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Abstract

Given a weighted graph and a family of k disjoint
groups of nodes, the Group Steiner Problem asks for
a minimum-cost routing tree that contains at least
one node from each group. We give polynomial-time
O(k�)-approximation algorithms for arbitrarily small
values of � > 0, improving on the previously known

O(k
1
2 )-approximation. Our techniques also solve the

graph Steiner arborescence problem with an O(k�) ap-
proximation bound. These results are directly applica-
ble to a practical problem in VLSI layout, namely the
routing of nets with multi-port terminals. Our Java
implementation is available on the Web.

1 Introduction

The classical Steiner problem can be formulated as fol-
lows: given an undirected weighted graph G = (V;E)
andM � V , �nd a minimum-cost tree that spans all of
M . Nodes in V �M (referred to as Steiner nodes) may
be optionally included in order to reduce the total tree
cost [11]. In this paper, we address a generalization
of this problem, namely the Group Steiner Problem,
which was �rst formulated in [15] (a comprehensive
review was given in [7]). The problem is formalized as
follows:

The Group Steiner Problem [7, 15]: given an
undirected weighted graph G = (V;E) and a fam-
ily N = fN1; :::; Nkg of k disjoint groups of nodes
Ni � V , �nd a minimum-cost tree which contains
at least one node from each group Ni.

As in the classical Steiner problem, we allow optional
Steiner nodes in order to reduce the cost of the span-
ning tree interconnecting the groups (Figure 1(c)).

The Group Steiner Problem captures practical sce-
narios in VLSI layout design [2, 15]. For example, a
circuit module may be rotated and ipped when po-
sitioned on a VLSI chip. This induces multiple po-
tential connection points for the given circuit module,
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one for each of the eight possible orientations (Figure
1(a)). These locations correspond to a group of (up
to eight) nodes in the Group Steiner Problem (Figure
1(b)). This formulation also captures the pin assign-
ment problem in VLSI physical design [14] where the
locations of interconnection points on module bound-
aries are determined. Finally, the Group Steiner Prob-
lem is applicable whenever multi-port terminals exist.
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Figure 1: (a) A module is rotated and ipped to induce
a group of up to eight virtual positions (b). (c) A group

Steiner tree (solid dots represent Steiner nodes).

The �rst published approximation algorithm for the
Group Steiner Problem produced solutions O(k) times
worse than optimal [7, 8, 15]. Recently, we improved
this result by giving a heuristic with an approxima-

tion bound of O(k
1
2 ) times optimal [2]. The main re-

sult of this paper is a new series of heuristics with
an improved performance ratio1 of O(k�) for arbitrar-
ily small values of � > 0, where k is the number of
groups. On the negative side, this problem cannot be
e�ciently approximated with a performance ratio of
less than ln k times the optimal [5] [9].

1The performance ratio is an upper bound on the ratio of a
heuristic solution cost divided by the optimal solution cost.



The rest of the paper is organized as follows.
Section 2 introduces depth-d -bounded Steiner trees
and proves that they approximate the optimal group

Steiner tree to within a factor of 2d � d
p
k. Section

3 presents our main heuristic for approximating opti-
mal depth-d -bounded Steiner trees to within a fac-
tor of (2 + ln(2k))d�1. The overall performance ratio
of our heuristic is the product of these two bounds,
which yields our main result. Section 4 analyzes the
time complexity and suggests practical enhancements.
Section 5 describes how to further improve the perfor-
mance ratio when groups of size one are present, and
Section 6 extends our construction to minimize the
radius as well as the tree cost. In Section 7, we gener-
alize our results to directed Steiner trees. We discuss
our experimental results in Section 8.

2 Depth-Bounded Steiner Trees

This section introduces Steiner depth-bounded2

trees, with a two-fold motivation: (1) depth-d -
bounded trees can be used to approximate optimal

group Steiner trees to within a factor of 2d � d
p
k, and

(2) optimal depth-bounded Steiner trees in turn can
be approximated e�ciently, as discussed in the next
section. Our overall method is thus a composition
of these two approximations, and the overall perfor-
mance bound is therefore the product of the two cor-
responding bounds.

