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Abstract

In this paper, we present an extension of moment
computation to 2-port circuits. Our formulas are ap-
plicable to both transfer function moments and driving-
point admittance moments. Given the input admit-
tances, output admittances, and transfer functions of
two 2-ports, our formulas compute the input admittance,
output admittance, and transfer function when these 2-
ports are combined either in parallel or in series. A nice
conclusion of our work is the discovery our formulas
form an elegant framework integrating the results from
two classical papers, Rubinstein et al. & O’Brien and
Savarino, for computing the Elmore delay and driving-
point admittance moments in RC trees.

1 Introduction and Motivations

In recent years, timing analysis methods based on mo-
ments have become increasingly popular [1] [4]. These
methods are typically faster than SPICE by two or-
ders of magnitude for digital and/or interconnect cir-
cuits, while retain a high degree of accuracy. The ef-
ficient computation of moments is crucial for these tim-
ing analysis methods, since this step can be very time-
consuming, particularly for large circuits.

A majority of large circuits are composed of subcir-
cuits, and it would be beneficial if moment computation
can take advantage of the hierarchies formed by these
subcircuits to shorten computation time. For example,
if the moments of subcircuits are already computed, it
would be desirable to reuse these moments in comput-
ing the moments of the overall circuit, instead of having
to calculate the moments of the overall circuit from the
ground up. What is needed is a way to calculate mo-
mentshierarchically.
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In this paper, we present an extension of moment
computation to 2-port circuits. Our formulas are ap-
plicable to both transfer function moments and driving-
point admittance moments. A nice conclusion of our
work is the discovery our formulas form an elegant
framework integrating the results from two classical pa-
pers, Rubinstein et al. & O’Brien and Savarino, for com-
puting the Elmore delay and driving-point admittance
moments in RC trees.

2 Applications of Our Formulas

Figure 1 illustrates the applications of our formulas. In
Figure 1, 2-portsP1 andP2 are in parallel, withP3 in
series with both of them.Driver and Out put are the
driver and output stage, respectively.Please note there
is no loop in this circuit: signals can only propagate
“down” the circuit, not “up”.

Given the transfer function, input admittance, and
output admittance of every 2-port in this circuit, our
formulas compute the input and output admittances of
the entire circuit, as well as the transfer function be-
tween arbitrary nodes on eitherPath1 or Path2, and
when Path1 andPath2 are combined. Thus with our
formulas, we can compute the transfer function, input
admittance, and output admittance of the overall circuit
hierarchically from those of the individual constituent
2-ports.

3 Notations

In this section we introduce the notations used in the
rest of this paper. For an illustration of these notations,
please refer to Figure 3.

� H̄a;b, H̄c;d: transfer functions froma to b and from
c to d of 2-portsP1 andP2, respectively.H̄a;b =

Vb
Va

�
�
�
Ib=0

=∑∞
i=0 h̄(i)a;bsi ; H̄c;d =

Vd
Vc

�
�
�
Id=0

=∑∞
i=0 h̄(i)c;dsi .

h̄(i)a;b andh̄(i)c;d are theith moments ofH̄a;b andH̄c;d,
respectively.
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Figure 1: Illustration of the applications of our formulas.

� Ha;b: transfer function froma to b of 2-portsP1

andP2 in series. Ha;b = ∑∞
i=0h(i)a;bsi , whereh(i)a;b is

the ith moment ofHa;b.

� Ȳa, Ȳc: input admittances of 2-portsP1 and P2,

respectively. Ȳa =
Ia
Va

�
�
�
Ib=0

= ∑∞
i=0 ȳ(i)a si ; Ȳc =

Ic
Vc

�
�
�
Id=0

= ∑∞
i=0 ȳ(i)c si . ȳ(i)a and ȳ(i)c are theith mo-

ments ofȲa andȲc, respectively.

