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Abstract
The growing class of portable systems, such as personal computing
and communication devices, has resulted in a new set of system de-
sign requirements, mainly characterized by dominant importance
of power minimization and design reuse. We develop the design
methodology for the low power core-based real-time system-on-
chip based on dynamically variable voltage hardware. The key
challenge is to develop effective scheduling techniques that treat
voltage as a variable to be determined, in addition to the conven-
tional task scheduling and allocation. Our synthesis technique also
addresses the selection of the processor core and the determination
of the instruction and data cache size and configuration so as to
fully exploit dynamically variable voltage hardware, which result
in significantly lower power consumption for a set of target ap-
plications than existing techniques. The highlight of the proposed
approach is the non-preemptive scheduling heuristic which results
in solutions very close to optimal ones for many test cases. The ef-
fectiveness of the approach is demonstrated on a variety of modern
industrial-strength multimedia and communication applications.

1 Introduction
1.1 Motivation
The growing class of portable systems, such as personal comput-
ing and communication devices, demands data- and computation-
intensive functionalities with low power consumption. For such
systems, power consumption is the primary design goal since the
battery life is a primary constraint on power, due to the fact that
the battery technology has not followed the progress pace of the
semiconductor industry. Recent advances in power supply tech-
nology along with custom and commercial CMOS chips that are
capable of operating reliably over a range of supply voltages make
it possible to create processor cores with supply voltage that can be
varied at run time according to application timing constraints. The
variable voltage processor core can be made to operate at different
optimal points along its power vs. speed curve in order to achieve
much higher energy efficiency than existing techniques for a wider
class of applications. Such systems also require design flexibil-
ity which result in the need for implementation on programmable
processor platform. In fact, embedded software running on RISC
and DSP processor cores has emerged as a leading implementa-
tion methodology for such applications as speech coding, modem
functionality, video compression and communication protocol pro-
cessing [15]. Current semiconductor technology allows the inte-
gration of programmable processors and memory structures on a
single die, which enables the implementation of a system on a sin-
gle chip. Similarly, the exponential growth of both applications and
implementation technology has outpaced the design productivity of
the traditional synthesis process. The shrinked time-to-market win-

dow has exacerbated the situation. There is a wide consensus that
only through reuse of highly optimized cores the demands of the
pending applications and the potential ultra large scale integration
may be matched. Therefore, low power core-based system-on-chip,
consisting of a variable voltage programmable processor core and a
memory hierarchy, attracted much attention of virtually all silicon
vendors.

Microprocessor
core

I-Cache

D-Cache

Memory Management
Unit, Cache 

Controller, I/O

Hardware
Accelerators,
Interface, ...

I/O

In
te

rn
al

 B
us

Optimization Target

Figure 1: A typical core-based application-specific system-on-chip.

Our synthesis technique targets typical modern application spe-
cific system-on-chip, consisting of a variable voltage processor core,
instruction and data cache, and a number of optional hardware ac-
celerators and control blocks as depicted in Figure 1. The distribu-
tion of power dissipation by the components of application-specific
system-on-chip depends on the actual applications running on the
system. However, extensive studies indicate that the power con-
sumption of the processor and cache cores accounts for significant
portion of the overall power consumption of the described system-
on-chip [6]. Therefore, in this paper we focus on the power opti-
mization of the processor and cache cores.

The most effective way to reduce power consumption of a pro-
cessor core in CMOS technology is to lower the supply voltage
level, which exploits the quadratic dependence of power on voltage
[2]. Reducing the supply voltage however increases circuit delay
and decreases clock speed. The resulting processor core consumes
lower average power while meeting the deadlines. This technique
is ineffective when tight deadlines are present in systems. An-
other power optimization technique for processor cores is the sys-
tem shutdown [15]. The system shutdown technique, though usable
even in the presence of tight deadlines, is inferior to the supply volt-
age reduction technique for the cases when both techniques can be
applied. The limitations of the techniques arise due to the fact that
systems are designed with a fixed supply voltage. The supply volt-
age reduction technique attempts to find a single optimal voltage
level for the entire processor operation, while the system shutdown
technique makes a binary runtime decision whether to turn on or
off the power supply.

