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Abstract

In this paper we report a framework that makes it possible for a
designer to rapidly explore the application-specific programmable
processor design space under area constraints. The framework uses
a production-quality compiler and simulation tools to synthesize a
high performance machine for an application. Using the frame-
work we evaluate the validity of the fundamental assumption be-
hind the development of application-specific programmable pro-
cessors. Application-specific processors are based on the idea that
applications differ from each other in key architectural parameters,
such as the available instruction-level parallelism, demand on vari-
ous hardware components (e.g. cache memory units, register files)
and the need for different number of functional units. We found
that the framework introduced in this paper can be valuable in mak-
ing early design decisions such as area and architectural trade-off,
cache and instruction issue width trade-off under area constraint,
and the number of branch units and issue width.

1 Introduction

Since 1992, microprocessors account for23% of total semiconduc-
tor sales. By 1998, these chips will account for27% of total sales,
estimated at$242 billion by an industry expert [14]. The increasing
share of microprocessors in semiconductor market is due to a new
phase of silicon integration, thanks mainly to deep submicron fab-
rication technology. For example, SA-1100 from Digital Semicon-
ductor [31] incorporates many system functions such as a memory
controller, color LCD driver, PCMCIA interface, IrDA and USB
communication channels, and extensive power management into a
single chip. One major implication of this advanced technology is
that almost all semiconductor manufacturers are moving into the
microprocessor business. This shift will force manufacturers to
focus on microprocessors, specifically media processors, that are
cheaper and more aggressively optimized for specific applications.
A challenge to microprocessor designers will be to design a mi-
croprocessor that executes a targeted application very well yet can
achieve large economies of scale.

Recent advances in compiler technology and microprocessor
architecture for instruction-level parallelism (ILP) have significantly
increased the ability of microprocessors to exploit the opportuni-
ties for parallel execution that exist in many programs. Key ILP
compiler technologies, such as trace scheduling [8], superblock
scheduling [24], tree-scheduling [3], hyperblock scheduling [25]
and software pipelining [15] are in the process of migrating from
research labs to product groups. Commercial microprocessor man-
ufacturers have introduced a number of products based on new ar-

chitectures that present hardware structures that are well matched
to ILP compilers. Architectural enhancements found in commer-
cial products include predicated instruction execution, VLIW, split
register files and multi-gauge arithmetic (or variable-width SIMD)
[5, 12, 17, 32]. Most of the multimedia extensions of general-
purpose processors also adopt similar architectural enhancements
[20, 28].

The arrival of production quality ILP compilers and commer-
cial DSPs with VLIW architecture stimulated the idea of so-called
custom-fit processors [9]. Researchers have argued that applica-
tions differ from each other in, for example, the available ILP,
demand on various hardware components such as cache memory
units, register files, and the number of functional units. The pre-
sumption is that a microprocessor can be designed by adding hard-
ware components tailored to a specific application so that it can
execute the single application well.

Previous discussions and research efforts on multiple applica-
tion mediaprocessors and single application processors have lacked
a well-defined and agreed-upon set of benchmarks. No systematic
study on programmable processor design space exploration using a
comprehensive benchmark suite has been reported. We have devel-
oped a framework to rapidly explore the design space by focusing
on the trade-off between cost and generality of possible designs un-
der area constraints. We note that the advances in compiler and ar-
chitecture technologies should be incorporated in a programmable
processor design space exploration framework.

This paper is organized as follows. The next section briefly sur-
veys related works and summarizes the contributions of this work.
Machine model, benchmarks, tools and example set of results ob-
tained using the tools are described in Section 3. Our approach in
this work is explained in Section 4 in detail. Section 5 formulates
the search problem defined in the previous section in precise terms.
The search strategy and algorithm is described in Section 6. Ex-
perimental results of the tools and algorithms for the system-level
synthesis are reported in Section 7. Finally, Section 8 draws con-
clusions.

2 Related Works and Our Contributions

The works on synthesis and evaluation of application-specific pro-
grammable processors has been conducted independently in two re-
search communities, computer-aided design and architecture. There
is, however, a strong converging trend of the two areas due to re-
cent technological advances and application trends. In this section
we survey the related works in these two fields.