In general, the given weighted graph G may vio-
late the triangle inequality, i.e., there may be edges
(u; v) in G whose cost is greater than the cost of the
minimum u-to-v path in G. Clearly, an optimal group
Steiner tree will contain no such edges, since replacing
such edges with the corresponding shortest paths will
decrease the total tree cost. Therefore, without loss of
generality, we replace G with its metric closure3. In
order to further simplify our analysis, we also modify
G as follows. For any node v 2 Ni, we create a new
node v0 and a new zero-cost edge (v; v0); thus, we let
v0 take on the role of v. This transformation preserves
the cost of Steiner trees, while allowing us to consider
only Steiner trees in which every group node is a leaf.

We de�ne d-stars to be rooted trees of depth at
most d. The rest of this section will show that for
any arbitrary (but henceforth �xed) tree T with root
r, there exists a low-cost d-star spanning the leaves
of T . This will imply that an optimal group Steiner
tree can be approximated by a low-cost group Steiner
d-star (de�ned as a Steiner d-star that spans all of
the groups). It is known that even a 1-star (Fig-
ure 2(b)) provides an O(k)-approximation to optimal
group Steiner trees [8]. Our overall strategy is to spec-
ify a low-cost d-star and derive upper bounds on its
cost.

2We de�ne the depth of a rooted tree T as the maximum
number of edges in any root-to-leaf path.

3The metric closure is de�ned as the complete graph where

the cost of each edge (u; v) is equal to the cost of the minimum
u-to-v path in G.

We now construct a low-cost d-star Sd from the tree
T with the same root and the same set of leaves L.
Thus, to completely specify the d-star Sd, we select
an appropriate set of intermediate nodes that lie on
paths between the root r and the leaves. Note that
because our approximate tree is a d-star, it may have
at most d� 1 levels of intermediate nodes. The leaves
form the set of level-d nodes in Sd. Similarly, we refer
to the lowest level of intermediate nodes as level-(d�1)
nodes and so on. Finally, the root is connected to the
level-1 intermediate nodes.

We determine an appropriate set of intermediate
nodes for a d-star Sd in T as follows. First, we sort
the nodes of T in a depth-�rst manner (so that we
may later extract ordered subsequences of nodes from
this sorted list). Then, we partition the sorted subse-
quence of leaves into contiguous blocks of �xed size b
(later we will determine an appropriate value for b).
We select the level-(d� 1) nodes of T to be the set of
least common ancestors4 of the leaves in each of the
blocks. Next, we partition these level-(d � 1) inter-
mediate nodes into contiguous blocks of �xed size b.
Thus, we obtain the level-(d�2) intermediate nodes by
selecting the least common ancestors of each of these
blocks (Figure 3(a)).

We repeatedly apply this procedure to de�ne each
level of intermediate nodes until we reach the root.
Thus, in our �nal tree Sd, each level-i node is con-
nected to b level-(i+ 1) nodes below and to one level-
(i� 1) node above.
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Figure 2: (a) A tree T rooted at r may have arbitrary
depth. (b) A 1-star and (c) a 2-star are represented by

dashed lines that connect the root r to all leaves. The edge
e is (re)used three times by edges of the 1-star in (b) and
twice by edges of the 2-star in (c).

In deriving upper-bounds on the cost of d-stars, we
sum the costs of tree paths between nodes that are ad-
jacent in d-stars. Since such paths are not necessarily
disjoint, the same tree edge may be counted multiple
times in this sum, a situation referred to as edge reuse
(Figure 2). For the tree T , edge reuse provides an
upper bound on the ratio cost(d-star)=cost(T ): if no
edge is used more than j times when replacing edges
of a d-star by the corresponding paths in T , then the
d-star has cost no more than j times the cost of the
tree T . Our strategy for deriving upper bounds on the
cost of Sd is to bound its edge reuse.