The goal of the research presented in the paper is to develop
the design methodology for the low power core-based real-time
system-on-chip based on dynamically variable voltage hardware.
The key challenge is to develop effective scheduling techniques that
treat voltage as a variable to be determined, in addition to the con-
ventional task scheduling and allocation. Our synthesis technique
also addresses the selection of the processor core and the determi-
nation of the instruction and data cache size and configuration so as
to fully exploit dynamically variable voltage hardware, which will
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result in significantly lower power consumption for a set of target
applications than existing techniques.
1.2 Motivational Example
To illustrate the key point of the proposed dynamically variable
voltage approach, we consider a set of tasks as a motivational ex-
ample, shown in Table 1. Two independent computationsTaskA
andTaskB need to be executed on an embedded processor core in
the time interval [0, 20]. Each task can be executed immediately
after its arrival and is required to be finished by its deadline time.
Preemption is not allowed due to the high context-switching cost.

task arrival deadline execution time at 3.3 V

A 0 6 5
B 3 20 5

Table 1: The characteristics of the 2 tasks used to illustrate the
motivation for dynamically variable voltage approach.

Assume the maximum supply voltage to be(Vdd)ref = 3:3
volts. Power is normalized to its value at the reference point, i.e.,
P (3:3 volts) = 1 Watt. Reducing supply voltage results in in-
creased circuit delay and to a good accuracy, the circuit delay is
given byk� Vdd

(Vdd�Vt)
2

, whereVt is the threshold voltage, andk is a
constant [2]. We assume a typical value of0:8 volts for the thresh-
old voltage. The power consumption is given byP = �CLV

2
ddf ,

wheref is the system clock frequency,Vdd is the supply voltage,
CL is the load capacitance and� is the switching activity [2]. We
now consider the application of shutdown, supply voltage reduc-
tion, both shutdown and supply voltage reduction, and dynamically
variable voltage approach, respectively.

With the shutdown technique, the system will operate atVdd =
3:3 volts. TheTaskA is executed in the interval [0, 5]. TheTaskB
is executed in the interval [5,10]. The processor can be shut down
for the interval [10, 20] and then be resumed for the next task. The
duty cycle of the processor is 50 %, so the average power consump-
tion is0:5 Watts.

With the supply voltage reduction technique, the system will
operate at a lower but fixed supply voltage. The tight deadline
onTaskA means that supply voltage can not be lowered less than
Vdd = 2:97 volts. Thus, the system operates atVdd = 2:97 volts
with P (2:97 volts) = 0:67 Watts.TaskA is executed in the inter-
val [0, 6]. TaskB is executed in the interval [6,12]. The average
power consumption is0:67 Watts. Since the system can be shut
down during the interval [12, 20], the average power consumption
can be lowered to0:67 � 12

20
= 0:40 Watts, which results in 20 %

power reduction, compared to the shutdown technique.
With the variable voltage hardware, one can schedule the two

tasks such that theTaskA is executed in the interval [0, 5] at 2.97
volts with P (2:97 volts) = 0:67 Watts and theTaskB is exe-
cuted in the interval [6,20] at 1.95 volts withP (1:95 volts) = 0:11
Watts. The average power consumption is0:67�6+0:11�14

20
= 0:28

Watts, which is 44 % lower than the shutdown technique and 30
% lower than the supply voltage reduction in combination with the
shutdown technique.

The preceding example illustrates that it is always better to re-
duce voltage than to shutdown, and that dynamically variable sup-
ply voltage helps unleash this potential.
1.3 What is New?
In this paper, we develop the first approach for power minimization
of variable voltage core-based application specific systems. The
power minimization is addressed at several synthesis tasks includ-
ing task scheduling, instruction and data cache size determination,
and processor core selection. We explore static scheduling algo-
rithms that treat voltage as an optimization degree of freedom for

the applications with real-time constraints. By selecting the most
efficient voltage profile in the presence of multiple timing con-
straints, our algorithms result in much larger savings in energy than
other techniques such as the system shutdown and the supply volt-
age reduction.
1.4 Paper Organization
The rest of the paper is organized in the following way. Section 2
presents the related work. Section 3 explains the necessary back-
ground material on variable voltage systems. The design flow of
the novel synthesis approach is presented in Section 4. In Section 5
the optimization problems are recognized and their computational
complexities are established. In the same section the synthesis al-
gorithms are proposed and explained in detail. Section 6 presents
experimental data and discussion to evaluate the effectiveness of
the approach. The paper is concluded in Section 7.

