PLANNING FOR PERFORMANCE
Ralph H.J.M. Otten(*) and Robert K. Brayton
University of California at Berkeley, California
(*)Also at Delft University of Technology, The Netherlands and Synopsys Inc.

Abstract

A shift is proposed in the design of VLSI circuits. In con-
ventional design, higher levels of synthesis produce a netlist,
from which layout synthesis builds a mask specification for
manufacturing. Timing analysis is builtinto a feedback loop to
detect timing violations which are then used to update spec-
ifications to synthesis. Such iteration is undesirable, and for
very high performance designs, infeasible. The problem is
likely to become much worse with future generations of tech-
nology. To achieve a non-iterative design flow, we propose
that early synthesis stages should use "wireplanning” to dis-
tribute delays over the functional elements and interconnect,
and layout synthesis should use its degrees of freedom to re-
alize those delays. In this paper we attempt to quantify this
problem for future technologies and propose some solutions
for a “constant delay” methodology.

1 Introduction

In the past three decades, layout synthesis has relied on wire
length and area minimization under the constraints of a tech-
nology file (design rule set) to generate masks for chips that
showed acceptable functionality, yield and performance. In-
terconnect served merely as the realization of the net list and
its influence on performance was negligible. As technology
moves deeper into sub-micron feature sizes, and more com-
ponents are integrated on a single chip, interconnect effects
become more problematic.

conceptual
design

behavioral
synthesis

\ 4

— logic
> synthesis

¢

— data Dl
oot el preparation
| ¢ technology

timing A
optimization e |

v

layout
synthesis

A

timing
analysis

Figure 1: Synthesis with timing constraints

Up to now the effect of wiring on delay was determined by
timing analysis tools that detect timing violations and produce
either input for timing optimization procedures (such as tran-
sistor sizing, buffer insertion and fanout trees) or an updated
specification file for higher level synthesis, expecting an im-
proved gate and netlist for layout synthesis. Essentially the
back-end of the design process has become a slow iterative

scheme (shown in Figure 1), with no guarantee of conver-
gence. Even if the process converges, it is uncertain how the
final solution compares with the optimum.

Such iterations can be avoided only if the early design
stages are integrated with layout synthesis, or at least are
able to incorporate sufficient layout considerations without
unnecessary constraints for the back end. This will require
a completely new approach, especially for complex designs
with very tight performance constraints. The required per-
formance must be guaranteed by construction (and not the
arbitrary outcome of indirect optimizations). This affects not
only the way layout synthesis should be organized, but also
higher levels of synthesis, and logic synthesis in particular.

2 Global wires

In recent years many sophisticated models for interconnect
delay have been developed[10]. The complexity of these
models and/or the size of the look-up tables used inhibits
their use during synthesis, when the geometry of the inter-
connect is unknown, and when only estimates of length and
topology are available. In these early stages only simple
models such as Elmore’s first moment matching can be used
effectively. This model is the basis for almost all methods
for reducing delay in point-to-point interconnection with uni-
directional signal flow. The most common method is to split
the wire into segments buffered by inverters!. This method,
like any other, has its fundamental limitations which are often
reached well before required performance has been achieved.
In the next section we will study the limits of repeater inser-
tion.

2.1 Critical lengths and critical delay
We use a first order model for a generic restoring buffer driv-

ing a capacitive load through a homogeneous line of length [
given in Figure 2. [1].

Figure 2: Generic restoring buffer model

The repeater is represented as a voltage source controlled
by the voltage vs; at the input capacitance. This voltage
source switches instantaneously when the fraction denoted
by z, 0 < x < 1, of the total swing has been reached. The
switching at the voltage source is a perfect voltage step. The
parasitic capacitance C), is mainly composed of the drain ca-
pacitance of the transistors. The line is assumed uniform. If
there is fanout, no resistance is assumed after branching.

Starting from this simple model, a general formula for the
delay between the switching of the buffer and completing the

! Delay can also be reduced by “tapering” the wire, causing some difficult layout
problems. Swing reduction with regenerative reaction to smaller voltage changes at
the end of the line is another method that can speed up communication at the cost of
increased noise sensitivity.

