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Abstract consider the traditional approach (linearisation) to analysing perturbed
Phase noise is a topic of theoretical and practical interest in electronic circui@plinear systems, and show how this procedure is not consistent for
as well as in other fields such as optics. Although progress has been madgeitonomous oscillators. In Section 5, we derive a nonlinear equation
understanding the phenomenon, there still remain significant gaps, both inkitst exactly captures how perturbations result in phase noise. In Sec-
fundamental theory and in numerical techniques for its characterisation. In tiifh 6, we solve this equation with random perturbations and arrive at
tbr, fogardiess of operating mechaniam. We establish novel restts abou R astic description of phase deviation, from which we derive tim-
S ¢ . - > jitter. Next, in Section 7, we use this stochastic characterisation
dynamics of stable nonlinear oscillators in the presence of perturbations, alculate the correct shape of the oscillator's spectrum with phase

deterministic and random. We obtain an exact, nonlinear equation for ph In Section 8 deri | L | di
error, which we solve without approximations for random perturbations. THISIS€. In Section 8, we derive several quantities commonly used in

leads us to a precise characterisation of timing jitter and spectral dispersisillator design to quantify jitter and spectral properties. In Section 9,

for computing which we develop efficient numerical methods. We demonstrate address the problem of computing these quantities efficiently and
our techniques on practical electrical oscillators, and obtain good matches @igvelop numerical methods that can easily be implemented in existing
measurements even at frequencies close to the carrier, where previous tphdlators. Finally, in Section 10, we apply our methods to practical

niques break down. electrical oscillators. All proofs and discussion of mathematical back-

1 Introduction ground are omitted due to space limitations.

Oscillators are ubiquitous in physical systems, especially electrogic . : :

and optical ones. For example, in radio frequency (RF) communiCa- Pre“ml_nanes and overview ) )

tion systems, they are used for frequency translation of informatibhe dynamics of any autonomous system without undesired perturba-

signals and for channel selection. Oscillators are also present in digitais can be described by a system of differential equafions:

electronic systems which require a time reference, i.e., a clock signal,

in order to synchronise operations. x= f(x) 1)
Noise is of major concern in oscillators, because introducing even

small noise into an oscillator leads to dramatic changes in its frequeifyere x ¢ IR" and f(-) 1 R"IR". We assume thaf(-) satisfies

spectrum and timing properties. This phenomenon, peculiar to g% conditions of the Picard-Lindefl existence and uniqueness theo-

cillators, is known aphase nois@r timing jitter. A perfect oscilla- e for initial value problems [2]. We consider systems that have an
tor would have localized tones at discrete frequencies (i.e., harmon-

ics), but any corrupting noise spreads these perfect tones, resulti ptotically orbitally stabfeperiodic solutiorxs(t) (with periodT)

high power levels at neigbouring frequencies. This effect is the m ), i.e., a stable limit cycle in the-dimensional solution space.
contributor to undesired phenomena such as interchannel interferefie &€ interested in the response of such systems t% a STXa” state-
leading to increased bit-error-rates (BER) in RF communication s@&pendent perturbation of the foiix)b(t) whereB(-) : IR"—IR™P

tems. Another manifestation of the same phenomenon, jitter, is impardb(-) : IR—IRP. Hence the perturbed system is described by

tant in clocked and sampled-data systems: uncertainties in switching

instants caused by noise lead to synchronisation problems. Charac- x= f(x)+B(x)b(t) )
terising how noise affects oscillators is therefore crucial for practical

applications. The problem is challenging, since oscillators constitutget the exact solution of the perturbed system in (2x(bg

special class among noisy physical systems: tagionomousiature Although our eventual intent is to understand the response of the

makes them unique in their response to perturbations. gscillator whenb(t) is random noise, it is useful to consider first the

sta r?d?ﬂglgﬁr:gen ggcér; Egﬁnbgg\?el%?r?gi?\il%ggl,tké%n);gﬂg tilgng? Eée wheih(t) is @ known deterministic signal. We carry out arigorous
experimental techniques for its characterisation (see Section 3 f lysis of this case in Section 5 and abtain the following resuits:
brief review). Despite the importance of the problem and the large 1. the unperturbed oscillator’s periodic resporg¢) is modified
number of publications on the subject, a consistent and general treat- g xs(t+a(t)) +y(t) by the perturbation, where:

ment, and computational techniques based on a sound theory, appear

to be still lacking. In this work, we provide a novel, rigorous theory (a) a(t) is a changing time shift, gphase deviationin the
for phase noise and derive efficient numerical methods for its charac- periodic output of the unperturbed oscillator.
terisation. Our techniques and results are general; they are applicable (b) y(t) is an additive component, which we term thrbital
to any oscillatory system, electrical (resonant, ring, relaxation, etc.) deviation to the phase-shifted oscillator waveform.

or otherwise (gravitational, optical, mechanical, biological, etc.). The
main ideas behind our approach, and our contributions, are outlined in2. a(t) andy(t) can always be chosen such that:
Section 2. We apply our numerical techniques to a variety of practical

oscillator designs and obtain good matches against measurements. (a) af(t) will, in general, keep increasing with time even if the
The paper is organised as follows. In Section 2, we present some perturbatiorb(t) is always small. _
preliminaries and an overview of the main results of the paper, and in (b) the orbital deviatiory(t), on the other hand, will always
Section 3, we give a brief review of the previous work. In Section 4, we remain small.
*visiting from the University of California, Berkeley. LFor notational simplicity, we use the ODE formulation throughout the paper to de-

scribe the dynamics of an autonomous system. The results and the numerical methods
we present can be extended [1] for the MNA (Modified Nodal Analysis) formulation (i.e.,
DAE formulation) given byd/dt g(x) + f(x) = 0.
2After any small disturbance that does not persist, the system asymptotically settles
th . back to the original limit cycle. See [2] for a precise definition of this stability notion.
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These results concretise existing intuition amongst designers about osRecently, Hajimiri [14] has proposed a phase noise analysis based
cillator operation. Our proof of these facts is mathematically rigasn a conjecture for decomposing perturbations into two (orthogonal)
ous; further, we derive equations foft) andy(t) which lead togqual- components, generating purely phase and amplitude deviations respec-
itatively different resultsabout phase noise compared to previous dtvely. While this intuition is similar to Kitner's approach [13], other
tempts. This is because our results are based on a new nonlineargsgrects of Hajimiri's treatment (e.g., stochastic characterisation for
turbation analysis that is valid for oscillators, in contrast to previopbase deviation and the spectrum calculation) are essentially equiv-
approaches that rely on linearisation. We show in Section 4 that analgnt to LTV analysis. Unfortunately, the conjecture for orthogonally
sis based on linearisation is not consistent for oscillators and resultd@somposing the perturbation into components that generate phase and
non-physical predictions. amplitude deviations, while intuitively appealing, can be shown to be
Next, we consider the case where the perturbabiohis random invalid [15]. Design intuition resulting from the conjecture about noise
noise — this situation is important for determining practical figures séurce contributions can also be misleading.
merit like zero-crossing jitter and spectral purity (i.e., spreading of the In summary, the available literature often identifies basic and use-
power spectrund) Jitter and spectral spreading are in fact closely rl facets of phase noise separately, but lacks a rigorous unifying the-
lated, and both are determined by the manner in whith now alsoa Oy clarifying its fundamental mechanism. Furthermore, existing nu-
random process, spreads with time. We consider random perturbatmﬁ§‘3aI methods for phase noise are based on forced-system concepts
in detail in Sections 6 and 7, and establish that: which are inappropriate for oscillators and can generate incorrect pre-

1. the average spread of the jitter (mean-square jitter) increa&ons.

preciselylinearly with time. 4 Perturbation analysis using linearisation
2. trée ptowerhSEectrum of the perturbed oscillator imeentziart The traditional approach to analysing perturbed nonlinear systems is
3. gs?nuglg%%alaﬂ:rgr?gtlghtis sufficient to describe jitter and spec-to linearise abou@ the ur_1perturbed SOIUt'Or.]’ und_er t he assum_ptlon that
tral spreading in a noisy oscillator. the resultant dewatlc?nwul be small. Let this deviation bel(t), i.e.,
4. the oscillator’s output is stationarystochastic process. z(t) = xs(t) +w(t). Substituting this expression faft) in (2), replac-

