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Abstract
We describe powerful new techniques for the analysis of RF

circuits. Next-generation CAD tools based on such techniques
should enable RF designers to obtain a more accurate picture of
how their circuits will operate. These new simulation capabilities
will be essential in order to reduce the number of design iterations
needed to produce complex RF ICs.

1 Introduction
Design methodology and superior computer-aided design

tools are key to success in the integrated circuit (IC) business.
They are particularly important in the case of radio-frequency
(RF) IC applications, where the digital IC divide-and-conquerde-
sign style, based on partitioning by functional blocks and abstrac-
tion levels, does not apply.

The goal of an RF designer is to get a manufacturable de-
sign that meets the specifications with minimum cost, under
severe time-to-market constraints. Unlike traditional discrete-
component RF design, prototyping is practically impossible, and
the validation of a design can only be done by extensive sim-
ulation. Undetected mistakes in the design result in costly and
time-consuming iterations that involve silicon processing.

Design methodology is the approach or philosophy used in
creating a design. This includes the steps associated with the
synthesis of the circuit that implements the desired functionality.
This constructive aspect needs to be complemented by a verifica-
tion methodology required to assure, with a high degree of confi-
dence, the validity of the design before it is committed to silicon.
The design and verification methodologies are implemented with
the help of design tools. These tools aid in carrying out design
and verification steps, i.e., producing mask layout, model extrac-
tion, and the various performance verification steps.

Typical specifications which must be met by RF ICs and,
therefore, supported by the design and verification methodolo-
gies, include sensitivity, linearity, adjacent channel interference,
and power level. These specifications depend on other perfor-
mance measures such as noise figure, intercept point, and 1dB
compression point. Verification tools need to be able to analyze
the design at its various stages and predict the performance mea-
sures as accurately as possible.

A number of factors characterize RF-IC applications and ren-
der the verification process particularly difficult. One is the ex-
treme range of frequencies, or time-scales, over which the circuit
is operating. Typical applications have carrier frequencies in the
1-2 GHz range with modulating signals in the KHz range, a span
of 6 orders of magnitude. The signals have a tremendous dynamic
range. A radio will often have 80 dB of gain in the receiver path.
Signals that must be received may be 60 dB weaker than the ones
in adjacent frequency bands. Attenuations of more than 100dB
for unwanted interferences are not unheard-of. At GHz frequen-
cies, the passive components of an RF circuit are very significant

and must be carefully modeled. Coupling through the intercon-
nect and the substrate are prone to cause problems such as unde-
sired interference (cross-talk) from adjacent structures. At these
high frequencies, capacitors, inductors, on-chip wires, the silicon
substrate, package, sockets, etc., must be analyzed at the electro-
magnetic level in order to capture and model all the significant
effects. Finally, device noise determines the fundamental bounds
of circuit performance and plays a significant role in RF circuit
design. Device noise (flicker noise, shot noise, thermal noise,
etc.) is a stochastic phenomenon resulting from thephysics of the
device and should be distinguished from deterministic phenom-
ena such as crosstalk.

The verification methodology must rely on tools that are ap-
propriate for the problems enumerated above. These tools must
be efficient enough to permit a sufficiently extensive verification
of the design. In some cases, the capability to perform more sim-
ulation results in the uncovering and fixing of more design flaws,
thus avoiding costly processing iterations.

The wide range of operating frequencies imposes an insur-
mountable burden on the SPICE-type, time-domain simulators
familiar to IC designers. It would take the simulation of mil-
lions of carrier cycles to analyze only one period of the modu-
lating signal. Therefore novel, multi-scale simulation techniques
must be employed. One such technique, the method of harmonic
balance, is widely used and very familiar to microwave RF de-
signers. Harmonic balance analysis is suitable for the analysis of
circuits operating at widely separated frequencies and provides
the required dynamic range. Unfortunately, the existing commer-
cial implementations of harmonic balance simulators rely on al-
gorithms that are not capable of handling the large circuits, con-
sisting mainly of nonlinear elements, which characterize typical
RF-IC applications. Moreover, harmonic balance cannot address
all RF-IC verification problems of interest. Section 2 surveys
an entire family of multi-scale simulation techniques (including
harmonic balance) capable of evaluating all RF-IC circuit perfor-
mance measures of interest. A novel implementation of harmonic
balance suitable for the simulation of a full RF chip is described.

