
A Video Signal Processor for MIMD Multiprocessing
Jörg Hilgenstock Klaus Herrmann Jan Otterstedt� Dirk Niggemeyer Peter Pirsch

Laboratorium für Informationstechnologie
Universität Hannover

Schneiderberg 32
30167 Hannover, Germany

Tel: +49 511 762 5058

E-mail: hilgenst@mst.uni-hannover.de

ABSTRACT
The video signal processor AxPe1280V has been developed for
implementation of different video coding applications according
to standards like ITU-T H.261/H.263, and ISO MPEG-1/2. It
consists of a RISC processor supplemented by a coprocessor for
convolution-like low-level tasks. RISC and coprocessor have been
implemented in a standard cell design combined with full-custom
modules. The processor was fabricated in a 0.5�mCMOS techno-
logy and has a die size of 82mm2. It provides a peak performance
of more than 1 giga arithmetic operations per second (GOPS) at
66 MHz. For processing of very computation-intensive algorithms
or high data rates, several processors can be bus-connected to form
a MIMD multiprocessor system.

1. INTRODUCTION
For real-time coding and transmission of video data, several in-
ternational standards have been developed. These include ITU-T
H.261/H.263 [1, 2] for video telephone, ISO MPEG-1 [3] for mul-
timedia, and ISO MPEG-2 [4] for digital TV. All these standards
utilize hybrid coding techniques [5]. They combine computation-
intensive low-level tasks, like motion estimation or discrete cosine
transform, with data-dependent medium-level tasks, like variable
length coding, variable threshold or quantization.

The performance requirements of these standards are determined
on one hand by the complexity of the employed algorithms. On the
other hand, they are mainly based on image size and frame rate. Al-
together, the performance requirements for real-time coding range
from a few hundred million operations per second (MOPS) for a
video telephone decoder, up to several giga arithmetic operations
per second (GOPS) for a digital TV encoder. For these applica-
tions, a cost-effective and small system implementation is required.
Therefore a VLSI implementation, which can provide the needed
processing power, is essential.

�now with Siemens Semiconductors, Munich, Germany.

Two implementation strategies can be followed: First, an imple-
mentation of the codec’s architecture dedicated to the envisaged
application field can be used to reduce the required implementation
area [6]. The drawback of this approach is, that the implementation
of a modified coding algorithm often necessitates a redesign of the
involved circuits.

Alternatively, programmable processors can be used. They allow
flexible adaption to different coding applications and standards. A
disadvantage of programmable solutions is the increased silicon
area. Especially the use of general purpose digital signal proces-
sors for the above mentioned video coding applications often leads
to an unacceptable system size. Therefore, the programmable video
signal processor architecture AxPe has been developed, which has
been optimized for hybrid video coding algorithms and can be used
in a scalable multiprocessor system.

In the following the video signal processor AxPe1280V is pre-
sented. Section 2 introduces the architecture of the processor. The
implemented test concept is presented in Section 3. Section 4 and 5
describe the design process and implementation details of the chip.
In Section 6, a AxPe-based MIMD multiprocessor system is pre-
sented.

2. ARCHITECTURE OF THE VIDEO
SIGNAL PROCESSOR AXPE1280V

The compression and decompression of digital video signals ac-
cording to hybrid coding schemes is performed on rectangular
blocks of 8*8 or 16*16 pels. In the encoder the entire image is seg-
mented, and low-level and medium-level coding tasks are applied
on block level. After processing, a data stream for transmission to
a decoder is generated. In the decoder this process is reversed and
the images are reconstructed.

The most computation-intensive tasks of the video coding process
are low-level tasks. Over 70% of the total computation power are
consumed by this group of tasks. Because they have a convolution-
like structure and a deterministic program flow, the data accesses
and number of execution cycles are predetermined and so the
controlling is relatively simple. Less computation-intensive are
medium-level tasks. They have a less deterministic program flow
with many data dependent branches, which makes parallelization
on data level more difficult.

