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Abstract In this paper, we present an extension of moment
computation to 2-port circuits. Our formulas are ap-
In this paper, we present an extension of momegficable to both transfer function moments and driving-
computation to 2-port circuits. Our formulas are aoint admittance moments. A nice conclusion of our
plicable to both transfer function moments and driVingNork is the discovery our formulas form an e|egant
point admittance moments. Given the input admiframework integrating the results from two classical pa-
tances, output admittances, and transfer functions gérs, Rubinstein et al. & O’Brien and Savarino, for com-
two 2-ports, our formulas compute the input admittancguting the Elmore delay and driving-point admittance
output admittance, and transfer function when these groments in RC trees.
ports are combined either in parallel or in series. A nice
conclusion of our work is the discovery our formulas
form an elegant framework integrating the results fro® ~ Applications of Our Formulas
two classical papers, Rubinstein et al. & O'Brien and
Savarino, for computing the Elmore delay and driving=igure 1 illustrates the applications of our formulas. In
point admittance moments in RC trees. Figure 1, 2-port$; and P, are in parallel, withPs in
series with both of themDriver and Output are the
. . . driver and output stage, respectivefease note there
1 Introduction and Motivations is no loop in this circuit: signals can only propagate
o ] “down” the circuit, not “up”.
In recent years, timing analysis methods based on Mo-Gjyen the transfer function, input admittance, and
ments have become increasingly popular [1] [4]. Thegg,in,t admittance of every 2-port in this circuit, our
methods are typically faster than SPICE by tWo Ofyrmylas compute the input and output admittances of
ders of magnitude for digital and/or interconnect Cifgne entire circuit, as well as the transfer function be-
cuits, while retain a high degree of accuracy. The €fyeen arbitrary nodes on eith®@athl or Patt2, and
ficient computation of moments is crucial for these timynen Pathl andPath2 are combined. Thus with our
ing analysis methods, since this step can be very timgimjas, we can compute the transfer function, input
consuming, particularly for large circuits. admittance, and output admittance of the overall circuit

A majority of large circuits are composed of SUbC.'rhierarchicallyfrom those of the individual constituent
cuits, and it would be beneficial if moment computatloe%gorts

can take advantage of the hierarchies formed by th

subcircuits to shorten computation time. For example,

if the moments of subcircuits are already computed, .

would be desirable to reuse these momgnts inpcomp;?’t— Notations

ing the moments of the overall circuit, instead of havin ) ) ) . .

to calculate the moments of the overall circuit from thg’I this section we introduce the notations used in the
ground up. What is needed is a way to calculate méeest of this paper. For an illustration of these notations,
mentshierarchically. please refer to Figure 3.
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Figure 1: lllustration of the applications of our formulas.

e Hap: transfer function froma to b of 2-portsP;  Theorem 4.1 When two 2-portsPand B are in paral-
andP; in series Hap = 3%, hg)bgl Wherehg)b is lel, the new transfer functionddpg is
theith moment oHa . ’ 7 —= o
ab Vb _ \ﬁ ~ YoHap+YgHcq

e Y, Yo input admittances of 2-portB; and P, e Va Ve Yo+ Yy

respectively. Ya = Va — zfo_oyg)g'; Y. = Expandinginto moments, we haiee> 1)

1)

\ITCC =0 =i OyC andyC are theith mo- hg‘l)bd = mlz (—(l) ol | ﬁ((;',é)—/g%l—l)) _

ments ona andy;, respectlvely b L d

- _ RO (=D | glari-hy o
e Y, Yq: output admittances of 2—port?1 and P, )-,( ﬂ#dl Z achbd ( Yd ) @)

respectively. Y, = \ITT, v L= oS Y =

\|/(31 - — 5 Oyd )d. yb andyd are theith mo- Wherehaqbd (g>1) is thegth moment ofHacpg, With

h;?,zbd = 1. Since all quantities on the right-hand side of
(1) are knownHacpd can be computed. Please refer to
e Ya, Yq: input and output admittances, respectwel)[fz] for the proof of Theorem 4.1.
of 2- portsP1 ansz in senes Ya=32 oya § Yg=
Zi:oyd d. ya andyd are theith moments ofY,

andYy, respectively. Theorem 4.2 below computét,p, Ya, andYy, whenPy
andP; are in series:

ments ofY, andYy, respectively

4.2 Series Case

Theorem 4.2 For 2-ports R and B in series as shown

4 Formula Derivations e
in Figure 3, we have

4.1 Parallel Case Wb Hap
Hab = =7~ 3)
. . . Va 1+YC/Yb
For 2-portsP; andP; in parallel as shown in Figure 2, == o
the input admittancey, is the sum of the input admit- Y, = la _ Y. YoYeHap (4)
tances of; andP,, and we hav® = Y, + Y. Similarly, Va Yot Ye
the output admittance’ is the sum of the output admit- v, — la  Ya(\b+Yo) 5
tances oP; andP,, with Y’ =Y, + Y. VA Y_dH_Zd Yo+ Yo ()
Theorem 4.1 gives the formula for the new transfer
functionHacpd WhenPy andP; are in parallel: Expanding into moments, we haiee> 0)



Figure 2:P; in parallel withP;, illustrating the overall inputY) and outputY’) admittances, as well as the overall
transfer functionKlacpa)-

Figure 3:Py in series withP,, illustrating the inputYa, Ye) and output b, Yg) admittances, as well as the transfer
functions Hap, He,g) of PL andP,.

5 Equivalence with Rubinstein et

1 I gy e (), A o 'Bri I
G ( FORG — 5 (58048 G al. & O’Brien and Savarino
Yo HYe© \I= = In this section, we demonstrate that
@ 1 3 () L ) e () L A (oD our formulas are a natural extension of
oo = 79 150\ & (yb e )ya |; (yb e )ya "%+ ] Rubinstein et al. [5] and O'Brien and
1/ a1 Savarino [3].
| | —I 11
y((jq) T dg (l (ﬁb) +3f<\:))¢dq ) |Zz d|,1y((jq+ )> Theorem 5.1 below states the equivalence of our for-
TN B mulas with [5] and [3]. Theorem 5.1 can be obtained by
where properly simplifying the formulas in Theorem 4.2 when
1 = ; AR ) the circuit is a RC tree.
mH-n+p+r=q
2 Theorem 5.1 For the RC tree in Figure 4, we haveXi
da = 5 (RY) o0+ ) g L
_ AMpP) () | of-1) | -1
di1 = vy hhe s 4y, + Y . .
pfy o8 oA T h), = R ©
Please refer to [2] for the proof of Theorem 4.2. Note (i) 1) i)
" : ; Yo, = INAY )
all quantities on the right-hand side of (3), (4), and (5) a |;) ablc
are known. ThusHap, Ya. andYy can be computed. (i) i) )
Expanding (3), (4), and (5) into moments and re- ¢ = ¥ (i#1) (8)
arranging terms, we get the polynomial expressions for W= Wic (=1 9)

h®, y&, andy(? as stated in Theorem 4.2.
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Figure 4: RC tree demonstrating the equivalence of our formulas with Rubinstein et al. [5] & O’'Brien and Savarino
[3]. P1is a single RC segment, whil& is an arbitrary RC tree.

. Equivalence with Rubinstein et al. [5]: (6) re- Then we havél > 1)

Iateshab, theith (i > 1) moment oHg, toya ,the |
ith (i > 1) moment ofY,. Wheni = 1, (6) becomes . — Z h(M U =m) (11)

hip = —R&” (10)

Whenl = 1in (11), we have
Sinceygl) is the rooted capacitance at naglésee
. . A — h® 4@ 12
Figure 4), the absolute value of (10) is the EImore od = Nap+heg (12)

delay for the segment fromto b.
with which the Elmore delay from to d, had, can be
To compute the Elmore delay of a path consist- (1)

ing of more than one segment, Theorem 5.2 belogiculated in terms df;, the Eimore delay frona to
must be used in conjunction with (10). But firstp, andh_( o , the Elmore delay frons to d.

we state our formulas’ equivalence with O'Brien Please refer to [2] for the proof of Theorem 5.2.
and Savarino [3].

e Equivalence with O'Brienand Savarino[3]: (6) 6 Conclusions
and (7) form a recursive relation that can compute
the input admittance moment of an arbitrary ordem this paper, we have presented a method to hierar-
while [3] gives the formulas for only the first threechically compute moments for 2-port circuits. In addi-
input admittance momentgg*is defined to sim- tion, we demonstrated that our formulas form an elegant
plify notation. Due to space limitations, we do noframework integrating results from two classical papers:
list the case-by-case equivalence with [3]. For déubinstein et al. & O’Brien and Savarino.
tails, please refer to [2].
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