2 Related Work
We review the research results relevant to low power systems based
on dynamically variable voltage hardware.

Supply voltage reduction coupled with architecture level par-
allelism and pipelining to compensate for lower clock rate due to
voltage reduction [2] works well for applications such as signal
processing where throughput is the sole metric of speed. Several
researchers have addressed the issue of power in event-driven sys-
tems, and proposed various techniques for shutting down the sys-
tem or parts of the system [8, 15].

At the technology level, efficient DC-DC converters that allow
the output voltage to be rapidly changed under external control have
recently been developed [13]. At the hardware design level, re-
search work has been performed on chips with dynamically vari-
able supply voltage that can be adjusted based on (i) process and
temperature variations, and (ii) processing load as measured by the
number of data samples queued in the input (or output) buffer [1].

There has been research on task-level scheduling strategies for
adjusting CPU speed so as to reduce power consumption. Most of
the existing work is in the context of non-real-time workstation-
like environment [7, 17]. Yao et al. [19] described an minimum
energy schedule for scheduling withpreemption for independent
processes with deadlines.

A number of research groups have addressed the use of multiple
(in their software implementation restricted to two or three) differ-
ent voltages [3, 9, 12, 14]. Interestingly, although they used the
term “variable voltage”, they actually addressed scheduling when a
fixed number of simultaneously available voltages are used. There-
fore, there is no similarity between the proposed research and these
efforts beyond accidental syntax similarity.

3 Preliminaries
In this Section we describe the task model and hardware and power
models for processor cores, caches and variable voltage hardware.
3.1 Computational and Timing Models
A setJ of independent tasks is to be executed on a system-on-chip.
Each taskj 2 J is associated with the following parameters:aj its
arrival time,dj its deadline,pj its period, andrj its execution time
at the nominal(maximum possible) voltage levelVref . Without loss
of generality we assume that all tasks have identical periods. Since
context switching overhead is usually high for modern systems, we
assume no task preemption.
3.2 Power Model
It is well known that there are three principal components of power
consumption in CMOS integrated circuits: switching power, short-
circuit power, and leakage power. In CMOS technology, switch-
ing power dominates power consumption. It is also known that
reduced voltage operation comes at the cost of reduced throughput
[2]. The maximum rate at which a circuit is clocked monotoni-
cally decreases as the voltage is reduced. From these equations
together with the observation that the speed is proportional tof



and inversely proportional to the gate delay, the power vs. speed
curve can be derived. By varyingVdd, the system can be made to
operate at different points along this curve. Due to the convexity
of the power vs. speed function, it is always better to run the com-
putation at a constant speed if there is a single computation that
needs to be executed by some deadline. In the proposed scheduling
heuristic, we use this observation so that each task is executed at a
single voltage.

Processor Clock Technology Area Power
core (MHz) MIPS (�m) (mm2) diss. (mW )

ARM7 LPower 27 24 0.6 3.8 45 (3.3V)
LSI TR4101 81 30 0.35 2 81 (3.3V)
LSI CW4001 60 53 0.5 3.5 120 (3.3V)
LSI CW4011 80 120 0.5 7 280 (3.3V)

Motorola 68000 33 16 0.5 4.4 35 (3.3V)
PowerPC 403 33 41 0.5 7.5 40 (3.3V)

Table 2: The performance, area, and power data for a subset of
processor cores

3.3 Architecture and Hardware Model
Several factors combine to influence system performance: instruc-
tion and data cache miss rates and penalty, processor performance,
and system clock speed. Power dissipation of the system is es-
timated using processor power dissipation per instruction and the
number of executed instructions per task, supply voltage, energy
required for cache read, write, and off-chip data access as well as
the profiling information about the number of cache and off-chip
accesses. The approach that we use to realistically address the fac-
tors leverages on existing cache and processor models.

Data on microprocessor cores have been extracted from manu-
facturer’s datasheets as well as from the CPU Center Info web site
[4]. A sample of the collected data is presented in Table 2.