An efficient implementation of programmable processors for video
coding systems can be achieved by adaptation of the processor ar-

35th Design Automation Conference ®
Copyright ©1998 ACM

1-58113-049-x-98/0006/$3.50 DAC98 - 06/98 San Francisco, CA USA

35th Design Automation Conference ®
Copyright ©1998 ACM

1-58113-049-x-98/0006/$3.50 DAC98 - 06/98 San Francisco, CA USA

chitecture to the coding algorithms. One possible approach is the
coprocessor concept. Computation-intensive operations, which are
common to all coding schemes, are mapped onto a specialized co-
processor. A programmable processor controls the coprocessor and
executes all other parts of the algorithms.

Based on this approach, the architecture of the video signal pro-
cessor AxPe1280V (Figure 1) has been developed. The processor
consists of two main modules: A RISC processor and a low-level
coprocessor. Both modules are adapted to a subclass of coding
tasks. The RISC processor is used for computation of medium
level tasks, like quantization or Huffman coding, and performs
all control tasks. For fast processing of computation-intensive,
convolution-type low-level coding tasks, like discrete cosine trans-
formation or motion estimation, the microprogrammable coproces-
sor is used. An I/O control unit performs all communication with
external devices. It features a bidirectional 32 bit data bus as well
as a 16 bit data output bus. This additional 16 bit output bus was
implemented to increase the achievable communication bandwidth
of the AxPe1280V and to simplify arbitration in a multiprocessor
system consisting of several processors.

�����

�-#!* �%+-/3

��� 2 � "(1

�/-&/!+ �%+-/3

	��� 2
	 "(1

�� � �--. �-,1/-*

� �-/1 �%&(01%/ �(*%

��
���

	� 2 � "(1

�-,1/-**(,& ,(1

��	� 2 	� "(1
�(#/-#-$% ���

�����

���

���� ���	��� ��� �	�	
 �����	���

	

��� �-,1/-*

�

�%0%1

�*!&0

�!1! ��� �
���� �!1! � ������ �1/* ����

�/(1'+%1(#
�/-#%00(,&
 ,(1 ��� �

�

���

%21� �*-#)

(,1� �*-#)

Figure 1: Architecture of the video signal processor AxPe1280V

2.1 Coprocessor
The main modules of the coprocessor are a local memory of 4096
bytes, a fourfold parallel arithmetic processing unit and a micro-
programmable control unit. The local memory has been integrated
to reduce transfers with external memories and to provide the arith-
metic processing unit with enough bandwidth for parallel process-
ing. The microprogrammable control unit masters the operation of
the complete coprocessor.

2.1.1 Arithmetic Processing Unit

The architecture of the arithmetic processing unit is dedicated to
the processing of convolution-type low-level tasks. To achieve a
high data throughput, the inherent parallelism of these tasks must
be exploited. Low-level tasks, like 2D discrete cosine transform
or motion estimation access blocks of 8*8 or 16*16 pixels respec-
tively. These tasks can be separated into 1D operations accessing
neighbouring pixels. The presented arithmetic unit makes use of

this characteristic by processing four pixels in four identical data
paths. Each data path consists of a pipeline of subtracter, comple-
menter, multiplier, and mode shifter. The output of the data paths
is fed into a common multioperand accumulator (Figure 2).

�&�%$��%"$

�&�%�#���$

���!

��

��

��

	 	
��#� �

" #�� �!%

��#� � ��#� ��#� �

�&�%���#�$�!� ���& &��%"$ � ����%�$ � �� �%�$

��

�"�� ����%�$

�����������%�

"��� �# � �# �

Figure 2: Architecture of the arithmetic processing unit

A generic description of all operations of the arithmetic processing
unit is

1

2N

X
�(A�B) � Coeff � 2s s 2 (0; 8)

The operands A and B of all data paths have an 8 bit representation.
For most video coding tasks like motion estimation or FIR filtering,
8 bit arithmetic is sufficient, and therefore the data paths have been
primarily adapted to these needs. Nevertheless, the mode shifters
between multiplier output of each data path and inputs of the mul-
tioperand accumulator support 16 bit operations in two consecutive
clock cycles. During the first clock cycle, the lower bytes of all
operands are processed. The mode shifters are switched transpar-
ent. Processing of the upper bytes of the operands is performed
during the following clock cycle. To adjust the results of the mul-
tipliers before accumulation, the mode shifters perform an 8 bit
arithmetic left shift during this cycle.