4We de�ne node u to be an ancestor of v (i.e., v descends

from u) if the path from the root to v passes through u.



Let reuseT (Sd) denote the maximum number of
times that any tree edge is used in tree paths connect-
ing nodes adjacent in Sd. We distinguish two types of
paths that contribute to the edge reuse of the resulting
d-star: (I) paths from the root to level-1 intermediate
nodes (top part of Figure 3(a)), and (II) paths from
level-i intermediate nodes to level-(i+1) nodes, where
1 � i � d � 1 (Figure 3(b)). The number of paths
of type (I) is bounded by the number of level-1 inter-
mediate nodes. Note that each level contains a factor
of b fewer intermediate nodes than the level below it.
Thus, there are no more than jLj=bd�1 level-1 nodes,
where b is the block size (Figure 3(a)).
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Figure 3: Two types of paths may reuse an edge (u; v):
(a) Type-(I) paths terminate at level-1 intermediate nodes

below v (there are no more than jLj=bd�1 of these); and (b)
Type-(II) paths terminate at intermediate nodes (or leaves)

contained in only the leftmost and rightmost blocks. These
two blocks together contain at most 2b level-(i+1) nodes.

We now estimate the contribution of type-(II) paths
to the reuse of an arbitrary (but henceforth �xed) edge
(u; v) of the tree T with u being the parent of v. Let
S be the depth-�rst -ordered sequence of level-(i + 1)
intermediate nodes that descend from v. Note that
S forms a contiguous subsequence in the sequence of
all level-(i + 1) intermediate nodes. If a size-b block
is completely contained in S, then its least common
ancestor (which is a level-i intermediate node) neces-
sarily descends from v (Figure 3). Therefore, the edge
(u; v) does not lie on paths to level-(i+ 1) nodes that
belong to such completely-contained blocks, and no
contribution to the reuse of the edge (u; v) occurs.

We are thus only concerned with blocks which may
be not completely contained inside S, because type-
(II) paths ending only in such blocks can contribute
to the reuse of the edge (u; v). Since the nodes of S
are sorted in depth-�rst order, the only blocks rele-
vant to this analysis are the leftmost and rightmost
blocks. The total contribution to the reuse of edge
(u; v) due to the paths ending in the leftmost and
rightmost blocks cannot exceed the total size of these
two blocks, namely 2b (Figure 3).

The edge (u; v) may be used simultaneously in
paths starting from di�erent levels. Thus, we bound
the total contribution of type-(II) paths for all levels
by 2b � (d � 1), and the total edge reuse is at most

jLj=bd�1+2b � (d�1). Choosing b = d
p
jLj=2 yields an

upper bound on edge reuse of 2d � d
p
jLj=2. This proves

that for any tree T , with the set of leaves L and root r,

there is a d-star rooted at r with the same set of leaves
L, having cost at most 2d � d

p
jLj=2 � cost(T ). There-

fore, by approximating the optimal group Steiner tree
(spanning k groups and thus having jLj = k leaves)
with an optimal Steiner d-star, we obtain the follow-
ing result.

Theorem 1 Let Opt be an optimal group Steiner tree
over k groups, and let r be an arbitrary node of Opt.
Then the cost of an optimal Steiner d-star rooted at

r and spanning the groups is at most 2d � d
p
k=2 �

cost(Opt).

3 The Main Heuristic

We have established that an optimal Steiner d-star
is a reasonable approximation for an optimal group
Steiner tree, (which will henceforth be denoted Opt).
It can be shown that even the problem of approxi-
mating an optimal Steiner d-star is as di�cult as ap-
proximating a minimum set cover. Therefore, it is
unlikely that there exists a polynomial-time approxi-
mation algorithm with performance ratio (1� �) � ln k,
for any � > 0, where k is the number of groups [5].
In this section, we will indirectly approximate Opt by
approximating an optimal Steiner d-star. Proofs will
be omitted in the rest of the paper due to the lack of
space in this extended abstract.