35" Design Automation Conference ®
Copyright ©1998 ACM

1-58113-049-x-98/0006/$3.50 DAC98 - 06/98 San Francisco, CA USA

x fraction of the swing at the end of the line can be derived,
similar to [1]:

7 =b(z)Rer (CL + Cp) + b(x)(cRer + rCL) + a(z)rcl’.
R: is the equivalent transistor resistance. The constants a
and b depend on the switching model of the repeater, that is
on z.? This should be chosen so that when we divide the line
in n equal parts by inverters the delays of the sections can
be added. The size of the inverters is s (in multiples of the
minimum size inverter), which makes Ry, = r,/s, C1 = s.co
and C, = scp. The initial driver of the line is assumed to
have the same size, possibly after cascading up from smaller
initial drivers for optimum speed. The total delay for n such
sections of length I/n is

T=n1=mn|bro(co+c)—i—b(cr—o—f-rc s)i—f-arcﬁ =
T e s n n2|
To 2
=bro(co + ¢p)n + b(c; +reos)l + arc— 1)
Now we can ask for the values of s and n which give the
minimum delay. For n we obtain

aor 5
— =bro(co +¢p) — arc_5 = 0

on
or the optimum length of each section is
I _ [N groco (1 + z—i) _ P (2)
crit — Topt = re = \/1"_0

Accepting that r,c, and r,c,, are process constants makes
the optimum distance between inverters only dependent on
the rc product per unit length of the wire.

THEOREM1 The length of a section in an optimally segmented®
line is inversely proportional to \/rc.

P depends on the process and the delay model (x) only.
Since r and c differ from layer to layer, these distances also
differ from layer to layer.

Substituting nop: in (1) yields

T (nopt) = <2\/abrcroco (1 + C—p) + % + brcos> l
Co s

which shows

THEOREM2 The delay of a line that is optimally segmented
is linear in its length.

The optimum repeater size is obtained as

oT roC

% = b(?"Co — S—2)l =0= Sopt —
which is independent of n, the number of inverters used. By
substituting the optimum repeater size and the optimum num-
ber of sections into (1) we find the delay of the line is

T(1) = 2l\/Tcroce <b+ \/@)

which of course is linear in [. More surprisingly, substituting
the critical length shows that the delay of a section of critical
length does not depend on the line resistance and capaci-
tance:

b c P
Terit = 2bT0Co (1 + E (1 + i)) = 2broco (1 =+ m)

3
and therefore only depends on the process (and the model),
but not on the wiring layer.

To C

CoT

2If & = 0.9 (90%-swing) themz = 1.0, b = 2.3. Mostly, we usg(z = 0.5)
yieldinga = 0.4,b = 0.7.

3We call it an optimally segmented line rather than an optimally buffered line be-

cause this length is independent of the buffer size

THEOREM3 The delay of a section in an optimally buffered
line is the same for all layers.

Note that all derivations were made on a chain of inverters
driving an uniform wire. Using this in more general networks,
with different fanouts and branch-off geometries is therefore
only an approximation, which can be made more accurate if
isolation techniques are used to offset fanout effects.

2.2 Model justification

Since we use the results only for point-to-point connections
(that is without branching) between restoring circuits, first
moment matching is accurate enough. However, some re-
marks concerning the model parameters are in order.

The via resistance shows up as a resistor in series with
the Ry, in Figure 2. It is reasonable that this scales with the
size of the inverter®, and hence can be absorbed in r, and
the formulas do not change. Although r,c, is no longer a
process constant and a layer dependence is introduced in
the critical delay, experiments show that the via resistance,
even to the top layer, is negligible and has hardly any effect
on the wave forms.

The line was assumed to have constant capacitance per
unit length. For advanced technologies, this is dominated by
capacitance to sections of interconnection, especially neigh-
boring sections in the same layer. Since these may undergo
voltage changes, the value is not even constant. The latter
effect may cause variations in the effective capacitance by
up to a factor of 3. To make use of the derivations in the
previous section, before the geometry of the wiring is known,
requires the enforcement of a routing style which produces a
time-invariant homogeneous line®. In addition, its resistance
and capacitance should be known a priori.