These results have important implications. The Lorentzian shapdn f (*s(t) +w(t)) by its first order Taylor series expansion, and ap-
the spectrum implies that the power spectral density at the carrier f&aximatingB(x) with B(xs) (assumingw(t) “small”), we obtain

guency and its harmonics has a finite value, and that the total carrier

power is preserved despite spectral spreading due to noise. PrevioWN 0f(x)
analyses based on linear time-invariant (LTI) or linear time-varying™ ~ ~ gx
(LTV) concepts erroneously predict infinite noise power density at the

carrier, as well as infinite total integrated power. That the oscillator ) () _ o

output is stationary is surprising at first sight, since oscillators are navhere the Jacobiah(t) = =5, Xt is T-periodic. Here, we used the
linear systems with periodic swings, hence it might be expected that . s . .

output noise power would change periodically as in forced syster#s!t thatxs(t) satisfies (1). Now, we would like to solve far(t) in (3)
However, it must be remembered that while forced systems are gg‘ﬁee if our assumption that it is small is indeed justified. For this, we
plied with an external time reference (through the forcing), oscillatouse results from Floquet theory [2, 16] as folléws o
are not. Cyclostationarity in the oscillator’s output would, by defini- The state transition matrix for the homogeneous part of (3) is given
tion, imply a time reference. Hence the stationarity result reflects the

fundamental fact that noisy autonomous systems cannot provide a per-

fect time reference. n T

3 Previous work ®(t,s) = U(t)exp(D(t —s))V(s) :_Z\Ui(t)equ’(t*S))Vi (s 4

A great deal of literature is available on the phase noise problem. Here =

we mention only some selected works. Most investigations of elgh

w(t) +B(xs(t))b(t) = At)w(t) + B(xs(t))b(t)  (3)

Xs(t)

- . - . . -1

tronic oscillators aim to provide insight into frequency-domain pro frg_u (t) is aT'pe”ﬁd'C r_lons'nﬁullf}r matn)(\i](t) = U .(t) and
erties of phase noise, in order to develop rules for designing prabti= 9i@dH1, -, Hn], whereyy are theFloquet (characteristic) expo-
cal oscillators; well-known references include [4, 5, 6, 7, 8]. Usualljents exp(iT) are called theharacteristic multipliersu (t) are the
these approaches apply linear time-invariant (LTI) analysis to higielumns ofJ (t) andv]' (t) are the rows o¥/ (t) = U ~%(t).

Q or quartz-crystal type oscillators designed using standard feedbgck
topologies. Arguments based on deterministic perturbations are Lgét%"ark 4.1 {lgln(t)’UZét)v“'tz U”(t)}ih ag.d tévl(t)vvlzt(t)"" 7V3.(t0}
to show that the spectrum of the oscillator response varies/ & 1 $ 'spaE 5 f and  sa 'Sny eh lor ogonally con ||f|o_ns
times the spectrum of the perturbation. While often of great pracfi-(t)Ui(t) = &j for every t. Note that, in general, (t) itself is
cal importance, such analyses often require large simplifications of fi an orthogonal matrix.

problem, and skirt fundamental issues such as why noisy oscillatogs us first consider the homogeneous part of (3), the solution of which

exhibit spectral dispersion whereas forced systems do not. is given by
Attempts to improve on LTI analysis have borrowed from linear
time-varying (LTV) analysis methods for forced (nonoscillatory) sys- n
tems (e.g., [9, 10, 11, 12]). LTV analyses can predict spectra more Wy (t) = Ziui (t) exp(pt)v (0)w(0) 5)
accurately than LTI ones in some frequency ranges; however, LTV i=

techniques for forced systems retain nonphysical artifacts of LTI anal-
ysis (such as infinite output power) and provide no real insight into twberew(0) is the initial condition. Next, we will show that one of the
basic mechanism generating phase noise. terms in the summation in (5) does not decay with