In order to apply Theorem 1, we must �rst ensure
that at least one node in the tree produced by our
algorithm belongs to the optimal group Steiner tree
Opt. Although we do not know which nodes are in
Opt, this is not an obstacle. For each node r of an ar-
bitrary �xed group (say N1), we construct a low-cost
Steiner d-star Approxd with root r. We then select the
least-cost Approxd over all possible choices of r. Be-
cause Opt contains at least one node from each group,
this guarantees (within polynomial time) that at least
one of the jN1j trees thus constructed had the proper
choice for the root. Therefore, without loss of general-
ity, we may �x the root r, i.e., we consider the rooted
version of the Group Steiner Problem.

Let Optd(r) be the optimal Steiner d-star rooted at
r, for any positive integer d. The main idea in con-
structing the approximate Steiner d-star Approxd is
to successively re�ne an initial approximation coincid-
ing with Opt1(r). There are two advantages to using
Opt1(r) as an initial approximation for Optd(r): �rst,
unlike Optd(r) for d � 2, the 1-star Opt1(r) can be
computed e�ciently; secondly, the cost of Opt1(r) is
bounded by k �cost(Opt) (from Theorem 1, for d = 1).
Therefore, to measure the approximation quality of a
d-star, we will compare its cost to the cost of an opti-
mal 1-star with the root r and with leaves taken from
the same groups spanned by the d-star.

Let S be a d-star with a root v 2 V and let
groups(S) be the set of groups spanned by S. We
denote by S0 an optimal 1-star with the root r con-
nected to groups(S). We de�ne the norm of S as
norm(S) = cost(S)=cost(S0). Note that S and S0 have
di�erent roots (Figure 4(a)).
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Figure 4: (a) A d-star S rooted at v (shaded area) and
the corresponding optimal 1-star S0 rooted at r (dashed
lines). (b) A Steiner 2-star, with a (shaded) partial 2-star.

We represent our low-cost d-star Approxd as a
union of subtrees, each consisting of the root, exactly
one level-1 intermediate node, and all of the descen-
dants of this intermediate node. Such rooted sub-
trees of depth d will be called partial d-stars (Fig-
ure 4(b)). We select partial d-stars for Approxd in
the following greedy manner. First, we �nd a par-
tial d-star P with an approximately minimum norm.
Next, we remove the groups that are spanned by P
(i.e., groups(P )) from further consideration. Finally,
we determine the next partial d-star with an approx-
imately minimum norm and iterate this process until
all groups are spanned. Figure 5 describes the algo-
rithm, and an execution example (for d = 2) is given
in Figure 8.

Rooted Steiner d-Star Heuristic

Input: A graph G = (V;E), a family N of k disjoint
groups N1; : : : ;Nk � V , a root r 2 V ,
and a node v 2 V

Output: A low-cost d-star Approxd rooted at node v
and intersecting each group Ni

Approxd  fvg
N 0  N

While N 0 6= ; do
Find a low-norm (with respect to r)

partial d-star P = Partiald(v;N
0)

N 0  N 0 � groups(P )
Approxd  Approxd [ P

Output Approxd

Figure 5: The greedy d-star heuristic for a given �xed
root. At each iteration of the loop, we approximate the
lowest-norm partial d-star, add it to the solution, and re-

move its groups from future consideration. The algorithm
terminates when no groups remain to be spanned, at which
point all groups are spanned in the solution.

In order to complete the description of our heuris-
tic, we need to describe an e�cient procedure that,
given a root r and set of groups M , �nds a low-
norm partial d-star Partiald(r;M ) rooted at r span-
ning some of the groups of M . We call this procedure

the Partial d-Star Heuristic. First, we will describe
how to �nd minimum-norm partial 2-stars, and then
we will show how to approximate minimum-normpar-
tial d-stars for d � 3.

Figure 6 describes a procedure for �nding
minimum-norm partial 2-stars. Note that in this pro-
cedure we use cost(v;Ni) to denote the cost of the
shortest edge between v and any node in group Ni.

