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ABSTRACT
    A statistical performance simulation (SPS) methodology for
VLSI circuits is presented. Traditional methods of worst-case
corner analysis lack accuracy and Monte-Carlo simulations
cannot be applied to VLSI circuits because of their complexity.
SPS methodology is accurate because no statistical information
about the device parameter variation is lost. It achieves
efficiency by analyzing the smaller circuit blocks and
generating the performance distribution for the entire circuit.
Circuit evaluation at any specified performance level is
possible.

1 INTRODUCTION
    Deep sub-micron technologies have made the problem of
statistical modeling of the device and circuit behavior more
critical. Shrinking dimensions make device characteristics
more sensitive to stochastic process variation. Thus the relative
spread of device and circuit behaviors is broadened. Combined
with the continuing reduction of the design cycle, this creates
an urgent need for methodologies that can accurately model
and predict the statistical variations of circuit performances,
such as speed and power consumption.
    The industry’s de facto standard in the field of statistical
modeling is still limited to worst- and best-case analysis. The
worst- and best-case SPICE models are produced by
independently combining the outmost device parameter values.
A circuit designer then uses this set of models to verify the
design at the extremes of the process variations. What would
be much more valuable, however, is the ability to analyze the
circuit at any performance level, e.g. 25%, 75%, and 95%, and
not only at the ill specified “best” and “worst” extremes.
Moreover, this approach completely neglects parameter inter-
correlations, and produces circuit performance predictions that
are overly pessimistic (or optimistic).
    A number of approaches have been taken toward solving
this problem. The most straightforward of them are methods
that identify the important device parameters and perform
Monte-Carlo simulations for a given circuit [1].

However, the complexity of VLSI circuits makes Monte-Carlo
based methods prohibitive. In addition to being very time-
intensive, Monte-Carlo methods either assume that the device
parameters are independent, or necessitate building elaborate
models to account for the complex correlation of the
parameters. Alternatively, the correlated device parameters can
be expressed in terms of independent factors, or components,
using statistical techniques such as principal component
analysis [2]. While improving the simple Monte Carlo based
methods, this approach is susceptible to the problems of
statistical transformation techniques that are discussed below.
    To overcome these limitations, a methodology based upon
expressing the circuit characteristics in terms of the device
model parameters has been proposed [3]. This approach
reduces the number of device parameters under consideration
using principal component analysis (PCA), and then employs
response surface methodology to generate the statistical circuit
performance characteristics. However, the use of PCA on
device parameters from the deep sub-micron technologies is
undesirable because it may fail to capture the complex
correlations of the device parameters [5].
    This is due to the fact that for the deep sub-micron CMOS
technologies a combination of device physics, die location-
dependence, optical proximity effect, microloading in etching
and deposition, etc., may lead to heterogeneous and non-
monotonic relationships among the device parameters that
cannot be captured by the PCA-based device parameter
characterization. For example, the same industrial technology
can produce two opposite correlations between the threshold
voltage and the channel length (Figure 1). One trend is purely
stochastic: devices with shorter effective channel lengths have
slightly higher Vt following the reverse short-channel effect
dependence. The other trend is deterministic, i.e. die-location
dependent: probably, due to variation of the lateral doping
profile near wafer edge. PCA is a statistical technique that
transforms correlated variables into uncorrelated variables,
which graphically amounts to a rotation of the original axis. In
the presence of variation arising from two or more
mechanisms, a phantom averaging effect occurs leading to
underestimation of the real level of parameter fluctuations.
This can be clearly seen from Figure 2, where the larger
number of stochastic data points ‘outweighs’ the systematic
variation.
    The proposed SPS methodology attempts to find a solution
that avoids the drawbacks and problems mentioned above. It
allows generation of statistical information at any specified



performance level. It does not employ any statistical techniques
that may lead to the inadvertent loss of parameter correlations
arising from the complex physical processing of the deep sub-
micron technologies. This is accomplished with a direct-
sampling method [5]. In order to avoid a large number of
simulations of the whole circuit, and thus overcome the
deficiency of Monte-Carlo based methods, it constructs a
circuit model in terms of performance variables of the simpler
blocks constituting the circuit. The computational effort is
greatly reduced because circuits normally consist of only a
limited number of distinctly behaving ‘primitives’, and only
one representative of every such primitive needs to be
analyzed. Also, because simulation time increases more than
linearly with the number of nodes, this approach results in
additional simulation time saving. A concise comparison of
advantages and disadvantages of some of the reported methods
and SPS methodology is summarized in Table 1.