Device noise being among the most important design con-
siderations, any verification methodology must rely on adequate
tools that simulate the effects of noise in RF circuits. Noise
sources and signals in RF circuits are modulated by time-varying
signals and can only be modeled by cyclo-stationary and non-
stationary stochastic processes. Analyzing the effect of noise in
oscillators (phase noise/timing jitter) is particularly difficult. An-
alyzing the effects of phase noise in autonomous oscillators is
described in Section 3.

The accurate analysis of passive linear structures at GHz fre-
quencies must rely on the solution of the full set of Maxwell’s
equations, in all three dimensions, on domains having varied and
complicated geometries. Section 4 surveys the techniques avail-
able for this problem and describes in detail a novel, very efficient
method-of-moments approach. The models resulting from the
analysis of the linear structures must be combined with the active
components into a comprehensive simulation of the RF circuit.
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Unfortunately some of the linear analysis tools can only produce
models in the frequency domain. Of all the analysis methods,
only harmonic balance can naturally handle these models. For
other types of analysis, the linear model must be translated into
a form suitable for time-domain simulations. The methodology
to compute reduced-order models that are compatible with both
time-domain and frequency-domain simulations is described in
Section 5.

2 Circuit Simulation for RF ICs
Simulating RF ICs places new demands on transistor-level

simulation tools: (1) The need to find steady-state and tran-
sient/envelope response with stimuli at widely separated frequen-
cies or time-scales. Mixer simulation and two-tone intermodula-
tion studies are classic examples of this scenario. (2) The need
for large dynamic range in numerical results; Radio designs com-
monly deal with intentional signals separated in amplitude by 60-
80 dB. Accurate prediction of spurious signals and feed-through
requires a dynamic range in excess of 100 dB. Ideally, the nu-
merical methods used should not be the limiting factor. (3) The
simulation should be accomplished with reasonable computer re-
sources.

The method ofharmonic balance(HB) [16, 24] is already fa-
miliar to microwave RF designers and is becoming more well
known among RF IC designers. Section 2.1 contains a discussion
of the application of HB to a complete RF transmitter chip.

A new formulation, introduced even more recently, provides
a general mathematical framework for the aforementioned is-
sues. Themulti-rate partial differential equation (MPDE)tech-
nique [4, 39, 40] represents signals as functions of more than one
time variable. HB is a special case of the MDPE, which also
allows multi-tone analysis of strongly nonlinear circuits (in fact,
non-RF circuits such as power converters and switched-capacitor
filters can also be treated effectively with the MPDE). Section 2.2
contains a discussion of the MPDE for strongly nonlinear RF cir-
cuits.

2.1 Harmonic Balance
The method of Harmonic Balance represents all circuit wave-

forms in the frequency domain. The method is particularly nat-
ural in the case of incommensurate multi-tone drive [45]. Early
implementations focused on microwave circuitry [29], which of-
ten has a relatively small number of nonlinear components em-
bedded in a large collection of linear elements. Unfortunately,
RF integrated circuits do not really fit this model, since sophis-
ticated semiconductor device equations require nonlinear mod-
eling of the majority of components. Recent work by various
authors [3, 10, 28, 31, 37] has demonstrated that Harmonic Bal-
ance can handle integrated designs containing many more non-
linear components than traditional implementations of the tech-
nique. Specifically, iterative linear algebra techniques [12] have
been used to solve the large Jacobian matrix which results from
linearization of the nonlinear equations.

Of course a large circuit can always be simulated in pieces.
However, there are several disadvantages to this approach: (1)
Circuit partitioning is inconvenient and error-prone, especially
for extracted networks. (2) It is often difficult to preserve source
and load impedances across partitionboundaries. Nonlinear ef-
fects like load pull can be missed entirely. (3) Leakage and feed-
through are a crucial concern in integrated RF designs and, by
definition, cross module boundaries.