Since the early 90’s, there have been a number of efforts re-
lated to the design of application-specific programmable processors
and application-specific instruction sets. Comprehensive surveys
of the works on computer-aided design of application-specific pro-
grammable processors can be found in [11, 26, 27]. In particular, a
great deal of effort has been made in combining retargetable compi-
lation technologies and design of instruction sets [1, 21, 22, 23, 30].
Several research groups have published results on the topic of se-
lecting and designing instruction set and processor architecture for
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particular application domains [18, 33].
Early works in the area of processor architecture synthesis tended

to employad hocmethods on small code kernels, in large part due
to the lack of good retargetable compiler technology. Conte and
Mangione-Smith [6] presented one of the first efforts that focused
on large application codes written in high-level languages (SPEC).
While they had a similar goal to ours, i.e. evaluating performance
efficiency by including hardware cost, their evaluation approach
was substantially different. Fisher, Faraboschi and Desoli [9] stud-
ied the variability of applications-specific VLIW processors using
a highly advanced and retargetable compiler. However, their study
considered small program kernels rather than complete applica-
tions. They also focused on finding the best possible architecture
for a specific application or workload, rather than understanding the
difference between best architectures across a set of applications.

Unlike most previous works, we use a set of complete applica-
tions written in a high-level language as benchmarks. We incorpo-
rate the role of cache memory units in machine performance into
the machine model which, is essential for realistic design.

The main contribution of the research presented in this paper is
the framework that makes it possible for designers to rapidly ex-
plore programmable processor design space for a given set of ap-
plications under area constraints. It enables a designer to evaluate
the trade-off between area and generality of possible designs.

3 Experiment Platform

To estimate the cost of a machine configuration, we adopt a simple
model described in [2]. Given the area of the issue unit, the cost
of any machine configuration is a linear function of the number
of function units for branch, memory, and ALU operations. For a
superscalar machine, the issue unit area cannot be estimated using
a simple linear model since it requires more complex logic for the
on-the-fly code scheduling. We assume that the issue unit area will
takeO(n2) space since the complexity of dependency checking
algorithm isO(n2). When a VLIW machine is considered, the
issue unit area is of linear or sub-linear complexity.

The architecture chosen for the analysis, the PowerPC 604 [29],
is a four-issue processor. The 604 has two simple integer ALUs
and one complex integer ALU, one floating-point unit, one branch
unit, and one memory unit. We assume that machine configura-
tions with an issue width smaller than the baseline machine have
at least one complex integer ALU. The area of the complex integer
unit is assumed to be half of the baseline integer unit (two simple
integer units and one complex integer unit). The area of issue unit
is scaled down based on the area complexity (O(n2)). We did not
include floating-point units in any machine configurations as the
benchmarks have mostly integer operations. Finally, we scaled the
area to 0.35� technology rather than the original 0.5� technology.
A set of example machine configurations and their respective area
estimates are shown in Table 1.

The set of benchmarks used in this experimentation is com-
posed of complete applications which are publically available and
coded in a high-level language. The collection, known as Media-
Bench is composed of 21 applications culled from available image
processing, communications, cryptography and DSP applications.
A brief summary of benchmarks used is shown in Table 2. More
detailed descriptions of the benchmarks can be found in [19].

We use the IMPACT tool suit [4] to collect performance mea-
surements of benchmarks on various machine configurations. The
IMPACT C compiler is a retargetable compiler with code optimiza-
tion components especially developed for multiple-instruction-issue
processors. The target machine for the IMPACT C can be described
using the high-level machine description language (HMDES). A
HMDES file supplied by a user is compiled by the IMPACT ma-

Configuration Issue IALU Branch Mem Cache Total

(1, 1, 1, 1, .5, .5) 0.74 3.67 6.13 5.52 1.53 31.56
(2, 2, 1, 2, 1, 1) 2.94 7.33 6.13 11.03 2.54 43.95
(4, 4, 1, 4, 2, 2) 11.76 14.66 6.13 22.07 4.55 73.15
(8, 8, 1, 8, 4, 4) 47.04 29.32 6.13 44.14 8.56 149.17
(4, 4, 2, 4, 8, 8) 11.76 14.66 12.26 22.07 16.55 91.28
(8, 8, 2, 8, 4, 4) 47.04 29.32 12.26 44.14 8.56 155.30
(8, 8, 4, 8, 8, 8) 47.04 29.32 24.52 44.14 16.55 175.55

Table 1: Machine configuration examples and their area estimates
(mm2): a machine configuration consists of (issue width, number
of ALUs, number of branch units, number of memory units, size
of instruction cache(KB), size of data cache(KB)). The total area
includes the overhead area of 13.98mm2.