Only two different modes - transparent mode and 8 bit arithmetic
left shift - have to be provided by the mode shifters. Therefore, an
implementation of the mode shifters increases the gate count of the
arithmetic processing unit only marginally. More significant with
respect to silicon area is, that 9x16 bit multipliers are required for
the realization of 16 bit arithmetic.

Due to the different operation modes, the presented arithmetic pro-
cessing unit combines fast fourfold parallel 8 bit arithmetic with
high accuracy 16 bit arithmetic. Operating in 8 bit mode with
a clock rate of 66 MHz, a peak performance of 1056 MOPS is
achieved by the arithmetic processing unit. Because all 16 bit op-
erations require two clock cycles, the effective parallelism in the
16 bit mode is reduced to two. Therefore, a single arithmetic pro-
cessing unit provides a peak performance of 528 MOPS in 16 bit
mode.

2.1.2 Local Memory

The local memory supports on-chip storage of input data and inter-
mediate results of the arithmetic processing unit. Furthermore, the
local memory serves as a 32 bit memory mapped interface between
the coprocessor and the RISC processor core.

Three different access requests have to be served by the local mem-
ory:

� Simultaneous data in- and output via the video interface.

� Access of the RISC to the data in the local memory.

� Simultaneous access of all four data paths and storage of the
results.

While the transfers of the video interface and the RISC with the
local memory are 32 bit wide, the bandwidth requirements of the
arithmetic unit are significantly higher. Each of the four data paths
needs two operands (2*8 bit) and a coefficient of 16 bit. This leads
to a read access of 128 bit. Additionally, the result of the accumu-
lator/shifter/limiter (16 bit) has to be stored in the local memory.

The local memory was realized as dual-port RAM. To serve all
memory requests, it can operate in the above mentioned three ac-
cess modes. With integration of this 4096 byte local memory, parts
of the processed video image can be kept locally. This is especially
advantageous for motion estimation in hybrid coding applications,
as it allows to carry out block matching within a search range of
up to +/- 22 pixels horizontally and vertically without reloading,
which leads to a significant decrease in overall processing time.

2.1.3 Microprogrammable Control Unit

The microprogrammable control unit features a 1024x20 bit mi-
crocode RAM and masters the operation of the local memory and
the arithmetic processing unit. Each clock cycle it generates two
addresses for the ports of the local memory and a control word for
the arithmetic processing unit. Loop-based processing is supported
by this unit, so that operations like 2-D discrete cosine transform
or half-pel motion estimation can be executed on the coprocessor
autonomously.

2.2 RISC Processor Core
The RISC processor core of the video signal processor is used
for medium-level and control tasks. These tasks are characterized
by data-dependent operations, i.e., the control flow of these tasks
shows a high degree of data-dependent branches.

Several RISC cores are available for embedded applications and
can be implemented as hard or soft macros. Because they are usu-
ally designed for control applications, they do not fulfill the re-
quirements of video processing applications very well. However,
controlling is a main task the RISC in the AxPe has to perform.

For the AxPe investigations were carried out to evaluate the nec-
essary performance for medium-level processing [7]. Because the
coprocessor can execute low-level tasks autonomously in parallel
to the computation of medium-level tasks in the RISC, a good bal-
ance between the computation times of both units can reduce the
number of stall cycles. The investigations have shown that on one
hand commercially available cores offer more features, than are re-
quired. For example data caching speeds up access to large external

memories, but this is not essential for hybrid video coding applica-
tions as data access patterns are known in advance.

On the other hand the performance for processing of medium-level
tasks can be improved significantly by speeding up kernel routines.
Especially the performance of quantization and Huffman coding
can be improved by adapted execution units. Therefore, an adapted
RISC core (Figure 1, left part) for the AxPe has been designed,
which complements the low-level coprocessor.