Figure 1 shows a typical output spectrum from a Harmonic
Balance simulation. The simulated circuit was a large dual-
conversion quadrature modulator chip designed for cellular ap-
plications. The left-most spectral component is a weak, but sig-
nificant, spurious response from the local oscillator which might
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Figure 1: Modulator in-band spectrum
or might not be within the specifications of the chip. The spec-
trum display also shows a sideband component at a level of -
35 dBc which was out of specification for this design, and was
traced back to a layout imbalance. This effect was missed dur-
ing conventional transient analysis. This was a big job—about 27
hours on a fast scientific workstation with approximately 500MB
of memory—but still significantly faster and more useful than a
transient analysis.

To summarize the significance of Harmonic Balance simula-
tion for this example:

� The large range in driving frequencies [80 KHz and 1.62
GHz] would require a conventional transient analysis to
run for several hundredthousandcycles. A conventional
transient runwas performed on this design, but with the
base-band frequency set to 1 MHz (rather than 80 KHz)
and required approximately the same amount of time as the
Harmonic Balance run using the appropriate base-band fre-
quency.

� The numerical dynamic range of the transient simulation
was insufficient to pick up a weak spurious response at -78
dBc.

On the other hand:
� The memory and time required for Harmonic Balance simu-

lation increase rapidly as more “tones” are added, i.e., driv-
ing sources at frequencies which are not in a simple har-
monic relationship to one another. For example, predict-
ing the intermodulation distortion of the entire modulator
chain would require two different fundamental frequencies
at base-band for a total forfour tones; such a simulation
would probably exceed available memory for this design,
even with the memory compression techniques which were
used in this example.

� Within the bounds of available numerical dynamic range,
the time and memory requirements of transient simulation
are not sensitive to the number of fundamental frequencies
applied to the circuit.

2.2 Multi-Time Methods
The key to the MPDE formulation is the use of multivariate

functions (functions of several time variables) to represent signals
with separated time scales efficiently. To understand the concept,
consider the product of a 1 Hz sine wave and a 1Ghz pulse train,
given by:

y(t) = sin(2πt) pulse
� t

109

�
(1)



Figure 2 depictsy(t), with the pulse period of 109 changed to 50
for viewing convenience. This quasi-periodic signal is expensive
to represent in the time domain because 109 pulses of different
shapes need to be sampled before the waveform repeats. It is
this problem that makes traditional time-domain techniques like
SPICE’s transient analysis inefficient for such signals. Represen-
tation in the frequency domain as a two-tone signal is also inef-
ficient because the pulses require many Fourier components for
accuracy.
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Consider, however, the function of two variables obtained by
replacing the ‘slow’ time component byt1 and the ‘fast’ time
component byt2:

ŷ(t1;t2) = sin(2πt1) pulse
� t2

109

�
(2)

ŷ(t1;t2), a bi-variate formof y(t), is shown in Figure 3. No-
tice that it is easy to represent ˆy accurately using relatively few
numerical samples, in contrast toy(t) in Figure 2. The number of
samples does not depend on the separation of the two time scales,
which merely determines the scaling of the axes. Moreover,y(t)
can be easily obtained by interpolation from samples of ˆy(t1;t2),
using the fact thaty(t) = ŷ(t;t) and that ˆy(t1;t2) is periodic in
each argument.

This observation is the basis of the MPDE formulation, in
which all the waveforms in a circuit are represented in their bi-
variate forms (or multivariate forms if there are more than two
time scales). The key to efficiency is to solve for these wave-
forms directly, without involving the numerically inefficient one-
dimensional forms at any point. To do this, it is necessary to first
describe the circuit’s equations using the multivariate functions.
The traditional form of a circuit’s equations, used in all simula-
tors, is the Differential-Algebraic Equation (DAE):

q̇(x)+ f (x)= b(t) (3)

x(t) is the vector of circuit unknowns (node voltages and branch
currents); q denotes the charge/flux terms andf the resistive

terms; b(t) is the vector of excitations to the circuit (typically
from independent voltage/current sources). It can be shown [40]
that if x̂(t1;t2) andb̂(t1;t2) denote the bi-variate forms of the cir-
cuit unknowns and excitations, then the following MPDE is the
correct generalization of (3) to the bi-variate case:

∂q(x̂)
∂t1

+
∂q(x̂)

∂t2
+ f (x̂) = b̂(t1;t2) (4)

More precisely, ifb̂ is chosen to satisfyb(t)= b̂(t;t), andx̂ satis-
fies (4), then it can be shown thatx(t) = x̂(t;t) satisfies (3). Also,
if (3) has a quasi-periodic solution, then (4) can be shown to have
a corresponding bi-variate solution.