The remaining problem with the model is the determina-
tion of the effective transistor resistance. It is reasonable that
such a resistance exists if we only consider one waveform
and a fixed . The most practical way to obtain useful param-
eters is to simulate a ring of an odd number of buffer sections
with large transistors (100 times minimum size) after extract-
ing ¢ very accurately. Then we optimize speed by varying
the value of [for each section to obtain I.,;:. This will give
P of equation 2 since r is known quite accurately. With the
length of each section fixed at I.-;¢ the ring is optimized next
for speed once more, now by varying s. This will yield 7.,
and by equation 3 therefore r,c,. Since we can accurately
calculate ¢, from the transistor geometry®, we get

2
1 . 2Terit
- P2 it _p
To i, (+ b)

2.3 Numerical data

To quantify what this all means we performed some calcu-
lations using a fictitious, but well reviewed technology file
based on [11], and an extraction program [2]" for solving ex-
act 3-dimensional field problems. The critical lengths and the

4The contact resistance (the largest part) will scale if the contact area grows with

buffer size, and also the cross section of the via is likely to scale then.

50ne (possibly drastic) way of achieving this is to shield each signal line with
neighboring lines tied to ground.In addition to reliable characterization, this style elim-

inates most cross-coupling noise problems.

GTheoreticaIIy, we don't have to do this since we obtained; in the second
optimization andt, = roc/(rsipt). However, since..;; is likely to be insensitive
to s at the optimum, the value af,,,; is probably not very accurate, even though;;
is accurate.

7For more information, consult
http://cas.et.tudelft.nl/research/space.html

critical delay are given in Table 18. Each layer has its own
critical length, and the values are pairwise close. Such a
pair is called a tier. With a bit of process tuning the critical
lengths within a tier can be made almost the same where the
difference is mainly in the “between layers” capacitance. The
higher tiers having longer critical lengths than the lower ones.

critical feature size
parameter || 0.25 1 | 0.10 p
lerit(ml) || 10440 | 6757
lerit(m2) || 10600 | 7162
lerit(m3) 36000 | 43446
lerit (M4) 38400 | 45135
lerit(mb) || 63200 | 64932
lerit(m6) || 62000 | 56892
lerit (MT) 97581
lerit (M8) 93378
[T(i) [205ps [80ps]

Table 1: Critical wire lengths measured in feature size units.

Note that the critical length, measured in the feature size,
changes much less than proportional with the feature size!
This may come as a surprise, but is mainly due to velocity
saturation effects, and therefore represents a trend that will
affect smaller feature sizes even more. Other recent studies
also indicate that even with scaling down in the logic blocks,
the gate delay will continue to dominate the performance [4].

Today’s synthesis is capable of handling blocks with up
to 10000 gates. A square with side lengths of lc.;:(m1 —
m2) can contain on the order of a hundred of these blocks
in a 0.1y technology. So, even with careful extrapolation, this
means that fairly complex blocks can still be designed while
mainly controlling gate delay.

3 Wire planning

The term wire planningwas coined more than ten years ago
"to describe an approach that first focuses on determining an
optimal plan for global wiring” [3]. In its original context its
task was mainly to identify groups of nets each connecting
to (almost) the same set of modules. The most common ex-
ample are buses when identified routing complexity can be
reduced considerably by handling bus wires as groups inside
data path generators

Another, new task for wire planning is indicated by the
computations and derivations of Section 2. Although com-
plex modules can still be designed using present day logic
synthesis methodologies, controlling mainly the gate delays
to achieve performance, at the chip level, future technologies
will involve many (hundreds to thousands) of such complex
modules, and at this level wire delay begins to dominate.
Wire planning should produce a location for these modules
with the main concern that timing constraints on input/output
paths are met. This requires knowledge of the global inter-
connection structure and the performance implications of the
functionality of the modules. In the early “conceptual” stages
of a design there is not much more than an awareness of
size-speed trade-offs. This accuracy depends completely on
the design experience in the team. In general, all that can
be said is that these interpolated delay-area relations appear
convex. Delay in synchronous systems is often measured in

8Table 1 is by Amit Mehrotra of UC Berkeley with independent corroboration by
studies by Lixin Su, Sunil Khatri, and Dennis Sylvester. The associated technology

files can be found dittp:
Ihwww-
cad.eecs.berkeley.edu/Respep/Research/nexsis/strawman

terms of the number of clock cycles to complete the compu-
tation of the module. Obviously, a module that takes more
cycles to do its computation never requires more area than
one that takes fewer cycles. Although defining speed of mod-
ules in general is not possible, the reasoning will always be
similar, whether speed in a given technology is obtained by
sizing, parallelism, or other means.