The developed 32 bit RISC core is based on a harvard architecture
with a 16 bit data path. The RISC processes one scalar instruc-
tion per clock cycle. Instructions are fetched from a 2048 * 32-bit
on-chip program memory and executed in a four stage instruction
pipeline, which consists of the stagesfetch, decode&read,
execute, write . In the decode&read stage operands are
read from a 256 * 16 bit register file for being executed either by
the ALU or by the medium-level unit (MLU). The register file can
be addressed either directly or indirectly. For indirect addressing
three indirect address registers are used, two for sources and one for
destination. Additionally, a irregular indirect addressing scheme is
supported by an implemented RAM-based address table. Because
video coding schemes require a meander scan for quantization of
video blocks, this feature speeds up the run level coding process.

To support data transfer between the register file and the local mem-
ory of the coprocessor, a dedicated I/O unit is used. Typically data
blocks of 8x8 pixel have to be transmitted between RISC and co-
processor. Thus, this unit is optimized for block transfers. It con-
tains registers for indirect addressing of the local memory and for
controlling the coprocessor. Status information from the coproces-
sor is read by this module and evaluated by the RISC.

In addition to the execution of standard arithmetic and logic instruc-
tions, the ALU of the RISC processor provides special instructions
for the processing of data dependent operations. These instructions,
as well as the standard instructions, are executed within one clock
cycle. Table 1 gives an overview of the additional ALU instructions
and possible applications.

Instruction Required for Task

A� jBj Variable Length
A+ jBj Coding
A�B if (A<0) Quantization
A+B if (A>0)

A if (A=0)

A�B if (A<0) & (A even)

A+B if (A>0) & (A even)

A else

Table 1: Additional ALU instructions

The second execution unit in the RISC processor, the medium-
level unit (MLU) has been implemented to speed up multiplica-
tions, which frequently occur in quantization and inverse quantiza-
tion tasks. These tasks represent the most computation-intensive
part of medium-level processing. A 17*17 multiplier for signed
fixed-point multiplications and a shifter were implemented in this
unit. A postponed limiter supports range control and rounding of
the result and detects an overflow or underflow (Figure 3). The
MLU is highly configurable and can not only be used for this spe-
cial purpose.

The instruction memory of the RISC is addressed by the PC&Loop-

MULT
17*17

(4 pipeline
stages)

Sign Extension
1717

165

Shift Roun–
Over/
Under–
Flowding

1 216

Limit

Low Word
High Word

16 16

16

C
on

tr
ol

16

16

Result

X–BUS Y–BUSOpcode

16

Setup

Figure 3: Architecture of the medium-level unit

Control unit, which supports hardware controlled instruction loops.
To execute loops, a single register has to be initialized with the loop
count by a single instruction. After invoking a hardware controlled
loop, the unit performs a cyclic execution of a specific code seg-
ment without any overhead for branches. This feature reduces the
amount of control instructions in medium-level tasks, which are
typically based on loops of a fixed loop count.

3. INTEGRATION OF TEST STRUCTURES
The AxPe1280V contains test structures, that allow to carry out
several tests on the integrated logic, memory and communication
network. It features a scan path for bus tests (ScBT), which sur-
rounds the core similar to a boundary scan path and is utilized for
bus tests.

Furthermore, the AxPe1280V is equipped with a built-in self-test
(BIST). The BIST is performed and controlled locally, because ac-
cess to the modules from the outside is very limited and is also
subject to defects. Therefore, a programmable fault-tolerant BIST
controller has been integrated within the video signal processor. A
scan path plus four signals secured by a parity bit are sufficient
for programming and controlling the BIST controller. If the BIST
controller detects an error in itself or in its control signals, or if
the test of the processor fails, it moves into an isolation state. In
this state the processor is prevented from accessing the output bus,
the scan paths of this module are bypassed and the local clock is
frozen, preventing dynamic power dissipation within the disabled
processor. The isolation state can only be left by applying a reset
instruction to the BIST controller. Together these measures ensure
that only a sufficiently small number of potential defects remains
within the chip, which could affect a multiprocessor system based
on the AxPe1280V.

