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Abstract

Moments of the impulse response are widely used for interconnect
delay analysis, from the explicit Elmore delay (first moment of the
impulse response) expression, to moment matching methods which
create reduced order transimpedance and transfer function approx-
imations. However, the Elmore delay is fast becoming ineffective for
deep submicron technologies, and reduced order transfer function
delays are impractical for use as early-phase design metrics or as
design optimization cost functions. This paper describes an ap-
proach for fitting moments of the impulse response to probability
density functions so that delays can be estimated from probability
tables. For RC trees it is demonstrated that the incomplete gamma
function provides a provably stable approximation. The step re-
sponse delay is obtained from a one-dimensional table lookup. 

1: Introduction

Due to CMOS technology trends, it is no longer possible to model
all of the delays in terms of gates driving capacitive loads, since the
RC charging delays for the interconnect can be the dominant delay
component. Model order reduction methods using moments
[10][15] or Krylov subspace methods [4][14][19] have effectively
addressed the interconnect modeling problem for back-end design
verification, however, all of these methods produce transfer func-
tion models for which a transcendental equation must be solved to
obtain the delay. The implicit nature of these models makes them
impractical for most front-end design applications or for use in the
inner-loop during design optimization. 

The Elmore delay [3], or first moment of the impulse response,
provides a simple, explicit, delay approximation that is the
defacto-standard metric for performance driven design applica-
tions. Elmore proposed in 1948 to approximate the median of the
impulse response (50% delay of the step response) by the mean of
the impulse response by noting the similarity between non-nega-
tive impulse responses and probability density functions. But the
accuracy of this metric is sometimes unacceptable for RC intercon-
nect problems encountered with today’s CMOS technologies. T
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Elmore delay was shown to be an upper bound on the 50% step
and ramp response delays for RC trees[6], but with relative accu-
racy that can be quite poor at times. Moreover, it can be shown
that the first moment of the impulse response is sometimes incapa-
ble of even approximating delay sensitivities with respect to
changing path resistances, which is becoming increasingly impor-
tant due to resistive shielding effects. This lack of correlation
between front-end delay metrics and back-end model order reduc-
tion methods can produce convergence problems for top-down
design methodologies. 

Some attempts have been made to formulate explicit solutions
of 2nd order (two time constant) models, which would seem to be
the obvious compromise between an Elmore approximation and a
complete reduced-order model via moment matching. To apply
such a two pole model, however, requires a moment matching for-
mulation that characterizes the poles in a provably stable manner.
Horowitz proposed the first stable two pole model in [1][7], but
while it was stable, it can produce complex pole pairs for RC cir-
cuits. In addition, this two pole model requires nonlinear iterations
to solve for the delay. Some two pole models were proposed in [8]
and [21] which can be evaluated by closed-form approximations,
however, these methods are lacking in terms of accuracy and gen-
erality. 

This paper proposes an extension of Elmore’s approximation
include matching of higher order moments of the probability de
sity function. Specifically, using a time-shifted incomplet
Gamma function approximation for the impulse responses of 
trees, the three parameters of this model are fitted by matching
first three central moments (mean, variance, skewness), whic
equivalent to matching the first three moments of the circ
response (m1, m2, m3). Importantly, it is proven that such
gamma fit is guaranteed to be realizable and stable for 
moments of an RC tree. Once the moments are fitted to chara
ize the Gamma function, the step response delay is obtained v
one-dimensional table lookup, thereby providing the same exp
itness as the Elmore approximation. 

2: Background 

We begin with a review of the relationship between momen
of a linear circuit response and moments of a random variable.

2.1: Moments of a Linear Circuit Response 

Let  be a circuit impulse response in the time domain and

 be the corresponding transfer function. By definition,  
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the Laplace transform of :

 (1)

Applying a Taylor series expansion of  about  yields:

(2)

Using the terminology in [15], the i-th circuit-response

moment,  is defined as:

(3)

From (2) and (3), the transfer function  can be expressed as:

(4)

Asymptotic Waveform Evaluation (AWE)[15] demonstrated
how impulse response moments could be calculated recursively
for a lumped, linear RLC circuit. Following the first moment cal-
culation, all subsequent moments are calculated recursively from
the same dc equivalent circuit. Path tracing algorithms, such as
those used in RICE[17], can be used to calculate moments with
extreme efficiency for interconnect circuits. 