Knowing module functionality and interconnection struc-
tures implies a decomposition. Initially, such decompositions
emerge solely on the basis of functional considerations, with
little regard for their impact on both the performance of the
product as well as the efficiency of synthesis steps later on.
Therefore, while the design evolves into a hierarchical de-
scription acceptable for behavioral synthesis, wire planning
tools should aid in quick analyses and proposals for function
duplication, absorption and decomposition as well as module
(re)locations and (partial) pad planning.

Examples of wire planning tasks are establishing the ex-
istence of a module placement in which no path from input to
output has to make detours, assigning time budgets to mod-
ules such that area is minimized, establishing the existence
of a valid retiming and producing a valid minimal-area retim-
ing, assigning wire sections to layers so that feasible time
budgets are preserved, and encouraging floorplans that lead
to efficient optimizations in later stages of the design.

The final result of conceptual design aided by wire plan-
ning is a composition of a network of blocks and intercon-
nections along with well established time budgets and de-
lays. Considering the data concerning critical lengths, blocks
will be small compared to these critical “units”. They can be
treated without internal distributed delays, and their wiring is
mostly realized in the lower levels of metal. The tools can
aid in creating subsets of regular grids with blocks at grid
points and predefined wire segments on the grid lines. The
latter enables good characterization of these segments, and
routing consists of “using the available segment” rather than
“placing segments”. By the time that synthesis begins to cre-
ate the gate and net lists, the delay on the “global” wires is
quite well established and therefore also the timing budget
that remains for the blocks.

3.1 Monotonic wire plans

Consider a high level description of a design described as
a functional networkmodeled by as a directed acyclic graphs
with primary inputs as sources, primary outputs as sinks and
“functions” on the other nodes. There is an arc from one node
to another if the “result” of the former is used as an argument
in the latter. If a primary output depends on a primary in-
put, there must be a path connecting them, possibly passing
through other blocks, and possibly sharing some with other
paths. Total delay is the sum of the delay in the blocks and
the delay in the wires. If wires are composed entirely out of
sections with critical delay, the total wire delay on a path is
a multiple of the critical delay, and is invariant with respect
to how the functional units are distributed over the restor-
ing sites (end points of critical sections|f a functional block is
placed at each “grid point” along a path then no repeaters are
necessary. A wire planin this context is a position for all the
nodes in the functional network and a pin assignment for all
primary inputs and outputs. Such a wire plan is called mono-
tonicif all interconnections can be made so that the £, -length
(“Manhattan length”) of each input/output path is equal to the
L:-distance (“Manhattan distance”) between the two associ-
ated i/o pins. Under the model this is the fastest possible

wire plan for a functional network with that pin assignment®
having its wires in a given tier.

For a given pin assignment a monotonic wire plan may not
exist. This existence question has been answered in [5] as
follows. The supportof a node is the set of primary inputs con-
nected to that node by a directed path. The rangeof a node is
the set of primary outputs connected to it by a directed path
The inbox of a node is the smallest iso-rectangle containing
its support, and the outboxis the smallest iso-rectangle con-
taining its range. A bridge of a node is a minimum L-length
line connecting its inbox with its outbox. Using these ideas
and and working out a few special cases leads to Theorem 4:

THEOREM4 Every node in a monotonic wire plan must be
placed within the smallest iso-rectangle containing its bridge.

A simple proof by induction then yields:

THEOREMS5 A functional network has a monotonic wire plan
with respect to a given pin assignment if and only if every
node has a unique bridge.

This makes it very easy to find out whether such a wire plan
exists: we only have to check on a node by node basis whether
each node in the network has a unique bridge. Such a check
is extremely simple since
THEOREMG6 A node has a unique bridge if

1. the support or the range contains a single pin, or

2. the range is contained in an iso-line while the support
is on a single line perpendicular to that, or

3. the output box is in the “projection” of the input box,
that is the two boxes have disjoint support in both axes,
except for at most one point.

Note that a placement conformant to Theorem 4 is not nec-
essarily a monotonic wire plan. A valid placement, but pos-
sibly having nodes at the same position, is assigning each
node the point which the output box has in common with the
bridge'°.