Benchmark Instr. Source Description

JPEG encoder 13.9 Independent JPEG image
JPEG decoder 3.8 JPEG Group encoding/decoding
MPEG encoder 1,121.3 MPEG Simulation MPEG-2 movie
MPEG decoder 175.5 Group encoding/decoding
GSM encoder 184.2 Technische European wireless
GSM decoder 73.0 Universität, Berlin voice coding standard
G.721 encoder 274.1 Sun Microsystems, CCITT voice
G.721 decoder 511.7 Inc. coding standard
PGP encryption 169.9 Massachusetts Institute encryption/
PGP decryption 155.3 of Technology decryption

Pegwit encryption 34.0 George Barwood encryption/
Pegwit decryption 18.5 decryption

Mipmap 47.6 University of 3-D rendering
OS-demo 9.0 Wisconsin examples using Mesa
Texgen 83.9 graphics library
Rasta 24.4 ICSI at UC Berkeley Voice recognition

EPIC encoder 50.3 University of Wavelet image
EPIC decoder 7.2 Pennsylvania encoding/decoding

ADPCM encoder 6.8 Jack Jansen speech compression
ADPCM decoder 5.9 and decompression

Table 2: Applications used in the experiment. Dynamic instruction
counts were measured on a SPARC-5, and are reported in terms of
millions of instructions

chine description language compiler. IMPACT provides cycle-level
simulation of both the processor architecture and implementation.
Figure 1 shows the flow of simulation using IMPACT tools.

4 Approach

We collected run-times (expressed as a number of cycles) of the
benchmarks on 175 different machine configurations (25 cache con-
figurations for 7 processor configurations). First we build executa-
bles of the benchmarks on seven different architectures. They are
machines with a single branch unit and one of the one-, two-, four-,
and eight-issue units, machines with two branch units and one of
the four- and eight-issue units, and machines with four branch units

Source program written
in C

IMPACT compiler

Simulation results
Pcode, Hcode, Lcode

High-levl Machine description
(HMDES) Cycle time

IMPACT simulator

Icache & Dcache
configuration

Lsim

Limpact+Lsuperscalar

7 executables

IMPACT HMDES compiler

MDES

Figure 1: Performance measurement flow using IMPACT tools
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Figure 3: Performance vs. number of selected processors: Area
constraint 84mm2

and a eight-issue unit. The IMPACT compiler generates aggres-
sively optimized code to increase ILP for each architecture. The
optimized code is consumed by the Lsim simulator. We simulate
the benchmarks for a number of different cache configurations. For
each executable of a benchmark, we simulate 25 combinations of
instruction and data caches ranging from 512 bytes to 8 KB.

Measured run-times of benchmarks through simulations are nor-
malized with respect to a baseline machine with one branch unit,
one-issue unit, 512 bytes of instruction cache, and 512 bytes of
data cache.

Simulation results feed the search engine for each area con-
straint, we eliminate all machines that do not satisfy the area re-
quirement. From the machines that satisfy the area requirement,
we eliminate all the dominated machines, i.e. a machine that runs
slower than or equal to the speed of another machine forall bench-
marks. Finally, we perform aK-selection algorithm (see Section
5) to select a set of machine configurations that run the benchmark
set best. Figure 2 shows the global flow of design process.

The search space is relatively small due to the area constraints
and the number of dominated implementations. Nevertheless, there
is a possibility that the search space explodes for alternative hard-
ware models. We use an efficient branch-and-bound based algo-
rithm to avoid this problem.

Figure 3 shows an example measurement on performance vs.
number of selected processors. Empirical results suggests that there
are break points of diminishing returns for adding architectures.
This will be elaborated in more detail in the next section.

5 Selection Problem Formulation

Given an area constraint and the performance of benchmarks on
machines that fit into the given area, we select a subset of the ma-
chines in such a way that the geometric mean of speed-ups across
all the benchmark is maximized and the subset size is kept small.

We normalize the run time with respect to a baseline since we
are not interested in the sum of run-times [16]. We use geometric
mean to summarize the selected machines since we normalize the
measurements [13].

We define the problem using more formal Garey-Johnson for-
mat [10].