2 METHODOLOGY
    The proposed SPS methodology makes no assumptions
about the degree of device parameter independence. This is

achieved by using the direct sampling method (DSM). The
main feature of DSM is the insistence that all sampled device
characteristics from a test die be kept as a set, and be directly
applied to all further analysis. No statistical operation is
performed that can inadvertently lead to the effect of averaging
out the device fluctuations arising from different mechanisms,
which can happen if principal component analysis or factorial
analysis are used [5]. In DSM a statistically significant
number of dies is sampled and kept as a set that typically
contains the device I-V parameters, and gate, overlap, junction,
and interconnect capacitances. Because all the parameters from
the same location are kept together, neither additional
information nor analysis is required concerning their mutual
correlation. The larger is N, the finer is the resolution of the
performance distribution. Therefore, a large number of SPICE
device parameters need to be efficiently generated. One
possible approach is to extract SPICE parameters directly from
Electrical-Test data, using an equation solver technique [6].

    The flow chart of the sequence of steps in SPS methodology
is given in Figure 3. The basic premise of SPS is the idea that
a large circuit can be analyzed in terms of simpler blocks that

Method Advantages Disadvantages

Traditional Worst-Case
Model File Generation

- Straightforward
- Computationally efficient

- Not accurate
- No statistical yield information

Monte-Carlo [1]
- Provides statistical performance

information.
- Accurate

- Very computationally expensive.
Impractical for large circuits

RSM Model Construction In Terms Of
Device Parameters [3]

- Provides statistical yield information
- Computationally efficient

- Not suitable for complex correlation of
deep-submicron device parameters

Optimization Approaches [4] - Reasonably efficient
- Evaluates circuit performance

- Provides no statistical yield information

SPS – Model Construction In Terms Of
Circuit Blocks (Current Paper)

- Provides statistical yield information
- Computationally more efficient than

Monte-Carlo

- Must isolate the “building” blocks of the
larger circuit

- Approximate substitute for Monte-Carlo

Figure 1. Different trends of Vth vs Leff dependence are found
in deep sub-micron technologies.
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Table 1. A comparison of different approaches to statistical circuit modeling.

Figure 2. PCA-based methods lead to erroneous results when
data coming from different sources of variation is present.



constitute the circuit (Figure 4). The possibility of such
structural subdivision is important in two respects.

    Digital circuits are usually well structured and can be
broken down into the smaller building blocks such as
inverters, NAND and NOR gates, clock generators, latches,
etc…  Thus, a large circuit normally is a combination of a
limited number of statistically distinct building blocks.
Statistically distinct blocks are those that produce different
performance distributions for the identical set of input SPICE
files. Two statistically distinct blocks, for example, would
produce a performance (e.g. delay) value lying at a different
level of statistical distribution, i.e. the same SPICE model file
would lead to a simulation result at the 95th percentile and the
60th percentile of the performance distribution. It is reasonable
to assume, as a first-order approximation, that the statistically
identical blocks remain behaving similarly even when placed
into the network of connections within the larger circuit. This
assumption allows a great reduction in analysis effort, because
now only a representative block needs to be analyzed, leaving
aside a large number of its replications. Clearly, this advantage
can be utilized only when a hierarchical block approach
similar to SPS methodology is used.
    In addition, because the simulation time of the SPICE-based

circuit simulators is on the order of O(M 1 2. ) with M being the
number of nodes, it is advantageous to break up a single set of
nodes into a number of smaller sub-sets [7]. If T(M) is the
simulation time of M nodes, then:

T(M) > T1(M1)+T2(M2)+… +Tn(Mn),
where Mi<M, and n is the number of blocks. With the increase
of M, the advantage of breaking up the large circuit into blocks
becomes greater.
    The model is to be constructed using response surface
methodology (RSM). Because the number of simulations of the
whole circuit required to generate an accurate model using
RSM is on the order of 2n , it is beneficial to minimize the
number of distinct blocks n. For example, several simple
digital blocks, such as inverters, NAND and NOR gates, have
been shown to be highly correlated with respect to speed [8].
(Even though they can behave differently with respect to
another circuit performance characteristics, such as noise
margins [9].) The blocks that are a priori known to be
statistically similar n be excluded from the analysis; thus,
reducing the required number of full circuit simulations.
    Once the simpler blocks are identified, they are evaluated
with respect to a particular circuit performance variable, e.g.
speed, or power dissipation. Each block is simulated N times
using SPICE, where N is a statistically significant number of
samples from DSM. The distribution of random variables
corresponding to each block is thus generated (Figure 5).
    We next wish to find the distribution of the performance
variable for the whole circuit based upon the generated block
performance distributions. A model relating block
performances A,B,C…  and the whole circuit performance F is
needed: F=f(A,B,C… ). The analytic form of a function f
(A,B,C… ) is not available and has to be estimated by using
response surface method. RSM involves running a limited
number of full circuit simulations, and then fitting a function
relating full circuit performance to block performances. The
coefficients of the model are calculated using linear regression.
    At this stage, the objective is to minimize the number of full
circuit simulations without sacrificing the model’s accuracy.
The training points should be chosen to cover as much area as
possible in the space of block performances, and a simple way
to do it is to “sample” the space at the extremes of the
distribution. If block distributions are correlated the choice of
the optimal training point is not a trivial task. Therefore, the
algorithm used to select such points for RSM requires that the
block performances be uncorrelated. To address this issue,

Figure 3. Steps involved in SPS methodology.

Figure 4. Large circuit is analyzed in terms of its building blocks.

A statistically significant number of
device parameter sets is generated

from Electrical-Test data or extracted.

Circuit is divided into blocks.
Individual block performance
distributions are generated.

If block performances are correlated a
rotation of axis is performed to find

optimal points for RSM.

A model of full circuit is
constructed using RSM.

Distribution of full-circuit
performance is generated.

Figure 5. Generation of block performance distributions. N is
the number of SPICE model files.
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after the distributions of individual blocks are generated, an
analysis is performed to see whether the blocks are correlated.
If some of them are significantly correlated a rotation of axis is
performed in such a way that the resultant variables are
mutually independent (Figure 6). The training points are easily
identified as corresponding to the extremes of the distribution
relative to the new rotated axis.
    Design of experiment theory helps to determine the optimal
set of training points for the simulations in such a way that the
best model is generated [10,11]. The most straightforward way
is to perform the simulations with all possible combinations of
the extremes of block performances. This approach is called
full factorial analysis and requires a full set of 2 n  simulations.
It is possible to reduce this number. Fractional factorial
designs require 2n k− simulations (n- number of blocks, k-
degree of fraction). We consider only two level factors, and
denote the maximum and minimum values of each factor
(block performance variable) as +1 or –1. Then, Table 2 lists
the set of combinations of variables required by full factorial
design and indicates which combinations should be used in
half-factorial design (n=3, k=1).
    It is important to see the limitations of fractional factorial
design. Reducing the number of full-circuit simulations results
in the loss of some accuracy. The main effects (coefficients of
A, B, and C) and two-factor interaction effects (coefficients of
A×B, B×C, and A×C) can still be accurately represented.
Only the three-factor interaction term is lost but since in most
cases such a high-order interaction is negligible this loss is
permissible [11].
    The selection of optimal training points is achieved by
considering the uncorrelated variables after the axis are
rotated. To find the actual SPICE model file corresponding to a
selected point no backward transformation is needed, however.
Even though the coordinates were rotated, the correspondence
between the points and the actual model file was kept. The
rotation of axis was needed only to identify which of N models
corresponds to the optimal training points for RSM. Figure 6
helps to illustrate this idea.
    The SPICE model files corresponding to the chosen training
points are used to simulate the whole circuit, resulting in 2n k−

values of full-circuit delay. Using this set of data points
together with the already simulated 2

n k−  values for each of the
building blocks, the coefficients of the model can be generated
using linear regression. Once the model is generated, the
distribution of the full-circuit performance can be easily
calculated by the simple substitutions of N sets of block
performance values of A,B,C…  into the model. From the
cumulative probability plot of full circuit distribution, the
performance analysis can be straightforwardly performed.
Because to each point on this plot there is a corresponding
SPICE model, one can very easily use it to evaluate other
performance characteristics of the whole circuit (such as power
dissipation, noise margin, etc.) at a given level of speed
distribution. In the cases of linear or quadratic models, the
expected value and variance of the full-circuit distribution can
also be directly calculated from the knowledge of the mean
values and variance-covariance matrix of the block
performances.