By solving the MPDE numerically in the time domain, strong
nonlinearities can be handled efficiently. The following new
methods have been developed for solving (4):

1. Quasi-periodic time-domain methods (MFDTD and
HS): Quasi-periodic solutions are found by enforcing bi-
periodic boundary conditions on the MPDE. In the Mul-
tivariate Finite Difference Time Domain (MFDTD), (4) is
discretized on a grid in thet1-t2 plane by approximating
the differentiation operators with a numerical differentia-
tion formula. The resultant system of nonlinear equations,
together with the bi-periodic boundary conditions, is solved
using a nonlinear solution method. The grid is refined adap-
tively so that the solution is captured efficiently. Another
purely time-domain method, Hierarchical Shooting (HS), is
a generalization of the traditional shooting method to mul-
tiple time scales. Both MFDTD and HS are appropriate for
circuits with no sinusoidal waveform components, such as
power converters.

2. Quasi-periodic mixed frequency/time method (MMFT):
In some circuits, the slow-scale signal path is often almost
linear, while the fast-scale action is highly nonlinear. The
linearity of the signal path can be exploited by expressing
the slow scale components in a short Fourier series, and
solving the mixed frequency/time system of equations. This
Multivariate Mixed Frequency Time (MMFT) method is of-
ten more efficient for switched-capacitor filters and switch-
ing mixers.

3. Time domain envelope methods (TD-ENV):Envelope-
type solutions can be generated from the MPDE by ap-
plying mixed initial/periodicboundary conditions. Novel
time-domain methods based on FDTD or shooting along the
fast time scale, and transient integration along the slow time
scale, have been devised [40]. These techniques are capable
of handling circuits with nonlinearities on a fast time scale,
e.g., power converters, switched-capacitor filters, switching
mixers, etc..

The above numerical techniques generate sparse matrices with
near diagonal or block-diagonal structure, which makes it conve-
nient to use iterative linear solution methods (e.g., [10, 31, 41])to
solve large circuits efficiently.

The application of MMFT to a double-balanced switching
mixer and filter circuit is described below. The RF input to the
mixer was a 100kHz sinusoid with amplitude 100mV; this sent it
into a mildly nonlinear regime. The LO input was a square wave
of large amplitude (1V), which switched the mixer on and off at
a fast rate (900Mhz).

The circuit was also simulated by univariate shooting for com-
parison. For MMFT, 3 harmonics were taken in the RF tone
f1 = 100kHz (corresponding to thet1 variable). The LO tone
at f2 = 900MHz was handled by shooting in thet1 variable. The
output of the algorithm is a set of time-varying harmonics that



are periodic with periodT2 =
1
f2

. The first harmonic is shown in
Figure 4(a). This plot contains information about all mix compo-
nents of the formf1+ i f2, i.e., the frequencies 900.1 Mhz, 1800.1
Mhz, etc. The main mix component of interest, 900.1 Mhz, is
found by taking the fundamental component of the waveform in
Figure 4(a). This has an amplitude of 60mV.
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Figure 4: Switching Mixer: MMFT output

The third harmonic is shown in Figure 4(b). It contains in-
formation about the mixes 3f1+ i f2, i.e., the frequencies 900.3
Mhz, 1800.3 Mhz, etc.. The amplitude of the 900.3 Mhz compo-
nent is about 1.1mV; hence the distortion introduced by the mixer
is about 35dB below the desired signal.

The output produced by univariate shooting is shown in Fig-
ure 5. This run, using 50 steps per fast period, took almost 300
times as long as the new algorithm.
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Figure 5:Mixer output from univariate shooting

3 Phase Noise in Oscillators
Oscillators are ubiquitous inphysicalsystems, especially elec-

tronic and optical ones. In RF communication systems, they
are used for frequency translation of information signals and for
channel selection.