Of course, certain deviations from strict monotonicity may
be necessary or desirable, because of availability of space or
for sharing functionality with other paths. However, deviation
from monotonicity can only be allowed if the timing require-
ments are not violated. Note that monotonicity can always
be obtained by duplicating functionality, synthesizing faster
blocks, and absorbing functions in their fanout. In the ex-
treme, a monotonic wire plan always exists if each output is
produced by a single node.

Once the wireplan for a functional network has been de-
termined, which means that the delay on the arcs of this
network is known, the remaining time budgets have to be
distributed over the function nodes. If the same graph is a
suitable model for this task, and the sources and sinks have
arrival times and required times assigned to them, a simple
(quasi-)convex optimization problem can be used to answer
guestions such as “what is the smallest network that does not
violate any timing constraints?” Size is in this case the sum of
the areas assigned to each node according to its area-delay
trade-off.

3.2 Valid retiming

consistent'* way to reflect the number of cycles allowed be-
tween the input and the computed output.

Given a wire plan, and therefore the distance k;; between
two (point) modules, measured in number of critical lengths
at the highest tier, we want to see if it can be retimed so that
all connections can be made in a single cycle. For example,
if a wire needs 2 cycles even if assigned to the highest level
of metal, then a solution is to split the wire into two parts
separated by a latch. The following problem is formulated.
Given an integer assignment on each wire, k;; does there
exist a retiming of the circuit such that whenever there is wire
between module 7 and j the number w;; of latches assigned
to that wire, satisfies

kij <wi;?
If the answer is yes, the placement is valid and has a valid
retiming

A second problem is, given a placement, to find a valid
retiming, if it exists, which minimizes the total area. Here the
area-delay tradeoff curves with cycles versus area for each
module is used. At the start, each module is modeled with
two nodes separated by a edge. Now a retiming will move
some of peripheral latches to internal edges. After a retiming,
the number of latches in a module edge may be changed.
This affects the area of the module through its area-delay
trade-off curve. We call this the minimum-area valid retiming
problem.

Finally, we look for the placement which gives the least
area of all the minimum area valid retimings'2.

3.3 Layer assignment

Here we assume that an RTL description of the design is
available. Our aim is to assign a delay number §;; to each
wire, ¢ — j in such a way that all delays from chip input
or latch output to chip output or latch input can be made in
the assigned number of clock periods for that connection.
We assume that if a path is allowed a delay longer than a
single clock period it is divided into an appropriate number
of pseudo-nodes. Thus every combinational path must be
within a single clock period. Let 7 be such a path. We assign
half the clock period to this path, reserving the other half for
the gates on the path. So

1
> =3
ijET
where d;; will be the delay assigned to connection i — j. We
solve the zero-slack distribution problemwhere all paths satisfy
the above equations.
Next, from the different levels of metal, we create a num-
ber of wire types®. Each wire type has a critical length I.,.;:.
These are sorted in ascending order and denoted as,

h<lb<,...,<ln

Now given a placement, let the Manhattan length of wire
i — j be denoted by d;;. Wire i — j can be seen to be
in a rectangle bounded by (z;,y;) and (z;,y;). This rectan-
gle is assigned a cost Ci’“j which depends on the wire type k

L A similar notion was used with the so-called “peripheral” retiming.

At this level, our goal is to assign delays (measured in units of
clock periods) to wires and to get an appropriate retiming of
the chip. We assume that the dependency graph is acyclic.
At each input and output, a number of latches are put in a

t2What is missing in this formulation is how the assignment of wires to layers plays
arole. In the above formulation, only the top level wire type is considered. The fact
that a wire can be placed on a lower level of wire and still meet its timing obligation is
not considered. A possible answer is to modify the total area cost function, to penalize
wires that are put on higher layers.

9Under a model where interconnections have capacitance but negligible resistance, 13For example, each level of metaklmay be divided into a number ofire types

a monotonic wireplan has the minimum total wire capacitance. This can be useful (k, i) wherei denotes the number of wires tied together on léveb construct a
when power is a major concern and may be relevant for logic synthesis when a pin “thicker” wire. This gives us a finer grained resolution for having wires that reach
assignment is given [5]. different distances in the same time. Another way to create a wire type is to assign a

10 Also the points that input boxes have in common with the bridge is a feasible set. wire to multiple layers.

assigned to the wire. A wire is more costly if its type is on a
higher level or if its rectangle is nearer the center of the chip.