All logic parts of the video signal processor have been analyzed
with respect to testability, which can be achieved by pseudoran-
dom test patterns generated by BILBOs (Built-In Logic Block Ob-
servers) [8]. Selected system registers have been replaced by mod-
ified BILBOs, which — beside their normal function as registers
— can perform tasks as a TPG (Test Pattern Generator), TAE (Test
Answer Evaluator), or as a stage of a scan chain. BILBOs running
in the TPG mode generate pseudorandom test patterns. BILBOs
acting as TAEs are employed to collect and compress the test an-

swers of the tested logic.

The control signals of all BILBOs in the RISC processor are gen-
erated by the BIST controller. All control signals of the BILBOs
in the coprocessor (arithmetic processing unit, control unit, and lo-
cal memory) as well as some additional coprocessor test control
signals are set by the RISC processor.

The video signal processor including BIST properties has an area
overhead of about 3.5% on top of a processor containing a scan
path as its only test feature.

4. DESIGN PROCESS
In the beginning of this project several hybrid coding algorithms
were analyzed according to the employed operations and their spe-
cific performance requirements. This led to the presented copro-
cessor concept. Parts of the architecture were modeled in the pro-
gramming language C and extensive simulations with several fil-
tering and coding algorithms were carried out. Bottlenecks of the
initial concept were identified and eliminated.

After the detailed architecture specification was set up, the design
of the video signal processor AxPe1280V was carried out by a core
team of four engineers supported by several graduate students do-
ing their project work or thesis in this project. This approach re-
quired to segment the chip design into many relatively small func-
tional units which could be designed and simulated independently.
For this reason a detailed functional and interface specification of
the modules before implementation was crucial.

Most modules of the RISC processor and parts of the control logic
of the coprocessor were specified in Verilog on register transfer
level (RTL). For implementation of the arithmetic units like ALU,
multiplier, multioperand accumulator, and barrel shifter two alter-
natives were considered: A standard-cell design in Verilog and syn-
thesis or the full-custom implementation of these modules. On one
hand a standard-cell implementation of these units would have re-
duced design time, but on the other hand would have led to a sig-
nificant increase in the required silicon area for these modules. Ex-
periments showed that a standard-cell implementation of the arith-
metic would also decrease the overall performance of the video
signal processor drastically compared to a full-custom implemen-
tation. For these reasons the arithmetic modules were designed
especially for the AxPe1280V in full custom logic with Cadence
tools. Other full-custom modules like memories and an analogue
PLL were from a library developed by Philips semiconductors.

Each implemented module of the processor was simulated on func-
tional level. After this initial verification, several modules were
connected to larger units and simulated again. To integrate the in-
stantiated full-custom modules in this simulation, behavioral Ver-
ilog models were created for these modules. More and more Ver-
ilog modules were connected together and a simulation of the com-
plete RISC processor and coprocessor was carried out. Several test
programs were developed in assembler and executed on the de-
scription of the processor. Their evaluation unveiled the remaining
errors in the Verilog implementation and also helped to optimize
parts of the architecture.

The verified Verilog modules on register transfer level were syn-
thesized with Synopsys’ design compiler. To achieve good synthe-
sis results and to reduce the wiring overhead in the standard-cell
layout, small modules containing not more than 2000 gates were

synthesized independently. As the processor was already divided
in relatively small functional blocks, no additional segmentation of
these modules was necessary. The synthesized netlist of each mod-
ule was again simulated with the Verilog simulator and timing was
optimized.

For the final implementation, the synthesized and full-custom
modules were integrated with the Cadence Design Framework II
schematic tool and the test logic (see Section 3) was added. The
layout of the AxPe1280V was also carried out with Cadence De-
sign Framework II. Standard-cell logic was placed in the middle of
the chip and the full-custom modules at the border. This approach
was chosen, because it was not recommended to route signals over
full-custom memories in this 3 metal layer process. Furthermore, a
distribution of standard-cell logic over the whole chip would have
caused wiring delay and additional silicon area for routing.