Selection problem
Instance: Given a set ofn benchmarks,ai, i = 1; 2; :::; n, k ma-

chine configurations,mj , j = 1; 2; :::; k, the speed-up fac-
torsEij of the benchmarksai, i = 1; 2; :::; n on the ma-
chinesmj , j = 1; 2; :::; k with respect to a baseline machine
and constantsK andC,

Question: Is there a setM of K machine configurations,cp, p =

1; 2; :::; K, such thatn
pQn

i=1
maxj2M Eij � C?

To determine the constantK we divide the problem into two
sub-problems, namely,w-selection problem andK-selection prob-
lem. Starting fromw = 1 we iteratively increasew until the benefit
of increasingw is less than a given threshold�. Formally the sub-
problems are stated as follows.

w-selection problem: Given a set ofn benchmarks,ai, i = 1; 2; :::;
n, k machine configurations,mj , j = 1; 2; :::; k, the speed-
up factorsEij of the benchmarksai, i = 1; 2; :::; n on the
machinesmj , j = 1; 2; :::; k with respect to a baseline ma-
chine and constantsw,

Maximize :

Dw = n

vuut
nY
i=1

max
j2P

Eij ; (1)

whereP is the selected machine set of sizew.
The size of the machine set is determined by an iterative test
of comparingDw andDw+1. Since theD is monotonic, we
continue to evaluateD and compare them using Equation 2
until we reach a point where the benefit of the set size in-
crease diminishes to a certain degree.

K-selection problem:

minfwj� �
Dw+1 �Dw

Dw

; w = 1; 2; :::k � 1g; (2)

whereDw is given by Equation 1 and� is a cut-off ratio.

6 Solution Space Exploration: Strategy and Algo-
rithms

Due to space limitation we present only the top level algorithm for
system-level synthesis in Figure 4. Considering that the run-time
of simulations for 20 benchmarks on 175 machine configurations
is about a week, we can tolerate a longer search time to find an op-
timal selection result. Generally, the size of the search problem can
be dramatically reduced by eliminating machine configurations that
do not satisfy a given area constraint and those that are dominated
by at least one other machine. Consequently, a smaller number of
machines needs to be considered.

The search for optimum solution is organized using an implicit
enumeration method. In particular, we adopt a branch-and-bound
algorithm shown in Figure 4 to speed up the selection.

The algorithm consists of branching and evaluation. The branch-
ing step takes the current state of search and generates a number of
new nodes by adding an available machine (i.e., one that has not
been considered in particular search path of the search tree). It de-
termines if adding a machine to the current state of selection can



for a set of machine configurationsf
for a set of benchmarksf

generate an executable of a benchmark for the target machine;
measure speed-up factors with respect to the baseline machine;

g
g
eliminate all machines that don’t satisfy area constraint;
eliminate all machines that are dominated by at least one other machine;
R = 1;
i = 1;
Di�1 = 1;
while ( (R � �)&& (i � k) ) f
Di = branch-and-bound(Di�1 , i );

R =
Di�Di�1

Di
;

Di�1 = Di ;
i++;

g

Figure 4: System-level synthesis of application-specific pro-
grammable machines

result in a better solution than the current best solution found. Ini-
tially, the current best solution is set to the previous best solution.
The previous best solution is the best solution found for the ma-
chine set size less than the current search size by one. The bounding
function compares the current node and a candidate processor with
the best node of the same size found. The node size is the number
of processors. If the current node and the candidate are dominated
by the best node then we bound the search. We compute the lower
bound of the geometric mean of the maximum speed-up factors of
each benchmark. The lower bound is obtained by using a steepest
descent algorithm. The steepest descent algorithm selects machines
in the order that the biggest improvement can be achieved. If the
estimate is greater or equal to the current best solution, we have an
opportunity to find a better solution than the current best solution
by exploring the search path. Otherwise, there is less chance of
obtaining a better solution. We sort the search order based on the
lower bound so as to increase the bounding rate.

7 Experimental Results

We evaluate the tools and algorithms by running experiments from
30mm2 to 200mm2. The implementation technology is assumed
to be 0.35�. For each area constraint, we obtain the optimum set of
machine configurations for cut-off values (�’s as defined in Equa-
tion 2) 0.1, 0.05, 0.01, and 0.005.