We use CACTI [18] as a cache delay estimation tool with re-
spect to the main cache design choices: size, associativity, and line
size. The energy model for cache is adopted from [16]. We use a
recently developed compiler strategy which efficiently minimizes
the number of cache conflicts that considers direct-mapped caches
[10]. We consider only direct-mapped caches based on the results
of our experimentation that 2-way set associative caches do not
dominate comparable direct-mapped caches in a single case. We
estimated the cache miss penalty based on the operating frequency
of the system and external bus width and clock for each system
investigated. This penalty ranged between 4 and 20 system clock
cycles. Write-back is used instead of write through due to its su-
perior performance and power savings. We consider caches with
single access port. The nominal energy consumption per single
off-chip memory access,98nJ , is assumed [11]. A subset of the
cache model data is given in 3.

No optimizations Block buffering, sub-banking
and Gray code addressing [16]

Cache size 8B 16B 32B 8B 16B 32B
512B 0.3301 0.3777 0.4683 0.2913 0.3219 0.4012
1KB 0.3561 0.3943 0.4626 0.2953 0.2993 0.3452
2KB 0.4223 0.4442 0.4894 0.3171 0.2706 0.2710
4KB 0.6513 0.6662 0.6942 0.4557 0.3336 0.2729
8KB 1.146 1.15.6 1.175 0.7686 0.5044 0.3474
16KB 2.158 2.164 2.174 1.412 0.8693 0.5298
32KB 4.198 4.202 4.209 2.702 1.608 0.9223

Table 3: A subset of the cache power consumption model: power
consumption (nJ) estimation for various direct-mapped caches with
variable line sizes at 5V

3.4 Variable Voltage Hardware
The variable voltage is generated by the DC-DC switching regula-
tors in the power supply which are essentially a feedback control
system. The time for the voltage to reach a steady state at the new
voltage is a strong function of the feedback loop parameters and
the LC output filter in the switching regulator. [13] reported effi-
cient DC-DC switching regulators with fast transition times. DC-
DC converters with faster transition times may be obtained with
the cost of increased power dissipation within the converter. Dual
to the supply voltage variation is the accompanying variation of the
clock frequency. The clock frequency also takes time to stabilize at
the new value. The time and power overhead associated with volt-
age switching is negligible [13] and not considered in the analysis.
3.5 Summary of Theoretical Results
Thenon-preemptivescheduling of a set of independent tasks with
arbitrary arrival times and deadlines on afixed voltageprocessor is
an NP-complete task [5]. Therefore, thenon-preemptiveschedul-
ing of a set of independent tasks with arbitrary arrival times and
deadlines on avariable voltageprocessor is also an NP-complete
task. Yao, Demers and Shenker [19] have provided the optimalpre-
emptivestatic scheduling algorithm for a set of independent tasks
with arbitrary arrival times and deadlines. This solution serves as a
lower bound fornon-preemptivescheduling solutions. This lower
bound plays a crucial role in speeding up our branch and bound
algorithm for thenon-preemptivescheduling problem.

4 Design Methodology for Variable Voltage Sys-
tems: Global Design Flow

In this Section we describe the global flow of the proposed synthe-
sis system and explain the function of each subtask and how these
subtasks are combined into a synthesis system.

Search for minimum power consumption configuration
of processor, I-Cache, D-Cache for all applications

Change processor, I-Cache, D-Cache configuration

System performance and power evaluation
and simulation platform

Performance and power optimization heuristic
for mapping basic blocks to I-Cache lines

System performance and power
consumption estimation

Variable voltage task scheduling

Applications Input data

Figure 2: The global flow of the synthesis approach.

Sort processor cores in a listL in an increasing order of
EnergyPerInstruction

SystemClockFrequency
at the nominal voltage 5V.

Delete the dominated processor cores fromL
For each processor core inL in the order of appearance

For I-cache = 512B..32KB and CacheLineSize = 8B..512B
For D-cache = 512B..32KB and CacheLineSize = 8B..512B

Check bounds; if exceededbreak;
If (current I- and D-cache configuration has never been evaluated)

Evaluate performance and power consumption of the cache structure
Using the cache system analysis, evaluate the system power consumption
using variable voltage task scheduling
Memorize ConfigurationC if power consumption is minimal

Figure 3: Pseudo code for the resource allocation procedure.