Partial d-Star Heuristic (for d = 2)
Input: A graph G = (V;E), a family M � N of disjoint

groups and root r 2 V
Output: The minimum-norm partial 2-star P (r;M)

rooted at r with leaves from some groups of M
For each v 2 V do

Sort M = fN1; :::;NjM j
g such that:

cost(v;Ni)

cost(r;Ni)
�

cost(v;Ni+1)

cost(r;Ni+1 )

Find j 2 f1; :::; jM jg that minimizes

norm(v) 
cost(r;v)+

P
j

i=1
cost(v;Ni)P

j

i=1
cost(r;Ni)

M(v) fN1; :::; Njg
Find v having minimum norm(v)
Output the partial 2-star P (r;M) with the intermediate

node v, root r, and groupsM(v)

Figure 6: Algorithm for �nding a minimum-norm partial

2-star (i.e., d-star for d = 2). For each candidate v for
the intermediate node, we sort groups Ni according to the

potential improvement of inserting node v between the root
r and each group. Then, we include consecutive groups
from the list as long as their inclusion decreases the norm

of the partial 2-star.

Although we can prove that minimum-normpartial
2-stars can be found e�ciently, it can be shown that
�nding minimum-norm partial d-stars becomes NP-
hard for d � 3. Thus, we now describe our heuristic
for �nding low-norm partial d-stars.

Our Partial d-Star Heuristic �nds a low-norm par-
tial d-star Partiald = Partiald(r;M ) with a given
root r spanning elements from some groups of a given
subfamilyM � N , where N is the family of all groups
(Figure 7 gives a formal description). The Partial d-
Star Heuristic is recursive: in order to �nd a low-norm
partial d-star, we need to �rst obtain low-norm partial
(d� 1)-stars.

The following Lemma gives the performance ratio for
the Rooted Steiner d-Star Heuristic described in Fig-
ure 5.

Lemma 2 Let Optd(v) be an optimal Steiner d-star
rooted at v, and let Opt1(r) be the optimal Steiner 1-
star rooted at r. The cost of the tree produced by the
Rooted Steiner d-Star Heuristic is at most:

�
2 + ln

cost(Opt1(r))

cost(Optd(v))

�d�1
� cost(Optd(v))



Partial d-Star Heuristic (for d > 2)
Input: A graph G = (V;E), a family M � N of disjoint

groups and root r 2 V
Output: A low-norm partial d-star Partiald(r;M) with

root r and leaves from some groups of M
For each v 2 V do

Partiald  (r; v)
norm(Partiald) 1
M 0  M
While M 0 6= ; do

Use the Partial d-Star Heuristic for depth d� 1:
Partiald�1  Partiald�1(v;M

0)
If norm(Partiald) � norm(Partiald�1) then

Exit while

Partiald  Partiald [ Partiald�1

M 0  M 0 � groups(Partiald�1)
norm(v) norm(Partiald)

Find v having minimum norm(v)
Output the partial d-star Partiald(r;M)

with intermediate node v

Figure 7: Our heuristic for �nding a low-norm partial

d-star for d � 3.

Together with Theorem 1, Lemma 2 implies our main
result:

Theorem 3 The Rooted Steiner d-star Heuristic
(Figure 5) solves the Group Steiner Problem with per-

formance ratio 2d � (2+ ln(2k))d�1 � d
p
k, where k is the

number of groups.

Corollary 4 The optimal group Steiner tree can be
approximated in polynomial time with a performance
ratio of O(k�) for arbitrarily small � > 0.

4 Runtime and Enhancements

In this section, we analyze the runtime of our
heuristic and discuss several ways of improving its
runtime and performance in practice. The time com-
plexity for preprocessing is dominated by the time to
compute all-pairs shortest paths in a graph (we de-
note this time complexity by � ). All node-to-group
distances (i.e., distances between each node and the
closest node to it in each group) can be computed in
time less than � .