Possibly the most general and rigorous treatment of phase nOiSEetrchma 41
date has been that oféther [13]. In this work, the oscillator response ) . - .
is decomposed into phase and magnitude components, and a differen® The unperturbed oscillator (1) has a non-trivial T-periodic so-
tial equation is obtained for phase error. By solving a linear, small-time ~ 1ution x(t) if and only if the numbet is a characteristic multi-
approximation to this equation with stochastic inputayti<ér obtains plier of the homogeneous part of (3), or equivalently, one of the
the correct Lorentzian spectrum for the power spectral density due to ~ Floguet exponents satisfiegp( T) = 1.
phase noise. Despite these advances, certain gaps remain, particularl

with respect to the derivation and solution of the differential equation { _The ti_me-deriv_ative of the periodic solutiog(® of (1), i.e.,
for phase error. Xs(t), is a solution of the homogeneous part of (3).

3The deterministic perturbation case is also of interest, for, e.g., phenomena such @By deviation we refer to the difference between the solutions of the perturbed and
mode locking in forced oscillators. We consider this case elsewhere [3]. unperturbed systems.
‘ 4A Lorentzian is the shape of the squared magnitude of a one-pole lowpass filter transféiThe reader who is unfamiliar with Floquet theory is encouraged to review it before
unction. continuing.



Remark 4.2 One can show that il is a characteristic multiplier, Definition 5.2 Let
and the remaining /- 1 Floquet exponents satisfgxp(piT)| < 1,1 =

2,...,n, then the periodic solutionsi) of (1) is asymptotically or- bi(xt) = ca(x,tus(t+a(t)), and (10)
bitally stable, and it has the asymptotic phase property [2¥ore- & _ e _
over, if any of the Floquet exponents satiggxp(1 T)| > 1, then the b(xt) = B()b(t) — by (xt) = i;c,(x,t)u. (t+a(), (1)

solution x(t) is orbitally unstable
Without loss of generality, we choogg = 0 andus (t) = Xs(t).

Remark 4.3 With w(t) = Xs(t), we have J(t)xs(t) = 1 and Note that h(x,t) is obtained by projecting the original perturbation
vl (t)uj(t) =0, j = 2,...,n. v(t) will play an important role in the along the time-varying directiont + a(t)). u;,v; are the Floquet

where the scalars;¢x,t) = v (t+a(t))B(x)b(t)

rest of our treatment. vectors in Remark 4.1.
Next, we obtain the particular solution of (3), given by Lemma 5.1 xp(t) = Xs(t +a(t)) solves (8).
n t Lemma 5.1 states that the (x,t) component causes deviations only
wp(t) = Z\Ui (t)/ exp(p (t — )V (1B(xs(r))b(r)dr ~ (6) along the limit cycle, i.e., phase deviations. Next, we show that the re-
i= 0 maining perturbation componehgx,t) perturbsxp(t) only by a small

The first term in the above summation is given bgmounty(t), prowdedb(t).ls- small. _ )
u(t) 5 V] (r)B(xs(r))b(r)dr, since py = 0. If the integrand has Lemma 5.2 For b(t) sufficiently small, the mapping-t t + a(t) is
a nonzero average value, then the deviatigin) in (3) will grow invertible. .

unbounded. Hence, the assumption tht is small becomes invalid Definition 5.3 Let bt) be small enough thdtt) =t +a(t) is invert-

and the linearised perturbation analysis is inconsistent. ible. Then defin®(-) by b(f) = b(t), and y(t) by
When the perturbatioh(t) is a vector of uncorrelated white noise .
sources, one can show that the variances of the entrigg p€an grow LR e T A
unbounded. Thus, the assumption that the deviati@h stays smafl y(t) = i;u. (t)/o eXp(K (t—1))vi (r)B(xs(r))b(r)dr  (12)

is also invalid for the stochastic perturbation case.

5 Nonlinear perturbation analysis for phase deviation wheref =t+a(t).

As seen in the previous section, traditional perturbation techniquesRismark 5.2 Note that the index of the summation in (12) starts from
not suffice for analysing oscillators. In this section, a novel nonlinearsSince exp(yT)| < 1,i > 2 (due to asymptotic orbital stability), this
perturbation analysis suitable for oscillators is presented. implies that yt) is within a constant factor of(b), hence small.