Noise is of major concern in oscillators, because introducing
even small noise into an oscillator leads to dramatic changes in
its frequency spectrum and timing properties. This phenomenon,
peculiar to oscillators, is known as phase noise or timing jitter. A
perfect oscillator would have localized tones at discrete frequen-
cies (i.e., harmonics), but any corrupting noise spreads these per-
fect tones, resulting in high power levels at neighboring frequen-
cies. This effect is the major contributor to undesired phenomena
such as interchannel interference, leading to increased bit-error-
rates (BER) in RF communication systems. Characterizing how

noise affects oscillators is therefore crucial for practical applica-
tions. The problem is challenging, since oscillators constitute a
special class among noisy physical systems: their autonomous
nature makes them unique in their response to perturbations.

Considerable effort has been expended over the years [1, 18,
23, 25, 27, 30, 38, 46] in understanding phase noise and in de-
veloping analytical, computational and experimental techniques
for its characterization. Despite the importance of the problem
and the large number of publications on the subject, a consistent
and general treatment, and computational techniques based on a
sound theory, appear to be still lacking. We developed a novel,
rigorous theory for phase noise which leads to efficient numerical
methods for its characterization [5]. Our techniques and results
are general; they are applicable to any oscillatory system, electri-
cal or otherwise.

Understanding how perturbations affect stable oscillators is a
crucial step in the analysis of phase noise. A nonlinear perturba-
tion analysis that is valid for oscillators is required, in contrast to
traditional linear perturbation analysis, which is not consistent for
oscillators and results innon-physical predictions. With a rigor-
ous nonlinear perturbation analysis, one can show that the effect
of perturbations on an oscillator’s response can be represented by
a changing time shift, or phase deviation, in the periodic output of
the unperturbed oscillator, and an additive component, called the
orbital deviation, to the phase-shifted oscillator waveform. More-
over, the phase deviation and the orbital deviation can always be
chosen such that the phase deviation will, in general, keep in-
creasing with time even if the perturbation is always small, but
the orbital deviation will always remain small. These results for-
malize existing intuition among designers about oscillator opera-
tion.

Considering random noise perturbations (e.g. thermal noise,
1= f noise), one sees that jitter and spectral spreading are closely
related, and both are determined by the manner in which the phase
deviation, a random process, spreads with time. The average
spread of the jitter (mean-square jitter) increases without bound
(precisely linearly for shot and thermal noise) with time. The
power spectrum of the perturbed oscillator has a finite value at the
carrier frequency and its harmonics, and the total carrier power is
preserved despite spectral spreading due to noise. Previous anal-
yses based on linear time-invariant (LTI) or linear time-varying
(LTV) concepts erroneously predict infinite noise power density
at the carrier, as well as infinite total integrated power. Further-
more, one can show that the oscillator’s output is stationary. This
might be surprising at first sight, since oscillators arenonlinear
systems with periodic swings. Hence it might be expected that
output noise power would change periodically as in forced sys-
tems. However, it must be remembered that while forced systems
are supplied with an external time reference (through the forcing),
oscillators are not. Cyclostationarity in the oscillator’s output
would, by definition, imply a time reference. Hence the station-
arity result reflects the fundamental fact that noisy autonomous
systems cannot provide a perfect time reference.

We obtain not only the above qualitative characterizations
from a rigorous theory of phase noise in oscillators, but also cor-
rect computational techniques that are efficient for practical cir-
cuits. New numerical methods (in the time and frequency do-
mains) for jitter/spectral dispersion, require only a knowledge of
the steady state of the unperturbed oscillator and the values of the
noise generators. Large circuits are handled efficiently. The sep-
arate contributions of noise sources, and the sensitivity of phase
noise to individual circuit devices and nodes, can be obtained eas-
ily. We used the theory and numerical methods to analyze several
oscillators, and compared the results against measurements. We
obtained good matches even at frequencies close to the carrier,
unlike most previous analyses.



4 Accurate Extraction
Extracting compact, accurate linear models for packages, in-

terconnect, and components plays a significant role in modern RF
designs. Models can be extracted in a variety of ways, but for the
high accuracy that critical sections of RF designs demand, only
direct numeric simulation suffices. At lower frequencies (far from
resonance), capacitive or inductive coupling can be extracted with
electrostatic or magnetostatic simulations. These simulations are
generally simpler than full electromagnetic simulations, but at
high frequencies (near resonances), electromagnetic simulation
must be used. In either case, the problem is ultimately reduced
to that of solving a linear system of equationsAx= b. This is
accomplished by discretizing the physical structure into small el-
ements. Interactions between elements give rise to the matrixA.
Stimuli such as excitation voltages are reflected in the right-hand
side b. Output from the simulator is typically an S parameter
matrix, which can be used directly in a frequency-domain simu-
lation. Alternatively, a circuit model can be constructed, using ei-
ther parameter fitting or the model reduction techniques described
in Section 5.