We minimize
k
>ef
Here i — j is assigned to the k%" wire type if and only if
i < gy < 2
Uk ley1
Thus wire 7 — j will be assigned to a wire type where the
delay on the wire, ‘j"" < ;5. Therefore for any path = we
k
have

ijeET
If a solution exists, then all wire segments can be assigned a
fixed wire delay, 6;;'*. A solution may not exist if there is no
placement where all the delays can be met. In that case, we
may have to return to the higher level wireplanning problem
and even possibly alter the chip latency.

We also note in the derivation of the critical wire length for
each kind of wire, that the optimum sized driver was used.
For a wire of less than critical length, we have a choice in
the size of the driver which gives more flexibility to adjust the
drivers to meet the assigned delays.

4 Layout synthesis

To complement an approach based on wire planning, layout
synthesis should realize the functional blocks in such a way
that the delays in the blocks do not exceed their timing bud-
gets, or rather keep them right on target. Since logic synthe-
sis knows the budgets after wire planning and the range of
available gates, it should deliver a gate list with an assigned
specified delay for every gate. Layout synthesis should pro-
duce a network in which each gate causes exactly that delay.
This is called constant delay synthedi§]. Given a fixed delay
for a gate, its size becomes a function of the output capaci-
tance.

conceptual
design > behavioral
+ synthesis > .
» logic
. » synthesis
wire »
planning

§ 22
foot print > preparation —
I l technology

> area A 4
optimization

size
assignment

\ 4

layout
synthesis

. <
timing -
analysis

Figure 3: Constant delay flow

This of course is not without consequences for the back-
end tools. Sizes now have to be assigned according to the
results of logic synthesis, and scale only with the imposed ca-
pacitances on the outside. Timing optimization is out of the

question: buffer insertion can only serve as an area reduction
trick. New cell libraries have to be developed to adequately
reflect the demands of delay-based requirements. And fi-
nally, the layout generation must be capable of handling a
variety of cell sizes, and absorb changes in sizes efficiently.

4.1 Fixed delays

Again starting from the model of Figure 2, but not including
the wire (Figure 4) leads to a delay formula[12] which is the
sum of two terms, the effort delayand the parasitic delay

T =bR,Cr, + bR, C)p = brocog—_L + broc, = ? + p.

Cin =Co

Figure 4: Gate model for obtaining a size independent delay ex-

pression

The parasitic delay p = broc, is independent of size. The
effort delay g/ f is a product of computing effory = br,c,, and
restoring effort

[G

The computing effort is also size independent, but in general
depends on the function, topology and relative transistor di-
mensioning of the gate. The important observation is that 7
can be kept constant by fixing f = C;,/Cr. This leads to a
new paradigm in synthesis [6, 9]: any delay imposed by syn-
thesis can be realized, provided that the sizes of the gates
can be continuously adjusted.In [6] the authors show that the
size of a gate varies linearly with the load under constant de-
lay. This enables size assignment after logic synthesis has
fixed the scaling factor f for all gates and of course the net
list.

1 CL

4.2 Cell generation and shape assignment

Wire plans perform their analyses on point placements or
sequences, most likely under the presence of larger blocks
that may be pre-placed. This position information along with
a possibly partial pin assignment must be preserved during
the layout synthesis when the results of size assignment and
area optimization become available. This requires efficient
and robust floorplan optimization. These qualities heavily
depend on the floorplan to be optimized. This can only be
achieved by maintaining sliceability throughout the design,
from the early wire planning stage down to the determination
of the final dissection. This presumed “restriction” is amply
offset by the guaranteed optimum in its class.

Cell generation is most likely the big challenge in a con-
stant delay approach. The set of functions can be quite small,
but extensive research is necessary to determine which sizes
should be made available. Ultimately, a library of cell layout
generators seems to be the way to go. In addition, yield is
also an issue here.

we have only indirectly accounted for the number of available wires of wire type
k by assigning a wire to the least level which gives the required delay. This assumes
that wires at the lower levels are the more plentiful. The cost of a wiring rectangle is
weighted by its relative overlap with the center of the chip, but the number of wires in
the wiring rectangle is not accounted for in this formulation.