The new analysis proceeds along the following lines: Th 511b(t) i Il (implying that &) in Definition 5.3
. . . L eorem 5. is small (implying tha in Definition 5.3 is
1. Rewrite (2) with the (small) perturbati@®{x)b(t) split into two also small), then (2) — xp(t) + y(t) Solves (7) to first order in(g).

small partsh; (x,t) andb(x,t): _ e e
_ . 6 Stochastic characterisation of the phase deviation
x= f(X) +ba(x,t) +b(x,t) 7 we now find the probabilistic characterisation of the phase deviation
2. Choose the first perturbation tebm(x,t) in such a way that its o (Definition 5.1) as a stochastic process when the perturbhtigris

effect is to create onlphase errorgo the unperturbed solution. & vector of uncorrelatddGaussian white noise sources. We will treat

; (9) as a stochastic differential equation [17, 18].
In other words, show that the equation We will follow the below procedure to find an adequate probabilis-

X = f(x)+by(xt) (8) tic characterisation of the phase deviat@ifor our purposes:
) . ) 1. We first calculate the time-varyirgrobability density function
is solved byxp(t) = xs(t +a(t)) for a certain functioro(t), (PDF) py (n,t) of a defined as

called thephase deviationit will be seen thati(t) can grow un-
boundedly large with time even though the perturbabipfx,t) 0P (a(t) <n)
remains small. 3 Pa(n,t) = T t=0
3. Now treat the remaining terimx,t) as a small perturbation to
(8), and perform a consistent traditional perturbation analysis  whereP (.) denotes therobability measureand show that it

in which the resultant deviations frowp(t) remain small. l.e., becomes the PDF of a Gaussian random variable asymptoti-
show thatz(t) = Xxs(t + a(t)) + y(t) solves (7) for a certaig(t) cally witht. A Gaussian PDF is completely characterised by
thatremains smalfor all t. y(t) will be called theorbital devi- the mean and the variance of the random variable. We show
ation. thata(t)_becom_es, asymptotically with time, a Gaussian ran-
We start by definingi(t) concretely through a differential equation. dom variable with a constant (as a functiontpimean and a

variance that is linearly increasing with tird®.

Definition 5.1 Definea(t) by 2. The time-varying PDRq(n,t) does not provide any correlation

da(t) 1 information betweert(t) anda(t + 1) that is needed for the
g = i (t+a(t)Bxs(t+a(t))b(t), a0 =0 (9) evaluation of its spectral characteristics. We then calculate this
correlation to be
Remark 5.1 a(t) can grow unbounded even ifth remains small. For _
example, consider the case whe(é)lis a small positive constaist< E [a(t)a(t+1)] = M’ +cmin(t,t+1)
1,B=1, and \(t) is a constant k. Thea(t) = ket. wheremandc are scalar constants. N .
Having definedx(t), we are in a position to spl&(x)b(t) into by (x,t) 3. We then show thati(t;) and a(tz) becomejointly Gaussian
andB(x,t): asymptotically with time, which does not follow immediately

— — o N . from the fact that they are individually Gaussian.
"Note that this is a sufficient condition for asymptotic orbital stability, not a necessary

one. We assume that this sufficient condition is satisfied by the system and the periodigThe extension to correlated noise sources is trivial. We consider uncorrelated noise

solutionxs(t). sources for notational simplicity. Moreover, various noise sources in electronic devices
8The notion of “staying small” is quite different for a stochastic process than the one #gually have independent physical origin, and hence they are modeled as uncorrelated

a deterministic function. For instance, a Gaussian random variable can take arbitrarily 1§kgghastic processes.

values with nonzero probability even when its variance is “small”. We say that a stochastit’The fact thai(t) is a Gaussian random variable for everyoes not imply thatr is

process is “bounded” when its variance is bounded, even though some of its sample pa@sussian stochastic process. Individually Gaussian random variables are not necessarily

(representing a nonzero probability) can grow unbounded. jointly Gaussian.