Simulation methods can be divided into two classes based on
the type of matrixA that is involved. Methods in the first class
use differential equation formulations. Finite-element (FE) [11],
finite-difference (FD) [43], and finite-difference time-domain
(FDTD) [44] approaches all fall into this class. In all of these,
the matrixA is sparse. Methods from the second class use inte-
gral equations. The method-of-moments (MoM) approach [19]
is based on integral equations. In this case,A is a dense ma-
trix. However, an integral equation formulation allows us to ap-
ply Green’s theorem, reducing volume integrals to surface inte-
grals. This can reduce the matrix dimension significantly since
the discretization only involves surfaces such as the boundary of
a conductor or the interface between two dielectrics. The charac-
teristics of the two classes are summarized in Table 1. Commer-
cial tools such as Raphael and Ansoft are based on differential
equations, while others such as Sonnet and Momentum use inte-
gral equations. For simulations that involve difficult-to-describe
material variations (e.g., the doping profile of a MOSFET), the
differential approach is clearly superior. For typical IC, board,
or MCM simulations, where the material variation is simpler, the
integral approach becomes attractive due to the use of surface dis-
cretizations. In these cases, the integral formulation often reduces
the problem size by orders of magnitude. This reduction, com-
bined with the advanced numerical methods described below, can
yield MoM solvers that are ten or more times faster than finite-
difference and finite-element tools. Thus, we believe that in the
future integral equation methods will be the approach of choice
for these problems.

Differential Integral
Matrix type sparse dense
Discretization volume surface
Matrix conditioning poor good

Table 1: Characteristics of classes of simulation methods

In recent years, numeric methods have been developed where
the dense matrixA arising from an integral equation formulation
can be represented implicitly and concisely. With these methods,
the size of the representation forA is only O(n) or O(nlogn),
wheren is the dimension of the matrix. This is a significant re-
duction compared to theO(n2) storage that would be required to
storeA directly. Further, multiplication byAcan be accomplished
in time proportional to the size of the representation. Because in-
tegral equations usually give a relatively well-conditioned matrix
A, Krylov-subspace iterative methods [41] can be used to quickly
solve the linear system.

FastCap [33] and FastHenry [20] were the first electrostatic
extraction tools based on this methodology. Multiplication by the
matrix A in these tools is accomplished using the Fast Multipole
Method [17]. The main weakness of these tools is that the in-
teraction between discretization elements must have a 1=jr � r 0j
dependence, wherer andr 0 are the positions of the elements in
space. This “kernel” dependence means that all material bound-
aries must be discretized.

IES3 [21] is a more recent kernel-independent scheme for
compressing the matrixA. With IES3, the matrix is recursively
decomposed and compressed using the singular value decom-
position. The interaction between well-separated groups of dis-
cretization elements is represented using a low-rank outer prod-
uct. The interaction need not have a 1=jr � r 0j dependence. In
an extraction tool using IES3, the effect of layered materials can
be captured using a specialized Green’s function [32]. IES3 has
been used in both electrostatic [21] and electromagnetic [22] sim-
ulators. Figure 6 shows how time and memory requirements
scale only slightly faster than linearly with increasing problem
size in an IES3-based electromagnetic simulator. Comparisons
of electromagnetic simulations to measurements for an integrated
CMOS inductor on a lossy substrate are shown in Figure 7. We
believe that in the near future, these techniques will make it pos-
sible to simulate critical multi-component assemblies such as the
resonator shown in Figure 8.
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5 Reduced-Order Modeling
Integrated RF circuits often contain large linear sub-blocks.

They can represent passive components such as capacitors, on-
chip inductors, tapered RC lines, etc. They can also represent
the parasitic effects of interconnect, substrate, power distribution
lines, package, MCM, or board.