3 RESULTS AND DISCUSSION
    To verify the proposed SPS methodology, a case study of a
low-swing bus driver for low-power applications was
performed [12]. This specific circuit was chosen because it
combines blocks of digital as well as analog circuitry (Figure
7). We consider a part of the circuit dividing it into 3 blocks:
the sense-amplifier (Sense), the latch (Latch), and the clock
generator (Clock). The clock is generated through the use of
ring oscillators.
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Figure 6. Rotation of axis may be necessary to determine the
optimal training points for RSM.

Table 2. Choice of training points for the half-factorial design.

Simulation A B C A*B B*C A*C A*B*C Half-
fraction

1 -1 -1 -1 +1 +1 +1 -1
2 -1 -1 +1 +1 -1 -1 +1 *
3 -1 +1 -1 -1 +1 -1 +1 *
4 -1 +1 +1 -1 -1 +1 -1
5 +1 -1 -1 -1 -1 +1 +1 *
6 +1 -1 +1 -1 +1 -1 -1
7 +1 +1 -1 +1 -1 -1 -1
8 +1 +1 +1 +1 +1 +1 +1 *

Figure 7. A bus driver circuit. Clock generator is not shown.
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   The individual block performance distributions were
generated by considering the delay of each block,
independently from other blocks. The total delay (Total) was
then measured, being defined as time from arrival of the clock
to the output signal. The simulations were performed using
HSPICE [13].
    The methodology was tested using a 0.5 µm CMOS
production technology. BSIM3v3 IV device model parameters
from two lots were efficiently generated from Electrical Test
data using an equation solver [6]. In addition, device gate,
overlap, and junction capacitances were extracted for each die,
and kept as a set together with IV parameters. Altogether,
N=214 sets of device parameters were prepared for use with
direct sampling method.
    Each block was then simulated N=214 times to generate the
block performance distributions. Out of 214 simulated data
points, 8 were filtered because of simulation failures. The
scatter-plots of the 3 block performance distributions and their
correlation matrix are shown in Figure 8. The characteristics of
the individual distributions are presented in Table 3. The
scatter-plots show that the sense amplifier and latch are
correlated very weakly, while there is a stronger correlation
between the clock generator and the sense-amp. In both cases
the blocks are neither uncorrelated nor absolutely correlated.
This finding justifies treating them as statistically distinct, and
explicitly accounting for their contribution.

    Because the block distributions are not independent, the
rotation of axis is necessary in order to simplify identifying the
optimal training points for RSM. Employing a half-factorial
design, four training points, picked out of possible 8, were
selected. These points correspond to the ones identified in
Table 2. The whole circuit was simulated using the SPICE
models corresponding to these 4 points.
    A linear (rather than, say, quadratic) model was found to be
sufficient. A simple linear regression function of the statistical
package S-Plus was used to generate the coefficients of the
linear model [14]. The fitted linear model is: 

Total = LatchSenseClock 58.0157.0034.01053.1 10 +++−⋅
To verify the accuracy of the model, a full set of 208
simulations of the whole circuit was performed. Then the
model was compared with the exact simulation result. The
average error was found to be 1.33% with σ = 1.22%. The
scatter-plot of the model versus the exact simulation result is
presented in Figure 9.
    The model was also used to calculate the characteristics of
the full-circuit performance distribution directly using the
characteristics of the block performance distributions. For the
particular case of a linear model, the expressions for mean and
variance are of the form:

E[F]=Co+ C E Xi i
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where Ci are coefficients of the model, and ∑ ij are elements
of the variance-covariance matrix, and Xi are random variables
corresponding to blocks A,B, and C (i.e. Clock, Sense, and
Latch). The actual and calculated characteristics are compared
in Table 4. Good accuracy can be observed.
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Figure 9. Good agreement between model and exact result.