Figure 2 illustrates the synthesis system. The goal is to choose
the configuration of processor, I-cache, and D-cache and the vari-



able voltage task schedule with minimum power consumption which
satisfy the requirements of multiple non-preemptive tasks. To ac-
curately predict the system performance and power consumption
for target applications, we employ the approach which integrates
the optimization, simulation, modeling, and profiling tools. The
synthesis technique considers each non-dominated microprocessor
core and competitive cache configuration, and selects the hardware
setup which requires minimal power consumption and satisfies the
individual performance requirements of all target applications. The
application-driven search for a low-power core and cache system
requires usage of trace-driven cache simulation for each promising
point considered in the design space. We attack this problem by
carefully scanning the design space using search algorithms with
sharp bounds and by providing powerful algorithmic performance
and power estimation techniques. We use the system performance
and power evaluation and simulation platform based on SHADE,
DINEROIII and a custom analyser [10, 11].

5 Synthesis Algorithms
The optimization problems encountered in the synthesis of a low
power variable voltage system on a chip and competitive optimiza-
tion algorithms are described in this Section.
5.1 Resource Allocation
In this phase of the synthesis approach, a search is conducted to find
an energy-efficient system configuration. The search algorithm is
described using the pseudo-code shown in Figure 3. Since perfor-
mance and power evaluation of a single processor, I- and D-cache
configuration requires a trace-driven simulation, the goal of our
search technique is to reduce the number of evaluated cache sys-
tems using sharp bounds for cache system performance and power
estimations. However, a particular cache system is evaluated us-
ing trace-driven simulation only once since the data retrieved from
such simulation can be used for overall system power consump-
tion estimation for different embedded processor cores with minor
additional computational expenses.

The algorithm excludes from further consideration processor
cores dominated by other processor cores. One processor type
dominates another if it consumes less power at higher frequency
and results in higher MIPS performance at the same nominal power
supply. The competitive processors are then sorted in ascending
order with respect to their power consumption per instruction and
frequency ratio. Microprocessors which seem to be more power-
efficient are, therefore, given priority in the search process. Later
on this step provides sharper bounds for search termination.

The search for the most efficient cache configuration is bounded
with sharp bounds. A bound is determined by measuring the num-
ber of conflict misses and comparing the energy required to fetch
the data from off-chip memory due to measured conflict misses and
the power that would have been consumed by twice larger cache
for the same number of cache accesses assuming zero cache con-
flicts. We terminate further increase of the cache structure when
the power consumption due to larger cache would be larger than
the energy consumed by the current best solution. Similarly, an-
other bound is defined at the point when the energy required to
fetch the data from off-chip memory due to conflict cache misses
for twice smaller cache with the assumption of zero-energy con-
sumption per cache access, is larger than the energy required for
both fetching data from cache and off-chip memory in the case of
the current cache structure. We abort further decrease of the cache
structure if the amount of energy required to bring the data due to
additional cache misses from off-chip memory is larger than the
energy consumed by the current best solution.

When evaluating competitive hardware configurations, the tar-
get applications are scheduled with the variable voltage task sched-
uler using the predicted system performance and power on the con-
figuration considered. Before the non-preemptive task scheduling

is performed, more efficient optimal preemptive scheduler is ap-
plied to get a lower bound. If the result is worse than the current
best solution, the configuration is worse than the current best one.
5.2 Task Scheduling
As described in Section 3, the non-preemptive scheduling of a set
of independent tasks with arbitrary arrival times and deadlines on
a variable voltageprocessor is an NP-complete task. We have de-
veloped an efficient and effective heuristic for the general variable
voltage task scheduling problem, which leverages least-constraining
most-constrained heuristic paradigm in order to obtain competitive
solutions. The algorithm is described using the pseudo-code shown
in Figure 4.

The algorithm consists of two phases. In the first phase all
tasks are scheduled at the nominal voltage. If a feasible schedule is
found in the first phase, in the second phase the supply voltages are
adjusted for low-power. These two phases are repeatedLOOPS
times and the best solution after the iterations is chosen as the final
solution. Each iteration of the two phases generates different solu-
tions since the objective functions used in the first phase to guide
the search strategy are randomized by a random offset.