The time complexity for a graph G = (V;E) of the

Partial d-Star Heuristic (Figure 6) is O(jV jd�1 � kd),
where k is the number of groups, and d is the tree
depth bound. Therefore, the Rooted d-Star Heuristic
(Figure 5) has runtimeO(jV jd�1 �kd+1). To �nd a low-
cost Steiner d-star, we run our Rooted d-Star Heuristic
for all possible roots from the smallest group (i.e., size
at most jV j=k). Therefore, an overall runtime of O(�+

(jV j �k)d) is su�cient to �nd a group Steiner tree with

cost at most 2d � (2 + ln(2k))d�1 � d
p
k times optimal.

The performance ratios derived in previous sections
pertain to worst-case analysis. In practice, however,
we are also interested in the average-case behavior of

(c)

(b)

(a)

(e)

(f)

(d)

r

r

r

r

r

r

Figure 8: Given an instance of the Group Steiner Prob-
lem, for each possible root r, our heuristic (a) �nds the

optimal 1-star, (b) �nds a low-norm partial d-star (shaded
region), (c) saves this star and removes its groups from

future consideration, (d) �nds the next low-norm partial
d-star (shaded region), (e) repeats step (c) for all partial

d-stars, and �nally (f) �nds the last low-norm partial d-star
and outputs the union of all saved partial d-stars.

our heuristics, in terms of both runtime and solution
quality. For example, one practical improvement en-
tails omitting the removal of the set of groups spanned
by the minimum-normd-star (see the inner loop of the
algorithm in Figure 5). Instead, every time we accept
an intermediate node, we update the best possible cur-
rent star by calculating the distance to a particular
group, not from the root, but rather from the closest
already-accepted intermediate node. This will tend to
improve the solution cost in practice.

A practical enhancement for reducing time com-
plexity entails computing a group minimum spanning
tree instead of a group Steiner tree - i.e., a minimum
spanning tree for a set of nodes containing at least one
node from each group. It can be shown that the op-
timal group minimum spanning tree is at most twice
longer than the optimal group Steiner tree [12, 17].
Thus, when approximating the group Steiner tree by a
group minimum spanning tree, we lose at most a fac-
tor of 2, which does not asymptotically increase the
overall bound, yet yields substantial savings in run-
time.



We may further modify our algorithm with a post-
processing step that �nds the minimum spanning (or
approximate Steiner) tree for the set of intermediate
nodes chosen by the group Steiner heuristic. We may
also make local (one at a time) node substitutions in
groups to re-arrange the tree topology in order to re-
duce the overall cost.

Although provably-good heuristics are frequently
outperformed by local optimization methods, the out-
put of the former can serve as a good starting point for
local-improvement post-processing schemes. For ex-
ample, it was shown in [16] that Christo�des' heuristic
(i.e., the best-known heuristic for traveling salesperson
in graphs [13]) also provides excellent initial traveling
salesperson tours for further local rearrangements.

5 Cases with Degenerate Groups

We now show how to more e�ectively handle in-
stances of the Group Steiner Problem with some de-
generate groups, i.e. groups of size 1. We will see that
treating degenerate groups di�erently yields improve-
ments in solution quality as well as in runtime.

The degenerate groups by themselves induce an in-
stance of the classical Steiner problem, and such an
instance can be approximated e�ciently by known
methods (with a constant performance ratio). Thus,
to solve the Steiner problem for degenerate groups, we
may choose a provably-good heuristic from among the
numerous existing ones [3, 6, 10, 12, 18]. For example,

given a graph G = (V;E), we may �nd in timeO(jV j3)
a Steiner tree which is at most 11

6
times longer than

the optimal [19]. The remaining issue now is to ef-
fectively combine the Steiner tree over the degenerate
groups with a tree spanning the other, non-degenerate
groups.

M
M 2

1

Figure 9: We span the set M1 of degenerate groups with
a Steiner tree Approx1 (left). Then, we span all non-
degenerate groups M2 together with an arbitrary degen-
erate group using a group Steiner tree Approx2 (right).

