and Radioelectronics, 6 P.Brovka, Minsk 220027, Belarus

Abstract

This paper presents an approach to generating asynchronous schedules of various concurrency levels and describes novel net-based scheduling and allocation optimization techniques for asynchronous high-level synthesis. The asynchronous schedules are optimized through the sets of concurrent variable and statement pairs. Experimental results and a comparison of the net-based techniques with the best sequential scheduling and allocation techniques are presented.

1: Introduction

Asynchronous circuits inherently data driven, are active only when they do useful work and allow low power consumption, timing fault tolerance, and high-speed operation with an average delay instead of a worst-case delay [1,2,6]. Techniques for synthesis of asynchronous circuits have been proposed at logic, high, and system levels. The Petri Net is the most universal model to specify an asynchronous behavior. The Signal Transition Graph model is a Petri Net the transitions of which are interpreted as value changes on circuit signals. The Predicate/Transition Nets are a system level specification model that deals with concurrency and covers both control and calculation. Currently the majority of high-level synthesis tools target at the synchronous RTL-structures [3-4] and perform scheduling that introduce control steps and finite state machine states. The Tangram high-level VLSI programming language supports the entire automatic compilation into asynchronous circuits.

2: Asynchronous schedules

The asynchronous schedule is a four-tuple $AS=(V,S,F,M_0)$ where V is a set of variables, S is a set of statements, $N=S\cup V$ is a set of nodes, $F\subseteq N^2$ is a flow relation, and $M_0\subseteq F$ is the initial marking. The edges in F may be labeled with Boolean variables that regulate the token flow. The node i input-edges set and output-edges set are denoted by i^\prime and $i^\prime\prime$. Statement-node i is enabled if $i\subseteq M$ and variable-node j is enabled if $j\cap M\neq\emptyset$. An enabled node fires, removing a token from edges in i^\prime and adding a token to edges in $i^\prime\prime$. Two nodes i and j are concurrent if marking M exists for which $i^\prime\cap M\neq\emptyset$ and $j^\prime\cap M\neq\emptyset$, otherwise the nodes are sequential. The sequential nodes may share the same resources, while the concurrent nodes may not.

The asynchronous pipelined schedule of maximum concurrency is derived from CDFG. A pair of request/acknowledge signals (Figure 2) is introduced for each pair statement/output-variable and input-variable /statement (Figure 1). All the request edges except the incoming edges for input variables and the acknowledge outgoing edges for the input variables belong to the initial marking. Asynchronous schedules of less concurrency are derived from the maximum con-cur-rency schedule by adding and/or removing edges and tokens. This mechanism allows generating a less pipelined schedule, reducing a pipelined schedule to a nonpipelined one (Figure 3), and decreasing the concurrency level of the nonpipelined schedule. Concurrency relations C_r and C_i for the variables and statements define the maximum sets D_r^M and D_i^M of concurrent variable and statement pairs. A less concurrent schedule is defined by subsets $D_r^M \subseteq D_r^M$ and $D_i^M \subseteq D_i^M$. The schedule execution time is characterized by value

$$T_D=(1|U,D|)*\sum_{u\in U, D} t_{f(u)}$$

where $D=D_r^M|U,D|$ is the cardinality of the clique set of graph $G_D=(N,D)$ and $t_{f(u)}$ is the average execution time of the functional, storage, and interconnection units associated with statement u. The schedule cost is

$$S_D^{fu} = \sum_{j=1}^{N_{fu}} \sum_{v \in V_D} s_j \cdot \max_{m_v} m_v$$

where N_{fu} is the number of functional unit types, V_D is the set of cliques of graph $G_D=(N,D)$, and m_v is the number of functional units of type j needed to execute the clique v statements concurrently. The number of storage units is estimated through the concurrency relation C_r, and the number of interconnection units is estimated through the maximum number of different variables in a set V_D clique.

```
loop
  R := (X < A); --1
  exit when not R; --2
  C := X + (2* X); --3
  B := U * DX; --4
  D := B * C; --5
  G := U * D; --6
  E := Y * DX; --7
  H := E * (2* E); --8
  U := G * H; --9
  X := X + DX; --10
  Y := Y + B; --11
end loop;
```

Figure 1: VHDL-behavioral description

```
Figure 2: Maximum time concurrency schedule
```
3: Optimizing an asynchronous schedule

I decompose the high-level synthesis problem into four subproblems: to optimize the concurrency level, to solve the existence problem, to generate a schedule, and to map the schedule onto an asynchronous RTL-structure. To find set D, two optimization tasks are considered: P1: $\min \{ T_D \} S_D \leq S_0$ and P2: $\min \{ T_D \} T_D \leq T_0$ where S_D and T_D are the bounding cost and time. The pairs are consecutively added to D while solving P1 and the pairs are consecutively removed from D while solving P2. The selection of the pair to be added or removed depends on the order of pairs in maximum set D_M and on the contents of current sets D, U_{-D}, and V_D. The pairs are ordered on the freedom for a statement to execute concurrently with other statements.