These linear components are sometimes modeled by equiva-
lent lumped-element circuits composed of resistors, capacitors,
inductors, and mutual couplings. Such equivalent models are
generated by IC layout extraction tools. The lumped-element cir-
cuit model is, however, only adequate when signal wavelengths,
(3cm for 10GHz) are large in comparison to circuit feature sizes.



Figure 8: Resonator assembly
At current operating frequencies, 1-2GHz, such methods are ad-
equate only at the chip level. As integrated circuits penetrate
higher frequency applications, or even at current frequencies, at
the package or printed circuit board levels, lumped-element cir-
cuit models become inaccurate. For these cases designers rely
on frequency-domain models. These models are obtained either
from measurements or, as described in the previous section, from
field solvers.

The analysis of RF circuits containing such linear sub-blocks
raises a number of problems and difficulties. First, the large size
of the linear sub-blocks may render the total size of the problem
infeasible for general RF circuit analysis of the type described in
Section 2. For example, lumped element networks produced by
layout extraction tools can reach sizes of millions of elements.
Second, the linear sub-block may be modeled as a frequency-
domain transfer function matrix while the rest of the nonlinear RF
circuit is modeled as a set of nonlinear, time-domain, differential-
algebraic equations. Of all the general RF circuit analysis meth-
ods, only the method of Harmonic Balance can efficiently handle
a mixture of time-domain and frequency-domain methods.

A solution to both the size and the mixed domain problems is
reduced-order modeling. The reduced-order model should cap-
ture with sufficient accuracy the interesting behavior of the orig-
inal linear sub-block in the desired domain of interest, and, si-
multaneously, be much less expensive to evaluate. In addition,
the reduced-order model should have efficient representations in
both the time and frequency domains.

A methodology for reduced-order modeling that satisfies the
above requirements is based on computing Pad´e-type approxima-
tions [15] to the frequency domain transfer function of the linear
sub-block. The Pad´e approximation is a general method which
attempts to approximate a function, which may not have an an-
alytical expression and/or may be very difficult and expensive to
compute, by a much simpler rational function. The coefficients of
the approximating rational function are chosen such that the orig-
inal function and the approximant match in the maximum number
of the leading Taylor expansion coefficients.

The Pad´e approximation is particularly attractive for
frequency-domain transfer functions because it captures very well
the dominant poles and zeros of the linear system. In addition,
the matched Taylor coefficients also have physical significance:
they represent the moments of the time-domain circuit response.
These properties, allow the substitution of the Pad´e approximant

in the place of the original circuit with little significant loss of
accuracy, but substantial efficiency gains.

The direct computation of Pad`e approximations [35, 36] is nu-
merically unstable. Therefore, the preferred methods for the com-
putation of Pad´e approximations of linear systems are Krylov-
subspace techniques, in particular, variants of the Lanczos [26]
and Arnoldi algorithms [2] which are efficient and numerically
stable. Lanczos-type algorithms, as implemented in the Pad´e
via Lanczos (PVL) algorithm [8, 9, 14, 13], produce the most
efficient approximations. For the same order of approximation
and computational effort they match twice as many moments as
the Arnoldi algorithm [6, 34, 42]. However, in certain cases,
Lanczos-based methods may produce non-passive reduced-order
models of passive linear systems. In these cases post-processing
is required to enforce the desired properties.

The Krylov subspace based reduced-order modeling algo-
rithms produce one or two small matrices. These matrices can be
used either to efficiently evaluate the linear sub-block’s transfer
functions at any desired frequency, or to formulate a small sys-
tem of linear differential equations which model its time-domain
behavior, and which can be solved in conjunction with the entire
RF circuit.

Recently, reduced-order modeling techniques were also ap-
plied to the noise analysis problem [7]. The benefit is a signifi-
cantly more efficient evaluation of noise power over a wide range
of frequencies. Moreover, the entire noise behavior of a circuit
block is captured in a compact form and can be used hierarchi-
cally in system-level simulations.

Conclusion
We have described powerful new techniques for the analysis

of RF circuits. Next-generation CAD tools based on such tech-
niques should enable RF designers to obtain a more accurate pic-
ture of how their circuits will operate. These new simulation ca-
pabilities will be essential in order to reduce the number of design
iterations needed to produce complex RF ICs.
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