Figure 8. Scatter plots of individual block distributions
and their correlation matrix.

Mean Standard Deviation

Sense 9.16⋅ −10 10 363 10 11. ⋅ −

Latch 5 63 10 10. ⋅ − 2 8 10 11. ⋅ −

Clock 135 10 8. ⋅ − 8 6 10 10. ⋅ −

Total 107 10 9. ⋅ − 4 4 10 11. ⋅ −

Table 3. Characteristics of block and full circuit distributions.
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Sense Latch Clock

Sense 1 0.41 0.62

Latch 0.41 1 0.51

Clock 0.62 0.51 1

Table 4. Exact characteristics of full circuit distribution and
characteristics calculated directly from the model.

Mean
(Exact)

Std. Dev.
(Exact)

Mean
(Model)

Std. Dev .
(Model)

Total 1 08 10 9. ⋅ − 4 51 10 11. ⋅ − 107 10 9. ⋅ − 4 4 10 11. ⋅ −



     The model was used to generate the plot of cumulative
probability function for the full-circuit delay, Figure 10. From
this plot one can readily evaluate the performance of the full
circuit at, for example, 2%, 10%, 50%, 90%, and 98% of speed
distribution thus going further than the current approach of
considering only the “worst”, “best”, and typical points.
Because a particular SPICE model file corresponds to each
data point on the plot, any other circuit performance
characteristics (such as power dissipation, noise margin) can
be evaluated for any specified speed performance level.
    It is theoretically possible that the blocks of the circuit were
well correlated, i.e. statistically identical. If it were so,
statistical characterization of one of the blocks would be
equivalent to the statistical characterization of the whole
circuit. A SPICE file selected on the basis of the analysis of a
single block at a given performance level (e.g. a latch) would
correspond to the same performance level of the whole circuit.
In the particular circuit considered, the blocks were only
weakly correlated. Figure 10 illustrates the fact that the choice
of the SPICE file at a given performance level is different for
individual blocks and the whole circuit. Clearly, using a
simplistic approach in this case would lead to notable
prediction errors. 
    The simulation-time saving resulting from using SPS has
been evaluated. The savings come from two distinct
mechanisms. First, mere breaking down the whole circuit into
a combination of smaller sub-circuits reduces simulation time
of a SPICE-type simulator. Second, only one representative
circuit has to be simulated for each statistically distinct block,
while in the full circuit the number of its replications is likely
to be significant. The simulation overhead required by the
methodology has also to be taken into account.
    To evaluate the time saving, we consider a 16 bit version of
the bus driver architecture that was analyzed. Total
computational time for the direct simulation of the whole
circuit necessary to generate a statistical distribution of the
same resolution:

)16( FullTN
direct

totT ×⋅=

where N is the number of simulations, N=208, and
T Full( )16 ×  is time to simulate 16 replications of the full
driver circuit, corresponding to 16 bits.

If only time saving due to breaking down the circuit into
smaller blocks is considered:

[ ] )16(4)16()16()16( FullTClockTLatchTSenseTN
I

totT ×+×+×+×=

Accounting, in addition, for replication-number reduction
allowed by SPS, total time is:

[ ] )16(4)1()1()1( FullTClockTLatchTSenseTN
II

totT ×⋅+×+×+×=

The simulation results show that T Ttot
I

tot
direct≅ ⋅0 89. , and

T Ttot
II

tot
direct≅ ⋅0 04. . In other words, 11% and 96% reductions

in computational time are achieved. Clearly, the dramatic
simulation time reduction comes from the replication-free
approach of SPS.

4 CONCLUSION
    A methodology for statistical modeling of VLSI circuits has
been presented. It permits performance analysis at any
specified yield level, and is suitable for use with deep sub-
micron CMOS technology generations. SPS considerably
reduces computer simulation time required to generate the
statistical distribution of a large circuit by using a novel
approach of hierarchical modeling.
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Figure 10. Blocks predict full circuit performance differently.
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