We de�ne the Combined Group Steiner Heuristic
as follows. Let N = M1 [M2 be the partition of all
the groups in N into those containing one node (M1),
and those containing at least two nodes (M2). First,
we �nd the usual Steiner minimal tree Approx1 for
the degenerate groups M1 using the approximation
algorithm from [19]. Next, using our group Steiner
heuristic, we �nd the group Steiner tree Approx2 for

the family of groups that includes the non-degenerate
groups M2 and an arbitrary degenerate group from
M1. Finally, we output the union Approx1 [Approx2
(Figure 9).

If the number of degenerate groups is large, the
Combined Group Steiner Heuristic will enjoy consid-
erable runtime savings, as well as an improved perfor-
mance ratio that depends only on the non-degenerate
groups:

Theorem 5 The Combined Group Steiner Heuristic
solves the Group Steiner Problem for �k non-degenerate
groups with a performance ratio of at most:

11

6
+ 2d � [2 + ln(2) + ln(�k + 1)]d�1 � d

p
�k + 1

for any tree depth bound d � 2.

Corollary 6 The optimal group Steiner tree with �k
non-degenerate groups can be approximated in polyno-
mial time with a performance ratio of O(�k�) for arbi-
trarily small � > 0.

6 Bounding the Radius

In deep-submicron VLSI regimes, the objective of
delay minimization often induces wiring geometries
that are substantially di�erent from those dictated by
an optimal-area objective. This has motivated a num-
ber of bounded-radius5 routing constructions [1, 4, 11].
Our basic group Steiner tree approach can be easily
extended to a bounded-radius construction, thereby
yielding routing trees with source-to-sink pathlengths
bounded by a user-speci�ed parameter.

For example, we can utilize the tree produced
by our main algorithm as the starting point in the
bounded-radius construction of [4]. For an arbi-
trary instance of the Group Steiner Problem (with
k groups), this hybrid approach yields a routing tree
with simultaneous cost/radius bounds: its radius is
(1 + �) times the optimal radius, and its total cost is

(1+ 2

�
) �2d �(2+ln(2k))d�1 � d

p
k times the optimal cost,

for any user-speci�ed parameter � > 0. This provides a
provably-good smooth tradeo� between tree cost and
tree radius for the Group Steiner Problem.

7 Steiner Arborescences

Our techniques can be adapted to address a gen-
eralization of the Group Steiner Problem, namely the
Steiner problem in directed graphs (also known as the
Steiner Arborescence Problem) [7]:

The Directed Steiner Problem [7]: given a di-
rected weighted graph G = (V;E), a set of k ter-
minals N � V , and a root r 2 N , �nd a minimum-
cost subgraph T that contains directed paths from
r to each terminal.
5The radius of a graph is de�ned as themaximumpathlength

of any shortest source-to-sink path. Note that the radius of d-
stars is implicitly bounded by d times the optimal radius.



Without loss of generality, we may assume that the
subgraph T is a directed tree6, otherwise T would con-
tain arcs which can be removed without increasing
the cost of T . As in the beginning of Section 2, we re-
place the directed graph G with its transitive closure7,
and we modify the graph so that all terminals become
leaves.

We de�ne directed d-stars to be directed trees of
depth at most d. Again, as in Section 2, it can be
shown that the minimum-cost directed d-star costs at
most 2d� d

p
k=2 times the optimal directed Steiner tree.

As in Section 3, we represent our low-cost directed d-
star Approxd as a union of directed partial d-stars.
Each such partial d-star consists of the root r, exactly
one arc from the root to a level-1 intermediate node,
and the directed subtree rooted at this intermediate
node.

Given a directed d-star S, let S0 be the correspond-
ing directed 1-star (with the same terminals and root).
The norm of S is de�ned to be cost(S)=cost(S0 ). Now
we can use (an analog of) the Partial d-Star Heuris-
tic for directed graphs in order to �nd a low-norm
directed partial d-star. We approximate an optimal
directed Steiner d-star by using (an analog of) the
Rooted Steiner d-Star Heuristic for directed graphs
(Section 3). Starting from an optimal 1-star, we up-
date the current solution with low-normpartial d-stars
found by the Partial d-Star Heuristic. The algorithm
stops when all terminals are spanned with directed
partial d-stars. The output of this algorithm is a d-
star with the same cost bound as in Lemma 2. Finally,
combining the analog of Lemma 2 with Theorem 1, we
obtain the following result.