In the first phase, the task scheduling at the nominal voltage
is done in the following way. Initially, the time period in which
the tasks appear is divided into time regions such that each time
region has its start or end time equal to a start or end time of some
task and there does not exist a task which has either an arrival or
deadline time within the time region. Then, for each time region,
an objective functionOBJ(T imeRegion) is computed as:

OBJ(T imeRegiontr) = maxV oltage(tr) � aveV oltage(tr)

where the functionsmaxV oltage(tr) andaveV oltage(tr)as-
sume that all tasks are scheduled from their arrival until their dead-
line regardless of time overlaps and return the maximum and aver-
age voltage for all tasks alive at time regiontr, respectively. The
objective functions (or constraints) of time regions are used to com-
pute the constraints of tasks. For each task an objective function
OBJ(Task) is computed as

OBJ(Taskt) =
P

tr2[at;dt]
OBJ(tr) �

r2t
(dt�at)2

.

The most-constrained taskt, which does not include in its life-
time another tasks’ life-time, is then scheduled in the interval equal
to its run-time at the nominal voltage which spans over a subset
of time regions with the lowest sum of objective functions among
any feasible subset of time regions. When comparing the subset of
time regions, we only consider the cases that the start time of the
task is only at the start time of each time region in the task’s life-
time or the end time of the task is only at the end time of each time
region. Upon schedulingt, other tasks’ deadlines and arrival times
are updated in the following way. If the scheduled task’s life-time is
included in the life-time of some other tasks and the tasks can be
scheduled at both partitions of its life-time upon deleting the time
regions that containst, then both partitions of the task’s life-time
are evaluated for scheduling. Objective functions are computed for
all the time-frames with its length equal to the task’s nominal volt-
age run-time such that the start time of the time frame is only at the
start time of each time region or the end time of the time frame is
only at the end time of each time region, shown in the lower part
of Figure 5. The partition which includes the time frame with the
minimal sum of objective functions of containing time regions is
selected. Otherwise, each remaining task’s arrival time and dead-
line is updated if its lifetime intersects with the lifetime of the task
t. This process is repeated until all tasks are scheduled at the system
nominal voltage.

We explain the process using the example shown in Figure 5.
Six tasks T[0], T[1], T[2], T[3], T[4] and T[5] are shown with their
arrival, deadline, and nominal voltage run-times. The set of tasks



Given: a set of tasksT , where each taskt 2 T is characterized by
its arrival timeat , its deadlinedt, and its execution timert at 5V

RepeatLOOPS times
Scheduling tasks at the nominal voltage.
Repeat

Create(TR)>> Create a setTR of time regionstri[starti; endi] where
starti andendi correspond to an arrival or deadline
time of any two not necessarily distinct tasks and there does not exist
another taskto which hasstarti < ato ; dto < endi .
For eachtri 2 TR

Compute its objective functionOBJ(TimeRegion tri)
For each taskti 2 T

ComputeOBJ(Task ti)
Select the taskt 2 T such that it has the maximumOBJ(t) and there
does not exist another tasks such thatas > ta andds < dt
Find the sequence ofSEQ time regions[tr1; trSEQ] such that
at � starttr1 anddt � endtrSEQ

and[tr1; trSEQ] has the smallest
P

SEQ

i=1
OBJ(tri)

If endtrSEQ � starttr1 = rt

Schedulet from starttr1 to endtrSEQ
Else IfOBJ(tr1) > OBJ(trSEQ)

Schedulet fromOBJ(trSEQ)� rt toOBJ(trSEQ)

ElseSchedulet fromOBJ(tr1) toOBJ(tr1) + rt
Deletet from list of tasksT
Create(TR)
For eachtri 2 TR

Compute its objective functionOBJ(TimeRegion tri)
For each tasks 2 T

If scheduling of taskt splits the life-time of tasks into two time portions
p1 andp2 both larger than the nominal voltage run-time

For each portionpi find the sequence of time regions[tr1; trSEQi ]
which comprises time period greater or equal tors and has minimal

S =
P

SEQi

i=1
OBJ(tri)

Assign the task to the portion which has greaterS

Elseupdate the task arrival and deadline times
until all tasks are scheduled.
Voltage adjusting of scheduled tasks for low-power
For each taskt

Compute the earliest startstt and latest finishfit times according to
the existing scheduling order.
Compute the minimal voltagevt at which the task can run if expanded
from stt to fit

Repeat
For each taskt

If there exists tasks 2 T such thatfis = stt andvs < vt andds > at

Schedules from sts tomax(sts + rs(vt) +
stt�sts�rs(vt)

2
; at)

Schedulet frommax(sts + rs(vt) +
stt�sts�rs(vt)

2
; at) to dt

If there exists tasks 2 T such thatfit = sts andvs < vt andas < dt

Schedulet from stt tomin(ds � rs(vt) �
ds�rs(vt)�fit

2
; dt)

Schedules frommin(ds � rs(vt) �
ds�rs(vt)�fit

2
; dt) to ds

until no further energy consumption improvements
Compute system energyE. If E < BestE,BestE = E

Return (BestE)

Figure 4: Pseudo code for the variable voltage task scheduling.