5 Conclusions

In synthesizing high performance chips using present day
design practices, the meeting of timing constraints necessi-
tates an iteration which is not guaranteed to converge. In
future technologies, unless these global delays are planned
up front, convergence will be even more of a problem and
even if convergence is achieved, the answer is likely to be
far from optimum. This suggests a shift in design methodol-
ogy where a global wire plan is put in place beginning at the
conceptual stage of the design. We propose an approach
in which a wire plan is created before the functionality of the
blocks in that plan has been fixed. This allows for better con-
trol over the performance of the total design. Inherent to such
an approach is that wire delay is accurately known wherever
it has impact. This means that “global wires” should be well
characterized a priori, which requires a strict layout styles.
We have chosen to use a minimum width optimally buffered
interconnections with a fairly stable electrically environment.
Adherence to this style provides delays linear with distance,
and thus invariance over equal length paths. Sharing func-
tional blocks is likely to cause detours in one or more paths,
causing additional delay. Creating a wire plan may distribute
units all over the chip, thus abandoning the principle of easily
recognizable and recoverable blocks, in exchange for exact
knowledge of delay on connections and control over delay in
the blocks. Enforcing delays in the blocks means that sizes
become uncertain, and with uncertainties in size also dis-
tances become uncertain. If a block cannot be synthesized
with the required delay in the available space, then the wire
plan cannot be realized. Thus, reliable predictors in the early
stages must be developed to obtain a non-iterative design
flow. Of course, existence of solutions can never be guaran-
teed under too strict timing requirements, but we postulate
that this new methodology can find solutions for a broader
range of specifications than the current methods.

Acknowledgment The vision that synthesis should be con-
ducted with guaranteed performance was developed by Lukas
van Ginneken. The authors are grateful to the wire planning
group, Philip Chong, Wilsin Gosti, Hiroshi Murata,and Mukul
Prasad, at Berkeley for stimulating discussions, to the Nexsis
group at Berkeley, in particular Amit Mehrotra, Sunil Khatri,
Subarna Sinha, and Philip Chong, who made the studies that
quantified the critical lengths and to the SRC under grant 324
and the California Micro program, 96-091, with industrial sup-
port from Synopsys, Cadence and Fuijitsu.

References

[1] H.B. Bakoglu, Circuits, interconnections, and packaging for

visi, Addison-Wesley Pub Co, 1990
[2] FBeeftink, A.J. van Genderen, N.P. van der Meijs Ac-

curate and efficient layout-to-circuit extraction for high speed

mos and bipolar/bicmos Integrated circultS8CD, Oct. 1995

[3] R.K. Brayton, C.-L. Chen, J.A.G. Jess, R.H.J.M. Otten,
L.P.P.P. van Ginneken, Wire planning for stackable designs
Proceedings 1987 International Symposium on VLSI
Technology, Systems and Applications, Taipeh, Taiwan,
pp 269-273, May 1987

[4] P.D. Fisher, Clock cycle estimation for future microprocessor

generations 1998
[5] W.Gosti, Wire planning in logic synthesi4998
[6] J. Grodstein, E. Lehman, H. Harkness, B. Grund-

mann, Y. Watanabe, A delay model for logic synthesis of

continuously-sized network&CCAD, Nov. 1995

[7] Y. Kukimoto, R.K. Brayton, P. Sawkar, Delay-optimal tech-
nology mapping by dag coverin@AC, June 1998

[8] R.H.J.M. Otten, Layout compilationin Design systems for
visi circuits edited by G. DeMicheli, A. Sangiovanni-
Vincentelli and P.Antognetti, pp.439-472, Martinus Ni-
jhoff Publishers, 1987

[9] R.H.J.M. Otten, L.P.P.P. van Ginneken, N.V. Shenoy,
Speed: new paradigms in design for performan&&CAD,
Nov. 1996

[10] L. Pileggi, Delay metricsISPD98

[11] Semiconductor Industry Association, The national tech-
nology roadmap for semiconductors: technology ne€&id-
ifornia, U.S.A., 1997

[12] 1. Sutherland, R. Sproull, The theory of logical effort: de-
signing for speed on the back of an envelopeAdvanced
Research in VLSUC Santa Cruz, 1991

	CDROM Home Page
	DAC98
	Front Matter
	Table of Contents
	Session Index
	Author Index