For RC trees, Penfield and Rubenstein proposed in [18] a path
tracing algorithm to calculate the first moment, or Elmore delay.
This was done by traversing the tree topology and summing up

contributions of branches along a path  from the root to the

node of interest. The contribution of branch  is the product of

the branch resistance  and the total down stream capacitance

. Denoting  the set of capacitances downstream of ,

the Elmore delay  of path  is

 (5)

In a similar manner, the nth moment of the impulse response

along path i, , is obtained by scaling the downstream capaci-

tors at all nodes, k, by their n-1th moments, , yielding

the following recursive expression:

(6)

Any set of moments can be computed by two traversals of the RC

tree in linear time.

It should be noted that the impulse response moments (series
coefficients) in (3) are related to the probability theory moments

by a  term. It is this relation which forms the basis of

PRIMO.

2.2: Moments of Probability Density Functions

A probability function is a real valued set function where the do-

main is a subset of the sample space, , and the range is a real

number in the interval . Generally, a function 
should satisfy the three Kolmogorov axioms [11], or equivalent
conditions, in order to be considered a probability function: (i)

; (ii)  for all ; (iii)

 if .

The distribution function of a continuous random variable  -

denoted  - provides the value of  for any real

number . The associated probability-density-function

(pdf) - denoted  - is the derivative of the distribution func-

tion with respect to , thus

 (7)

and

 (8)

The median, , is defined by: 

(9)

Whereas, the expected value or mean, , of a continuous ran-

dom variable  with distribution  is 

(10)

The mean is also the first moment of the distribution (or pdf). In

general, the i-th moment  of the distribution is

(11)

Fig. 1 summarizes these distribution definitions. Note that we
use ‘~’ (tilda) to distinguish between the probability momen

 and circuit moments . 
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2.3: The Central Moments 

The moments of a pdf in (11) are more frequently viewed in terms
of moments about the origin. The central moments of a distribu-

tion - denoted  - are the moments around the expected value.

More formally, central moments of a random variable  with

probability density function  and expected value  are 

(12)

It is straight forward to show from (12) that the central moments
as a function of moments about the origin are[6]:

(13)

From (3) and (11), 

; ; (14)

From which we can express the central moments - variance 

and skewness  - in terms of the circuit response moments:

(15)

Unlike the moments of the impulse response, the central
moments have geometrical interpretations:

•   is the area under the curve. It is generally unity, or else a 

simple scaling factor is applied.

•   is the variance of the distribution which measures the 

spread of the curve from the center. A larger variance reflects 
a larger spread of the curve.

•   is a measure of the skewness of the distribution; for a 

unimodal function its sign determines if the mode (global 
maximum) is to the left or to the right of the expected value 
(mean). Its magnitude is a measure of the distance between 
the mode and the mean.

•   is a measure of the kurtosis or peakedness of the distri-

bution; for a unimodal function its relation to  reflects the 

portion of the total area under the curve that is attributable to 
the tails of the curve.

2.4: Connection Between Probability Density 
Functions and Circuit Responses

Any function  can be treated as a probability density function

if it is defined in the range  and satisfies

(16)

If  is equal to zero outside of the range , we can replace

the integration limits in (16) with  and . Elmore[3] was the
first to apply moments for delay approximation of a limited class
of circuit responses by observing that the impulse response of a
circuit can be treated as a probability density function. He used
this observation to justify the approximation of the 50% point of
a monotonic step response (the median point of the impulse re-
sponse) by the first moment (mean of the impulse response). 

In [6] it was shown that the impulse response corresponding
to an RC tree is unimodal with positive skew. From this it follows
that the mode is less then the median which is less then the mean
and vice versa [9] [13]:

This proved that the Elmore delay is an upper bound for the 50%
step response delay[6], and was shown to hold for finite input sig-
nal rise time.

An important observation from [6] is that because of the vari-
ation in impulse response shapes along an interconnect path (e.g.
from driver to load), the relative accuracy of the Elmore delay
bound can be quite poor. Especially for the interconnects associ-
ated with deep submicron technologies, more than one moment is
needed to capture the waveform shape-characteristics.