� Ȳb, Ȳd: output admittances of 2-portsP1 and P2,

respectively. Ȳb =
Ib
Vb

�
�
�
Va=0

= ∑∞
i=0 ȳ(i)b si ; Ȳd =

Id
Vd

�
�
�
Vc=0

= ∑∞
i=0 ȳ(i)d si . ȳ(i)b and ȳ(i)d are theith mo-

ments ofȲb andȲd, respectively

� Ya, Yd: input and output admittances, respectively,
of 2-portsP1 andP2 in series. Ya=∑∞

i=0y(i)a si ; Yd =

∑∞
i=0y(i)d si . y(i)a andy(i)d are theith moments ofYa

andYd, respectively.

4 Formula Derivations

4.1 Parallel Case

For 2-portsP1 andP2 in parallel as shown in Figure 2,
the input admittance,Y, is the sum of the input admit-
tances ofP1 andP2, and we haveY= Ȳa+Ȳc. Similarly,
the output admittanceY0 is the sum of the output admit-
tances ofP1 andP2, with Y0 = Ȳb+Ȳd.

Theorem 4.1 gives the formula for the new transfer
functionHac;bd whenP1 andP2 are in parallel:

Theorem 4.1 When two 2-ports P1 and P2 are in paral-
lel, the new transfer function Hac;bd is

Hac;bd =
Vb

Va
=

Vd

Vc
=

ȲbH̄a;b+ȲdH̄c;d

Ȳb+Ȳd
(1)

Expanding into moments, we have(q� 1)

h(q)ac;bd =

1

ȳ(1)b + ȳ(1)d

q

∑
l=1

�
h̄(l)a;bȳ(q+1�l)

b + h̄(l)c;dȳ(q+1�l)
d

�
�

1

ȳ(1)b + ȳ(1)d

q�1

∑
l=1

h(l)ac;bd

�
ȳ(q+1�l)

b + ȳ(q+1�l)
d

�
(2)

whereh(q)ac;bd (q� 1) is theqth moment ofHac;bd, with

h(0)ac;bd = 1. Since all quantities on the right-hand side of
(1) are known,Hac;bd can be computed. Please refer to
[2] for the proof of Theorem 4.1.

4.2 Series Case

Theorem 4.2 below computesHa;b, Ya, andYd, whenP1

andP2 are in series:

Theorem 4.2 For 2-ports P1 and P2 in series as shown
in Figure 3, we have

Ha;b =
Vb

Va
=

H̄a;b

1+Ȳc=Ȳb
(3)

Ya =
Ia
Va

= Ȳa+
ȲbȲcH̄2

a;b

Ȳb+Ȳc
(4)

Yd =
Id
Vd

=
Ȳd (Ȳb+Ȳc)

ȲdH̄2
c;d+Ȳb+Ȳc

(5)

Expanding into moments, we have(q� 0)
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Figure 2:P1 in parallel withP2, illustrating the overall input (Y) and output (Y0) admittances, as well as the overall
transfer function (Hac;bd).
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Figure 3:P1 in series withP2, illustrating the input (̄Ya, Ȳc) and output (̄Yb, Ȳd) admittances, as well as the transfer
functions (H̄a;b, H̄c;d) of P1 andP2.

h(q)a;b =

1

ȳ(0)b + ȳ(0)c

 
q

∑
l=0

ȳ(l)b h̄(q�l)
a;b �

q

∑
l=1

�
ȳ(l)b + ȳ(l)c

�
h(q�l)

a;b

!

y(q)a =

1

ȳ(0)b + ȳ(0)c

 
q

∑
l=0

�
ȳ(l)b + ȳ(l)c

�
ȳ(q�l)

a �

q

∑
l=1

�
ȳ(l)b + ȳ(l)c

�
y(q�l)

a +cq+1

!

y(q)d =

1
d1;1

 
q

∑
l=0

�
ȳ(l)b + ȳ(l)c

�
ȳ(q�l)

d �

q+1

∑
l=2

dl ;1y(q+1�l)
d

!

where

cq+1 = ∑
m+n+p+r=q

ȳ(m)b ȳ(n)c h̄(p)a;bh̄(r)a;b

d1;1 = ȳ(0)d

�
h̄(0)c;d

�2
+ ȳ(0)b + ȳ(0)c

dl ;1 = ∑
n+p+r=l�1

ȳ(n)d h̄(p)c;d h̄(r)c;d+ ȳ(l�1)
b + ȳ(l�1)

c

Please refer to [2] for the proof of Theorem 4.2. Note
all quantities on the right-hand side of (3), (4), and (5)
are known. Thus,Ha;b, Ya. andYd can be computed.