Theorem 7 Optimal directed Steiner trees can be ap-
proximated in polynomial time with a performance ra-
tio of O(k�) for arbitrarily small � > 0.

8 Experimental Results

We have implemented our main heuristic for the
Group Steiner Problem using the Java programming
language. Our implementation is available on the Web
at:

http://www.cs.virginia.edu/
~

robins/groupSteiner/

This choice of implementation enables the execution of
our code directly o� the Web using any Java-enabled
browser. We have also implemented a variant of our
basic heuristic where the solutions are post-processed
with a minimumspanning tree algorithm (i.e., we out-
put the minimum spanning tree over the nodes se-
lected by our main heuristic).

6Each node of T is reachable from the root via a unique
directed path. This means that replacing all directed edges in
T by undirected edges would produce an undirected tree.

7The transitive clusure is an analog of metric closure: if a
node v is reachable from a node u in G, then in the transitive

closure of G there is an arc (u; v) whose cost is equal to the cost
of the minimum directed u-to-v path.

We compared our heuristics with the heuristic pro-
posed by Reich & Widmayer [15], denoted by RW.
The RW heuristic begins by �rst �nding the minimum
spanning tree T for the entire set of nodes of all the
groups. If a leaf node is not the last member of its
group in the tree T , then it may be removed. The
RW heuristic then repeatedly deletes such a leaf node
incident to the longest edge among all such nodes.

Figure 10 compares two versions of our heuristic
to the RW algorithm [15]. We generated instances of
the Group Steiner Problem by uniformly and inde-
pendently distributing the nodes of each group inside
a randomly-placed square area of predetermined size,
which we varied among 10%, 50%, and 100% of the
overall region. The data represent the average relative
improvement over 100 trials, given as a percentage of
the RW algorithm tree cost. While our implementa-
tion uses the rectilinear metric to determine the dis-
tances between nodes, our algorithms are general and
apply to arbitrary weighted graphs.

The �rst version of the group Steiner heuristic
that we implemented has the following three modi�ca-
tions over the basic version described in previous sec-
tions: (1) Intermediate nodes are selected strictly from
among the groups (i.e., all of the constructions bench-
marked are spanning trees - they do not use Steiner
nodes other than group nodes); (2) the root of the d-
star is selected from a single randomly-chosen group;
and (3) after accepting an intermediate node in the
inner loop of Figure 6, it is removed from further con-
sideration in subsequent iterations.

The second version that we implemented adds a
minimum spanning tree post-processing step to the
�rst version above (i.e., we output the minimum span-
ning tree over the nodes selected by our modi�ed
heuristic described above). In our implementations,
we set d = 2. As can be seen from the chart (Figure
10), the second version signi�cantly outperforms the
RW algorithm, especially for larger group cardinalities
and group areas.

9 Conclusion and Future Work

We have addressed a generalization of the classical
Steiner problem, with the goal of �nding a minimum-
cost tree spanning k groups of nodes. Our main re-
sult is a series of polynomial-time approximation al-
gorithms with performance ratio O(k�) for arbitrar-
ily small � > 0. This result improves the previously

known O(k
1
2 )-approximation and also applies to the

Steiner problem in directed graphs. A Java imple-
mentation and benchmark results indicate that our
approach is also e�ective in practice. Future work in-
cludes:

� Reducing the performance ratio even further
(e.g., to a polylogarithmic function of the num-
ber of groups); and

� Improving the time complexity of the heuristics.
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Figure 10: Average tree cost of the output of our main
heuristic (rectangles) and our MST post-processing heuris-
tic (triangles), normalizedwith respect to the RW heuristic

[15] (diamonds), for various group sizes.
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