4: The schedule existence problem

To solve the existence problem is to prove that an asynchronous schedule exists which realizes the given behavior correctly and has the concurrency level defined by sets D' and D'. The cyclic schedule existence problem is formulated in a matrix equation form to prove matrices F and M_D exist and define a correct live and safe net. The maximum concurrency noncyclic nonpipelined schedule is described by a statement precedence relation Q [5]. Set D is defined by matrix Q_D in which Boolean variable x_{ij} for $(i,j) \in D$ defines whether i precedes j ($x_{ij} = 1$) or j precedes i ($x_{ij} = 0$). A noncyclic schedule exists if the following combined logical equation has a solution: For $i,j,k \in S$

$$L_1 = + (x_{ij} \oplus x_{jk}) + (x_{ij} \equiv x_{jk}) + (x_{ij} \oplus x_{jk}) = 0 \quad \text{for } (i,j) \in D$$

$$L_2 = + (x_{ij} \oplus x_{ik} \oplus x_{ij}) + (x_{ij} \equiv x_{ik} \equiv x_{ij}) = 0$$

$$i < j \land k < j \land (i,j) \in D \land (i,k) \in D \land (j,k) \notin D$$

If L_1 and L_2 have no solution, D must be modified. In [5] L_1 is represented as labeled graph G_D which nodes are variables labeled θ and 1 and edges are pairs of variables connect-ed \oplus and \equiv. Whether a solution exists or not, depends on features of graphs G_D and G_D'. If L_1 and L_2 have no solution, D must be modified. In [5] L_1 is represented as labeled graph G_D which nodes are variables labeled θ and 1 and edges are pairs of variables connect-ed \oplus and \equiv. Whether a solution exists or not, depends on features of graphs G_D and G_D'.

5: Generating an asynchronous schedule

Two types of conflicts are possible for L_1 and L_2 [5]. To find a graph G_D' optimal labeling and use target function $f = \alpha \varphi + \beta \varphi' + \gamma \varphi + \delta \varphi''$ where φ (φ') is the number of conflict pairs or nodes that increase (do not increase) the execution time or cost, φ'' (φ''') is the number of conflicts associated with the pairs and nodes, and α, β, γ, and δ are factors. Depending on the factor values, the number of conflicts, conflict pairs, conflict nodes, and the schedule critical path are minimized. To generate the statement direct precedence relation H_0, value 1 in position (i,j) of the precedence matrix Q_D is replaced with 0, if the Boolean multiplication of row i and column j equals 1. The resulted schedule includes all the variable- and statement-nodes and for each pair $(i,j) \in H_0$, the edge that connects the statement i output variable to the statement j (Figure 4).

6: Results

Experimental results obtained on a PC 486/50 for the fifth-order wave filter [4] are presented in Table 1. Some of the asynchronous schedules have the critical path shorter than the critical path of feasible sequential schedules generated by the ALPS system (ILPF). The average path length is 18% less than the critical path length.

Acknowledgments

Submitting this paper for DATE98 has been encouraged by professors Bernard Courtois, Wolfgang Nebel, Jean Mermet, and Franz Ramming. The author is grateful to them.

References

Table 1. Schedules generated for the fifth-order filter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adders / Multipliers</td>
<td>1 / 1</td>
</tr>
<tr>
<td></td>
<td>2 / 1</td>
</tr>
<tr>
<td></td>
<td>2 / 2</td>
</tr>
<tr>
<td></td>
<td>3 / 2</td>
</tr>
<tr>
<td></td>
<td>3 / 3</td>
</tr>
<tr>
<td>ALPS: cycles</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>17</td>
</tr>
<tr>
<td>AHILES: Set D</td>
<td>39</td>
</tr>
<tr>
<td>Critical path</td>
<td>28</td>
</tr>
<tr>
<td>Average path</td>
<td>22.6</td>
</tr>
<tr>
<td></td>
<td>17.9</td>
</tr>
<tr>
<td></td>
<td>17.5</td>
</tr>
</tbody>
</table>