TR[0] TR[1] TR[2] TR[3] TR[4] TR[5] TR[6]

TR[7]

TR[8]

Most-constrained task

T[3]

T[0]

T[2]

T[4]

T[1]

T[5]

Schedule with least-constraining
time region.

arrival deadline run-time at 
nominal voltage

New arrival time
for Task T[1]

All possible
schedules for T[1]

with respect to existing
time regions

Selected task T[4]
excludes region TR[4]

Figure 5: Scheduling tasks at nominal voltage.

Current schedule

V[i]V[i-1] V[i+1]

New schedule

T[i-1]@V[i] T[i+1]@V[i]

New schedule @
[(T[i-1]@V[i]+T[i-1]@V[i-1])/2]

Since new schedule is
later than the deadline,

we choose the deadline as
the new schedule

T[i-1]
T[i]

T[i+1]

V[i] > V[i-1]
V[i] > V[i+1]

New schedule @
[(T[i+1]@V[i]+T[i+1]@V[i+1])/2]

Figure 6: Adjusting the voltage of scheduled tasks for low-power.

creates a set of nine time regions TR[0] through TR[8]. Based on
objective functions computed, task T[4] is selected as the most-
constrained. Once this task is scheduled the arrival times and dead-
lines of tasks T[2] and T[3] are updated as shown (see arrows in
Figure 5). However, task [0] can be scheduled at both TR[1, 2, 3]
and TR[5, 6, 7]. There are four possible schedules with respect to
the existing time regions at TR[1, 2, 3] and three (actually five, but
only three distinct) at TR[5, 6, 7] as shown in the bottom part of
Figure 5. The least-constraining schedule (marked in Figure 5) is
in the TR[5, 6, 7] partition since during this time region there are
no alive tasks. Therefore, the life-time of task T[1] is reduced to
TR[5, 6, 7].

Once tasks are scheduled, the procedure which tunes the sup-
ply voltage of each task is invoked. It iteratively traverses the set of
tasks and tries to lower the voltage of each task until no energy dis-
sipation improvement occurs. Whenever a taskt has a neighboring
tasks with a life-time that intersects the life time oft and supply
voltagevs lower thanvt, the border between the tasks is moved
according to Figure 6. For example, in Figure 6, task T[i] has been
assigned a supply voltage higher than task T[i-1]. The new arrival
time of T[i] and deadline time of T[i-1] is moved to the arithmetic
mean of the current arrival/deadline time and the arrival/deadline
time as if T[i-1] is supplied with T[i]’s voltage V[i]. For a fixed
task scheduling this voltage adjustment algorithm results in solu-
tions arbitrarily close to the optimal solution.

6 Experimental Results
We used nine public domain applications to demonstrate the ef-
fectiveness of the approach. JPEG software from the Independent
JPEG Group implements JPEG baseline, extended-sequential, and
progressive compression processes. GSM software, obtained from
Technische Universit¨at at Berlin, is an implementation of the Euro-
pean GSM 06.10 provisional standard for full-rate speech transcod-
ing, prI-ETS 300 036, which uses RPE/LTP (residual pulse exci-
tation/long term prediction) coding at 13 kbit/s. EPIC (Efficient
Pyramid Image Coder), obtained from University of Pennsylvania,
implements lossy image compression and decompression utilities.
The remaining benchmarks (Mipmap, Osdemo, and Texgen), ob-
tained from University of Wisconsin, use a 3-D graphic library
called Mesa. Mipmap is a simple mipmap texture mapping exam-
ple. Osdemo is a demo program that draws a set of simple polygons
using the Mesa 3-D rendering pipe. Finally, Texgen renders a tex-
ture mapped version of the Utah teapot.