5. PROCESSOR IMPLEMENTATION
The processor has been fabricated in a 0.5�m 3 metal layer CMOS
technology by Philips semiconductors. The circuit consists of
about 1.3 M transistors and has a die size of 82mm2. It is avail-
able in a QFP160 package. The power supply is 3.3 V for the core
and the pad drivers. The power consumption is typically less than
0.7 W at 66 MHz. Because the complete processor is realized with
static registers and memory cells it can be switched in stand-by
mode. In stand-by mode the core’s power consumption falls below
17 mW. This feature allows to integrate the video signal processor
into mobile communication systems, e.g., notebook-based video
telephones. A PLL which multiplies the external clock by a pro-
grammable factor of 1, 1.5, 2, 3, and 6 has been integrated in the
AxPe1280V to allow a flexible system integration of the processor.

Extensive tests have been carried out with the AxPe1280V and have
unveiled that the achievable clock rate is mainly limited by the on-
chip memory in the RISC processor. With enhancements in these
memories, their controlling, and by fabricating the chip in a new
technology, the maximum clock rate can increase significantly.

Figure 4 shows a die microphotograph of the developed processor.
The main characteristics of the chip are given in Table 2.

Technology 0.5�m CMOS, 3 metal layer
Die Size 82mm2

Full-Custom Modules RAM, Arithmetic
Standard-Cell Logic Controlling
Transistors 1.3 M
On-Chip Memory 123 kbit
Maximum Clock Rate 66 MHz
Power Consumption 0.7 W @ 66 MHz
Computational Power 1056 MOPS
Max. Input Data Rate 132 Mbyte/s
Max. Output Data Rate 66 Mbyte/s

Table 2: Main characteristics of the AxPe1280V

6. MIMD MULTIPROCESSOR SYSTEM
For several video coding applications the performance of one
AxPe1280V is sufficient. When connecting several processors to
a MIMD (multiple instruction, multiple data) multiprocessor sys-
tem (Figure 5), real-time processing of more complex applications

Figure 4: Die microphotograph of the video signal processor

is supported. The image data is distributed sequentially to the pro-
cessors in the multiprocessor system and all processors perform the
hybrid coding scheme in parallel on macro block level. Because
each processor features on-chip program and data memories, the
data is processed asynchronously and the overall structure of the
multiprocessor system is MIMD based.

��
����
�
����	��
���
��

����

�
�

���� ��� ��

	���� ��� ��

�
�

���� ���� ����

��
����
� ��
����
�

�
� �
�

Figure 5: MIMD-based multiprocessor system

When using a SPMD scheme (single program, multiple data) a sim-
ple technique for bus arbitration can be applied (Figure 6). One
processor loads and stores data from or to the external data mem-
ory at a specific period of time, while all other processors compute
on locally stored data. This allows a high utilization of the buses
and stall cycles can be eliminated. For block-based video coding
applications like ISO MPEG-2, where the communication require-
ments between the processors can be neglected, the performance of
the multiprocessor system is almost direct proportional to the num-
ber of processors. This speedup is only limited by the bandwidth of
the input and output bus. Table 3 gives an overview on the number
of processors required for different hybrid coding applications.

A multiprocessor system based on up to 6 AxPe1280V has been
implemented as a PCI board for personal computers. Sample ap-
plications, that have been programmed on this system, are video
coder/decoder according to ITU-T H.261 and H.263 and several
proprietary video processing applications.

Application Standard Source rate Number of AxPe
codec encoder decoder

Video H.261 / QCIF, 10 Hz 1 — —
telephone H.263 0.38 Mbyte/s

CIF, 10 Hz 2 — —
1.52 Mbyte/s
CIF, 30 Hz 4 — —

4.56 Mbyte/s
Video CD MPEG 1 SIF, 25 Hz — 3 2

3.80 Mbyte/s
Digital TV MPEG 2 CCIR601, 25 Hz — 16 6

20,74 Mbyte/s
Image JPEG CIF, 10 Hz — 1 1
coding 1.52 Mbyte/s

Table 3: Number of AxPe processors required for hybrid coding applications

Proc. #N Processing Load Processing

Proc. #3 Processing Load Processing Load

Proc. #2 Proc. Load Processing Load Proc.