Figure 5(a) shows experimental results using the cut-off value
of 0.05. The thicker line shows the number of machines that are left
after eliminating dominated machines. The thinner line indicates
the number of machines required to cover all the benchmarks un-
der area constraints. We see that more machine configurations are
needed when less area is given. In other words, with less area, each
processor configuration is more specialized. On the other hand,
the more area we have, the more general the processor we can de-
sign. The results suggest that when more than 100mm2 of area is
available, there is little advantage in having more than one archi-
tecture. Moreover, for the given compiler technology and bench-
marks, there is no need to have more than 100mm2 of area since
the speed-up increase achieved by machines greater than 100mm2

are minimal.
The overall performance comparison between all configurations

and selected configurations are shown in 5(b). There are three
distinctive points where the speed-up increase rate changes. Up
to the area 57mm2, we see rapid performance increase, which is
mainly due to increased amount of cache memories. From 57mm2

to 101mm2, the measurement shows modest increase of perfor-
mance due to increased issue width. For the processors larger than
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Figure 5: Quadratic complexity issue unit area model: Selected
processor configurations and their performance (cut-off value:
0.05)

101mm2, the performance increase is minimal. One of the under-
lying reasons that causes the phenomenon is that the ILP found by
the compiler and hardware scheduler is fully exploited by having
a certain amount of hardware, thereby performance increase possi-
bility is exhausted. The limitation of performance increase in the
face of increased area illustrates either the limitation of the current
compiler technology or the inherent lack of ILP in the benchmarks,
which we are not able to answer at this point. Note, however, that
the measurement is not for a single processor. Smaller area cases
tend to have more than one architectures which are more applica-
tion specific.

Experimental results for the cut-off values 0.1, 0.05, 0.01, and
0.005 are given in Figure 6. Smaller cut-off values result in ma-
chine configuration sets that are more tuned to each application. In
general, however, smaller cut-off values do not result in significant
performance increase. This conclusion is valid when the available
area is bigger than 100mm2. In most cases, the cut-off value of
0.05 gives good trade-off between the number of machine configu-
rations and performance.

A sample set of speed-up factors of each benchmark are shown
in Table 3. They are snapshots of experimental results summarized
by the line graphs in Figure 6. The table contains maximum speed-
up factors for three cut-off values (0.05, 0.01, and 0.005) and three
area constraints (85mm2, 100mm2, and 169mm2). Note that the
area constraints are not actual areas. We find machines under the
given area constraints. Table 4 gives the number of machine con-
figurations selected for the snapshot cases shown in Table 3. The
actual areas of the selected machines are given in column 4 of the
table. The combination of components for the selected machines
are shown in column 3.

Figure 7 shows the results when the liner complexity issue unit



cut-off:0.05 cut-off:0.01 cut-off:0.005
Benchmark 84 100 169 84 100 169 84 100 169

JPEG enc 3.02 3.51 3.87 3.02 3.65 3.87 3.02 3.65 3.87
JPEG dec 3.56 3.91 4.27 3.56 4.23 4.27 3.56 4.23 4.27
MPEG enc 2.45 2.56 2.57 2.45 2.56 2.57 2.45 2.42 2.57
MPEG dec 3.05 3.55 3.68 3.05 3.55 3.95 3.05 2.56 3.95
GSM enc 2.22 2.30 2.31 2.22 2.30 2.32 2.24 2.94 2.32
GSM dec 2.89 2.99 3.00 2.89 2.99 3.19 2.91 2.99 3.19
G.721 enc 2.68 3.38 3.38 2.88 3.38 3.38 2.88 3.38 3.38
G.721 dec 2.71 3.44 3.44 3.04 3.44 3.44 3.04 3.44 3.44
PGP enc 2.78 3.08 3.21 2.83 3.15 3.21 2.83 2.26 3.21
PGP dec 2.88 3.22 3.38 3.02 3.28 3.38 3.02 2.15 3.46

Pegwit enc 2.64 2.66 2.82 2.64 2.79 2.82 2.64 3.28 2.82
Pegwit dec 2.63 2.68 2.84 2.63 2.82 2.84 2.62 2.79 2.84
Mipmap 2.81 2.69 2.79 2.81 2.94 3.10 2.81 3.56 3.10
Osdemo 2.22 2.40 2.47 2.25 2.42 2.47 2.25 2.82 2.47
Texgen 2.11 2.31 2.40 2.11 2.40 2.40 2.11 2.42 2.40
Rasta 2.13 2.22 2.27 2.13 2.26 2.31 2.13 2.31 2.31

EPIC enc 1.93 1.78 2.17 1.93 2.06 2.17 2.04 2.17 2.30
EPIC dec 1.70 1.76 1.77 1.70 1.76 1.83 1.70 1.76 1.83