In order to evaluate the efficiency of our algorithmic approach
for variable voltage system synthesis, we conducted a set of experi-
ments. We experimented our variable voltage scheduling algorithm
by scheduling sets of applications with their time constraints on a
number of configurations and comparing the obtained results with
a lower bound obtained using Yao’s preemptive scheduling algo-
rithm with assumed zero preemption cost. The results are presented
in Table 4. The low-power processor-cache application-mix cham-
pion configurations are described in the first five columns of Table
4. The configurations are assumed to have operational dynamically
variable [0.8, 3.3] V supply voltage. The next four pairs of columns
present the power consumption lower bound and the result obtained



Energy (J)
I-Cache D-cache 10 Tasks 15 Tasks

Core Cache Block Cache Block LB New LB New

M68000 1KB 128B 2KB 128B 2.46 2.50 2.61 2.66
ARM7LP 1KB 128B 2KB 128B 2.42 2.47 2.50 2.54
TR4101 512B 64B 4KB 32B 2.43 2.50 2.52 2.58
CW4001 512B 64B 1KB 128B 2.39 2.44 2.49 2.54
PC403 1KB 32B 2KB 32B 2.48 2.55 2.75 2.78

CW4011 1KB 64B 2KB 64B 2.50 2.59 2.72 2.77
Average 2.44 2.51 2.58 2.65

I-cache D-cache 20 Tasks 25 Tasks
Core Cache Block Cache Block LB New LB New

M68000 1KB 128B 2KB 128B 11.1 11.9 27.3 27.1
ARM7LP 1KB 128B 2KB 128B 12.3 13.1 29.9 31.8
TR4101 512B 64B 4KB 32B 10.6 11.0 27.3 27.9
CW4001 512B 64B 1KB 128B 13.8 15.0 35.0 37.4
PC403 1KB 32B 2KB 32B 14.1 14.4 37.2 38.7

CW4011 1KB 64B 2KB 64B 14.8 15.4 39.6 40.7
Average 12.8 13.4 32.7 33.9

I-cache D-cache 35 Tasks 50 Tasks
Core Cache Block Cache Block LB New LB New

M68000 1KB 128B 2KB 128B 59.9 64.1 141.7 142.0
ARM7LP 1KB 128B 2KB 128B 64.4 64.5 139.9 140.2
TR4101 512B 64B 4KB 32B 63.7 63.9 127.3 127.9
CW4001 512B 64B 1KB 128B 69.4 73.7 135 136.3
PC403 1KB 32B 2KB 32B 53.0 53.4 109.7 110.7

CW4011 1KB 64B 2KB 64B 55.2 55.4 100.2 100.6
Average 61.0 62.5 125.6 126.3

Table 4: Results on a set of architectures and application mixes:
LB - Lower Bound, New - Our Approach.

using our algorithm for four different sets of applications extracted
from the nine applications.

Our non-preeptive scheduling algorithm resulted in solutions
which were only1.47% in average higher than the lower bound
determined using Yao’s preemptive scheduling algorithm over se-
ries of more than104 schedulings. An average standard deviation
of voltages per schedule is0.61V over the same set of scheduling
actions. The average maximal voltage per scheduling was3:12V ,
while the average minimal voltage was1:08V . The results also in-
dicate the importance of effective allocation for more complex sys-
tems such that while for the 10-task mix the best configuration is
only 3% better than the average, our allocation technique finds for
the case of 50-task mix a configuration with 25% power savings.

7 Conclusion
We developed the design methodology for the low power core-
based real-time system-on-chip based on dynamically variable volt-
age hardware. The key contribution was to develop effective schedul-
ing techniques that treat voltage as a variable to be determined, in
addition to the conventional task scheduling and allocation. Our
synthesis technique also addressed the selection of the processor
core and the determination of the instruction and data cache size
and configuration so as to fully exploit dynamically variable volt-
age hardware, which resulted in significantly lower power con-
sumption for a set of target applications than existing techniques.
The highlight of the proposed approach was the non-preemptive
scheduling heuristic which resulted in solutions very close to op-
timal ones for many test cases. The effectiveness of the approach
was demonstrated on a variety of modern industrial-strength multi-
media and communication applications, such as MPEG and JPEG
encoders and decoders.
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