Proc. #1 Load Processing Load Processing

Figure 6: Loading scheme for MIMD-based multiprocessor system

The AxPe1280V has been designed to be used as building block
for a monolithic multiprocessor system. Such a system with 9
AxPe640V, a previous version of the presented AxPe1280V, has
already been implemented [9]. The monolithic integration is sup-
ported by the separate I/O buses of the processor and the sophisti-
cated self-test capabilities of each processor, as discussed in Sec-
tion 3.

7. CONCLUSION
The presented video signal processor AxPe1280V is optimized for
block-based video coding standards like ITU-T H.261/H.263, and
ISO MPEG-1/2. It consists of a RISC processor core for medium-
level video processing and control tasks, and a coprocessor for
computation-intensive convolution-like tasks.

The processor was designed in standard-cell logic combined with
full-custom modules for arithmetic and memories, and was realized
in a 0.5�m 3 metal layer CMOS technology. It provides an arith-
metic performance of more than 1 GOPS at a clock rate of 66 MHz.

For applications requiring higher computational power, the proces-
sor can be integrated into a scalable MIMD-based multiprocessor
system, consisting of several AxPe1280V. For block-based video
coding algorithms, almost a linear speedup can be achieved by par-
allelization on video data level. Such a multiprocessor system has
been implemented on a PCI board for personal computers.

Current activities include the optimization of software tools for
AxPe program development and the implementation of new appli-
cations on the AxPe multiprocessor system.

8. ACKNOWLEDGMENTS
The authors would like to thank Klaus Gaedke and Hartwig Jeschke
for their contributions to this project. Furthermore we thank Axel
Werner and Jens Castagne from Philips Semiconductors ASIC Sup-

port Centre, Hamburg, for providing full custom modules, the lay-
out, and the fabrication of the processor. This work is supported by
FhG under contract no. T/F41B/T0183/P1307.

9. REFERENCES
[1] ITU-T Recommendation H.261, ”Video Codec for audiovisual

Services at p x 64 kbits”, International Telecommunication
Union, March 1993

[2] Draft ITU-T Recommendation H.263, ”Video Coding for Low
Bit Rate Communication”, International Telecommunication
Union, December 1995

[3] ISO/IEC JTC1/SC2/WG11 MPEG-90/176 Rev. 2, 1990.

[4] ISO/IEC JTC1/SC29/WG11 CD 13818-2, 1994.

[5] H.G. Musmann, P. Pirsch, H.-J. Grallert, “Advances in Picture
Coding”, Proc. IEEE, Vol. 73, No. 4, pp. 523-548, 1985.

[6] Y. Okada et. al. ”An 80mm2 MPEG2 Audio/Video Decode
LSI”, IEEE International Solid-State Circuits Conference, Vol.
40, pp.264-265, Feb. 1997.

[7] K. Herrmann, M. Seifert, K. Gaedke, H. Jeschke, P. Pirsch,”A
RISC Core for a Monolithic Video Signal Processor”, in
Rabaey, J. et al., Eds., Workshop for VLSI Signal Processing,
Oct. 1994, pp. 368-377, IEEE, New York, NY, 1994.

[8] B. Könemann, J. Mucha, G. Zwiehoff, “Built-In Logic Block
Observation Techniques”, Proc. 1979 Intern. Test Conf.,
Cherry Hill, NJ, USA, October 1979, pp. 37-41.

[9] J. Otterstedt, K. Gaedke, K. Herrmann, M. Kuboschek, H.U.
Schroeder, A. Werner, ” A 16cm2 Monolithic Multiproces-
sor System Integrating 9 Video Signal-Processing Elements”,
IEEE International Solid-State Circuits Conference, Vol. 39,
pp. 306-307, Feb. 1996.

	CDROM Home Page
	DAC98
	Front Matter
	Table of Contents
	Session Index
	Author Index