3: PRIMO 

The approach proposed here is related to the work of Pearson [2]
for approximating a histogram of discrete experimental data with
a continuous function. The most important step in this process is
finding the representative distribution family. The Gamma distri-
bution, depicted in Fig. 2, is reasonably representative of the im-
pulse responses in RC trees since it provides good “coverage
bell shaped curves which are bounded on the left and exponen

FIGURE 1.    A probability density function (left) and 
corresponding distribution function (right).
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ly decaying to the right. 

The probability density function, , of Gamma distri-

bution is a function of one variable  and two parameters  and

 (real numbers):

,      (17)

From the moment generating function [11][20] of the Gamma
distribution,

(18)

we can express the moments in terms of the parameters  and :

(19)

Since Gamma has only two parameters,  and , matching
two moments would completely characterize this model. There-
fore, to match the third moment and capture the skewness of the
distribution, we add a third variable, , to include a degree of
freedom in terms of time-shifting the function. 

To begin, the shape information that is encapsulated in 

and  can be used to fit the Gamma-pdf parameters  and .

Moment fitting  and  in this way corresponds to a system of
two equations and two unknowns:

(20)

Rearranging (20) results in:

; (21)

The first moment is matched by translating the Gamma distri-

bution by a time-shift  that is equal to , as shown in

Fig. 3. From (13) it is recognized that fitting ,  and  is

equivalent to fitting the first three moments, . This is

equivalent to moment matching, in the AWE sense[15], to the
moments of a time-shifted gamma function:

. (22)

Once the values of ,  and  are obtained by matching the
circuit response moments, the step response delay can be esti-

mated from the probability density function . For exam-

ple, the approximate step response  is given by

(23)

Finding the delay point  for a particular waveform threshold

voltage  (e.g. if  it is the 50% delay), is equiv-

alent to finding a percentile  of a distribution,

(24)

Therefore, it is straightforward to use pre-compiled tables of

Gamma distribution percentiles (with respect to the parameters 

and ) to solve (24) at the runtime cost of a single table-access.

Moreover, we can normalize time by  so that the percentile val-

ue can be obtained from a one-dimensional table in terms of .
An efficient computation scheme for the Gamma distribution
function can be found in [16].

gλ n, t( )

t λ

n

gλ n, t( ) λntn 1– e λt–

Γ n( )
------------------------------     = Γ x( ) yx 1– e y– yd

0

∞

∫=
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4: Properties and Implementation Issues

4.1: Stability

The Gamma probability density function in (17) is stable if
. From (21), . It was proven in

[6] that both  and  are both positive for any RC tree. It was

further shown in [5] that the point at which the skew changes from
positive to negative for an RLC tree can be used as a measure of
the response damping. We use these results to construct the fol-
lowing theorem:

Theorem of Stability: The Gamma approximation is valid and sta-
ble for any RLC topology which has a response for which its deriv-
ative is a positively skewed bell shape distribution. 

4.2: Accuracy

Although it is provably stable, the shifted Gamma function may
display significant error at times, particularly for the fitting of the
early portion of the impulse response. As expected, fitting mo-
ments will tend to be most accurate for the tail portion of the re-
sponse, since moments represent the series expansion about s=0.
Fortunately, the response near t=0 is the least important portion of
the response for delay calculation purposes. In addition, a large
time-shift value, , provides some indication of when the Gamma
function is not fitting the impulse response in the expected manner.

4.3: Finite Rise Time Effects

Finite rise time effects can be captured by using two time-shifted
gamma functions, separated by the risetime, to approximate the

pulse response. The pre-compiled 2-D table is now a function of 
and the risetime[12].

5: Experimental Results

As a first example, consider the RC tree in Fig. 4. We compare the

delays obtained from SPICE with those found using the Gamma
approximation. The results for the 50% delay and 90% delay are
summarized in Table 1.

Note that the differences between the PRIMO delays and the
SPICE delays at the leaf nodes is about 1% or less. Excluding the
driving point node, the largest error at any downstream node is
about 4%. This worst case occurs for nodes that are closest to the

root (node 2). These nodes correspond to the responses with the
highest frequency content, hence one would expect the largest
moment matching error there. 

The impulse response at the driving point node does not follow
the bell shape, but rather starts out with a non-zero value and
asymptotically approach zero in a multi-exponential decay form.
Other distribution families may permit matching higher order
moments, or more naturally capture these driving point response
shapes. But as with all moment matching problems, the greatest
challenge is to find a model that is provably stable and realizable. 