ADPCM enc 2.30 2.31 2.31 2.30 2.31 2.43 2.30 2.42 2.44
ADPCM dec 2.33 2.34 2.42 2.33 2.34 2.55 2.34 2.40 2.65

Table 3: Snapshots of speed-ups of benchmarks at various cut-off
values for the given area constraint (84mm2, 100mm2, 169mm2)
(NOTE: Actual area of designs are given in Table 4)

area model is assumed. The results suggest that the machine con-
figuration selection problem has no strong dependence to an issue
area model used. Although we observe that there is shift to smaller
areas, the results are essentially equivalent to the results based on
the quadratic complexity issue unit area model.

In summary, we found that under the machine models and ma-
chine configuration choices described in this paper, when more than
100mm2 of area is available, there is no advantage in having more
than one architecture to be able to build application-specific sys-
tems for all the benchmarks. Moreover, for the given compiler
technology and benchmarks, there is very little need to have more
than 100mm2 of area since the speed-up increase achieved by ma-
chines greater than 100mm2 are minimal one. Notable exception is
that for highly cost sensitive designs we observe a need for a small
number of specialized architectures which occupy smaller areas.

8 Conclusion

The arrival of production quality ILP compilers and commercial
DSPs with VLIW architecture stimulated the idea of programmable
processors that are aggressively tuned to specific applications. The
assumption behind the idea is that there are ways of designing pro-
grammable processors that can exploit the run-time characteristics
of specific applications. The run-time characteristics include the
available ILP, demand on various hardware components such as
cache memory units, register files, and the number of functional
units. Under the assumption, a microprocessor can be designed by
adding hardware components tailored to a specific application so
that it can execute the single application extremely well.

We ran extensive experiments on a framework based on the key
paradigms of CAD and architecture communities. This combina-
tion enabled us to gain valuable insights about design and use of
application specific programmable processors for modern applica-
tions. We evaluated 175 machine configurations on 20 benchmarks
under the area constraint ranging from 30mm2 to 200mm2. For
each area constraint, we obtain the optimum set of machine config-
urations for a number of cut-off values. The run time of the entire
synthesis process was about a week on a single HP workstation.

We found that the framework introduced in this paper can be

Cut-off Max Configuration Actual
Value area area

(2, 2, 1, 2, 8, 8) 61.11
0.05 84 (4, 4, 1, 4, 4, 4) 81.89

(4, 4, 2, 4, 1, 4) 83.24
100 (4, 4, 2, 4, 8, 4) 94.36
169 (4, 4, 2, 4, 8, 8) 100.71

(2, 2, 1, 2, 8, 8) 61.11
0.01 84 (4, 4, 1, 4, 4, 4) 81.89

(4, 4, 1, 4, 8, 1) 83.46
(4, 4, 2, 4, 1, 4) 83.24

100 (4, 4, 1, 4, 8, 8) 94.58
(4, 4, 2, 4, 8, 4) 94.36

169 (4, 4, 2, 4, 8, 8) 100.71
(8, 8, 2, 8, 4, 4) 166.33
(2, 2, 1, 2, 8, 8) 61.11

0.005 84 (4, 4, 1, 4, 1, 8) 83.46
(4, 4, 1, 4, 4, 4) 81.89
(4, 4, 1, 4, 8, 1) 83.46
(4, 4, 2, 4, 1, 4) 83.24
(4, 4, 2, 4, 4, 1) 83.24

100 (4, 4, 1, 4, 8, 8) 94.58
(4, 4, 2, 4, 4, 8) 94.36
(4, 4, 2, 4, 8, 4) 94.36

169 (4, 4, 2, 4, 8, 8) 100.71
(8, 8, 2, 8, 1, 8) 168.68
(8, 8, 2, 8, 4, 4) 166.33
(8, 8, 4, 8, 1, 2) 166.70

Table 4: Machine configuration and actual area of designs for the
snapshot cases in Table 3: Column 3 shows machine configurations
in the form of (issue width, number of ALUs, number of branch
units, number of memory units, size of instruction cache(KB), size
of data cache(KB)). Actual areas are given in the4th column.
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Figure 7: Linear complexity issue unit area model: selected pro-
cessor configurations and their performance for 4 cut-off values

very valuable in making early design decisions such as area and
architectural configuration trade-off, cache and issue width trade-
off under area constraint, and the number of branch units and issue
width.
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