Expanding (3), (4), and (5) into moments and re-
arranging terms, we get the polynomial expressions for

h(q)a;b, y(q)a , andy(q)d as stated in Theorem 4.2.

5 Equivalence with Rubinstein et
al. & O’Brien and Savarino

In this section, we demonstrate that
our formulas are a natural extension of
Rubinstein et al. [5] and O’Brien and
Savarino [3].

Theorem 5.1 below states the equivalence of our for-
mulas with [5] and [3]. Theorem 5.1 can be obtained by
properly simplifying the formulas in Theorem 4.2 when
the circuit is a RC tree.

Theorem 5.1 For the RC tree in Figure 4, we have (i�
1)

h(i)a;b = �Ry(i)a (6)

y(i)a =

i�1

∑
l=0

h(l)a;bŷ(i�l)
c (7)

ŷ(i)c = ȳ(i)c (i 6= 1) (8)

ŷ(i)c = ȳ(i)c +C (i = 1) (9)
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Figure 4: RC tree demonstrating the equivalence of our formulas with Rubinstein et al. [5] & O’Brien and Savarino
[3]. P1 is a single RC segment, whileP2 is an arbitrary RC tree.

� Equivalence with Rubinstein et al. [5]: (6) re-
latesh(i)a;b, theith (i � 1) moment ofHa;b, toy(i)a , the
ith (i � 1) moment ofYa. Wheni = 1, (6) becomes

h(1)a;b =�Ry(1)a (10)

Sincey(1)a is the rooted capacitance at nodea (see
Figure 4), the absolute value of (10) is the Elmore
delay for the segment froma to b.

To compute the Elmore delay of a path consist-
ing of more than one segment, Theorem 5.2 below
must be used in conjunction with (10). But first,
we state our formulas’ equivalence with O’Brien
and Savarino [3].

� Equivalence with O’Brien and Savarino [3]: (6)
and (7) form a recursive relation that can compute
the input admittance moment of an arbitrary order,
while [3] gives the formulas for only the first three
input admittance moments. ˆy(i)c is defined to sim-
plify notation. Due to space limitations, we do not
list the case-by-case equivalence with [3]. For de-
tails, please refer to [2].

Theorem 5.2 below is used with (6) to compute the
Elmore delay of a multiple-segment path:

Theorem 5.2 Suppose we have, for the RC tree in Fig-
ure 4:

Ha;b = 1+h(1)a;bs+h(2)a;bs
2+ � � �=

∞

∑
l=0

h(l)a;bsl

H̄c;d = 1+ h̄(1)c;ds+ h̄(2)c;ds2+ � � �=
∞

∑
l=0

h̄(l)c;dsl

Ha;d = 1+h(1)a;ds+h(2)a;ds2+ � � �=
∞

∑
l=0

h(l)a;dsl

where Ha;b, H̄c;d, and Ha;d are the transfer functions
from a to b (with P2 loaded on P1), from c to d, and

from a to d, respectively; h(l)a;b, h̄(l)c;d, and h(l)a;d are the lth
moments of Ha;b, H̄c;d, and Ha;d, respectively.

Then we have(l � 1)

h(l)a;d =

l

∑
m=0

h(m)a;b h̄(l�m)
c;d (11)

Whenl = 1 in (11), we have

h(1)a;d = h(1)a;b+ h̄(1)c;d (12)

with which the Elmore delay froma to d, h(1)a;d, can be

calculated in terms ofh(1)a;b, the Elmore delay froma to

b, andh̄(1)c;d, the Elmore delay fromc to d.
Please refer to [2] for the proof of Theorem 5.2.

6 Conclusions

In this paper, we have presented a method to hierar-
chically compute moments for 2-port circuits. In addi-
tion, we demonstrated that our formulas form an elegant
framework integrating results from two classical papers:
Rubinstein et al. & O’Brien and Savarino.
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