The Beta function, for example, can be characterized in terms
of its moments just like Gamma. But even with more shape fitting
parameters, the Beta function is not always superior to the Gamma
function for fitting downstream nodes. Some examples for driving
point and near-end loads are shown in Table 2. Importantly, the
utility of Beta is questionable, since the moment matching is
sometimes non-realizable. 

TABLE 2. The 50% step response delays obtained from Gamma 
and Beta approximations at the highest frequency nodes.

An RLC Line

Since PRIMO requires a bell-shaped distribution for the impulse
response, overdamped and critically damped RLC circuit respons-
es can be approximated with this method. As a simple example,
consider the 2000 micron distributed RLC line in Fig. 5, which was
modeled with 20 lumped RLC sections. The results are compared
with SPICE in Table 3.  

PRIMO matched the SPICE simulation very well for the over-
damped responses. The underdamped cases can be recognized

λ 0> λ( )sgn µ2( )sgn µ3( )sgn⋅=

µ2 µ3

∆

n

(7)(6)

(1) (2) (3) (4) (5)

+
-

FIGURE 4. An RC tree example.

80Ω                 60Ω            60Ω          60Ω           60Ω

60Ω           60Ω

Vin
    0.5pF         1pF             1pF            1pF             1.2pF

 1pF            1.2pF
driver-model

TABLE 1. Comparison of the 50% and 90% step response 
delays from SPICE and from PRIMO-Gamma (time in ns).

Node
SPICE
(50%)

PRIMO
(50%)

SPICE
(90%)

PRIMO
(90%)

2 0.477  0.497 2.02 2.01

3 0.700 0.699 2.27 2.27

4 0.845 0.836 2.42 2.43

5 0.919 0.909 2.50 2.50

6 0.375 0.376 1.75 1.74

7 0.452 0.450 1.82 1.82

Node SPICE Gamma Beta

1 0.196 0.243 0.193

2 0.477 0.498 0.489

6 0.375 0.378 0.355

TABLE 3. Comparison of SPICE and PRIMO for RLC line.

Rdriver Cload Slope
SPICE Gamma

50% 90% 50% 90%

25Ω 1pF step under-damped under-damped

35Ω 1pF step 40.1ps 99.3ps 39.6ps 100ps
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prior to analysis by a negative value for the third central
moment[5]. Since delay is difficult to define for an underdamped
response (since it may cross a threshold point multiple times), and
because underdamped responses generally require design/circuit
changes, simply detecting this condition is sufficient for many
applications.

0.25 micron RC Tree Example

As a final example we considered a large, 10-fanout RC tree taken
from a 0.25 micron commercial design. PRIMO is compared with
SPICE and a 1-pole approximation in Table 4. Even for a step ap-
proximation the PRIMO results match SPICE in most cases, and is
significantly better than a 1-pole approximation in almost all cases.
The largest errors are observed at the near-end fanouts for both the
PRIMO and the 1-pole models. 

6: Conclusion

This paper describes a new delay metric based on a probability in-
terpretation of moments of the circuit response. A time-shifted
Gamma function is shown to provide good approximations of RC
tree impulse responses so that one-dimensional probability tables
can be used to evaluate the delays. Therefore, this new metric is
able to capture higher order moment effects but with runtime effi-
ciency that is comparable to that for the Elmore delay.
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SPICE, PRIMO (Gamma) and a 1-pole approximation (in ps).

Fan-
out SPICE PRIMO 1-Pole

PRIMO
% error

1-Pole
% error

1 137.19 137.85  137.25  0.48  0.04

2 141.76 142.02 140.02  0.19 1.22

3 112.90 116.85 123.82 3.50 9.67

4 112.89 116.84 123.81 3.50 9.67

5 112.77 116.71 123.72 3.50 9.72

6 48.46 59.05 84.68 21.9 74.74

7 19.08 29.09 63.28 52.5 232.0

8 59.50 68.79 91.31 15.6 53.45

9 53.22 63.22 87.53 18.8 64.5

10 191.93 189.98 172.43 1.02 10.2

+
-Vin

Rdriver 

Cload

FIGURE 5. A distributed RLC line with a linear driver and 
capacitance load.

0.0015 Ω /um, 0.176 fF/um, 0.246 pH/um
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