Starting with the stochastic differential equation (9) dorone can de- 7 Spectrum of an oscillator with phase noise

rive a partial differential equation, known as thekker-Planck equa- Havin . . . o
: : . g obtained the asymptotic stochastic characterisatian ofe
tion [ﬁS,nlfQ], ftortthke tlrtri:e }/arrymlng P (n,t). The Fokker-Planck now compute the power spectral density (PSDxgtf +a(t)). We
equation for(t) takes the fo first obtain an expression for the non-stationary autocorrelation func-
Apa(n,t) P N (t+n) tion R(t,T) of xs(t + a(t)). Next, we demonstrate that the autocor-
9Pl O (Apa(ﬂ,t)Mv(H—n)) relation becomes independent toisymptotically. This implies our
ot on on 13) Mmain result, that the autocorrelation of the oscillator output with phase
1 92 13) noise contains no non-trivial cyclostationary components, confirming
+523 (VT (t+n)v(t +r|)pa(r],t)) the intuitive expectation that a noisy autonomous system cannot have
20n periodic cyclostationary variations because it has no perfect time ref-
- T .. erence. Finally, we show that the PSD of the stationary component is
wherev’ (t) = v; ()B(xs(t)), and 0< A < 1 depends on the definitiona summation of Lorentzian spectra, and that a single scalar constant,
of the stochastic integral [18] used to interpret the stochastic differ@amelyc in (16), is sufficient to characterize it.
tial equation in (9). We would like to solve (13) f@(n,t). It turns We start by calculating the autocorrelation functiongt +a(t)),
out thatpy (n,t) becomes &aussiarPDF asymptotically wittinearly  given by
increasing variance. We show this by first solving for¢haracteristic

function Hw,t) of a(t), which is defined by R(t,T) = E [xs(t+a(t)) X5 (t + T+ a(t +1))] (17)

F(wt) = E [exp(jwa(t))] = / exp(jon) pa(n,t)dn Definition 7.1 Define Xto be the Fourier coefficients of(x): xs(t) =
- Tz Xiexp(jiuot).

Since bothv] (.) andB(xs(.)) areT-periodic in their arguments; (.)

is also periodic in its argument with peridd Hence we can expand

VT (t) into its Fourier seriesy’ (t) = 37> _,, Vi exp( jiwot) whereoy = © o

21T, Y RED= 5 3 XKexplili—ku)ep-jkan o

Lemma 6.1 The characteristic function af(t), F(w,t), satisfies 1=k .

E [exp(jwoPik(t, T))]

Lemma7.1

OF (w,t) Sl _
5 =2 kz ViTVi¢ expljoo(i — K)t) whereBi (t,T) = ia(t) — ka(t+1).
|=—00 Kk=—00
1 (19 10 evaluate the expectation in the above Lemma, it is useful to consider
(—)\woiw— 5(02) F(wo(i —k) +wt) first the statistics ok (t,T).
. . Lemma 7.2
wherex denotes complex conjugation.
Theorem 6.1 (14) has a solution that becomes the characteristic func- im E [Bi(t,7)] = (i—k)m 19)
tion of a Gaussian random variable asymptotically with time:
. 2 2 (I — k)ZCt+kZCT
Pt Jim E [(Bi(t.0)7] — (Bt )= 1P (20)
tlm F(wt) =exp(jou(t) — T) (15) —2ikemin(0,T)
. > where m and c are defined in Theorem 6.1. ABg(t,T) becomes
solves (14), where(f) = m is a constant, and“(t) = ct where Gaussian asymptotically with t.
1 /7 5 Using the asymptotically Gaussian naturédgft,t), we are now able
c= ?/0 Vi (O)v(t)dt. (16) {0 obtain a form for the expectation in (18).
The variance of this Gaussian random variable increases linearly wigmma 7.3 If ¢ > 0, the characteristic function @(t, 1) is asymp-
time, exactly as in a Wiener process. totically independent of t and has the following form:
Remark 6.1 a(t) becomes, asymptotically with t, a Gaussian random 0 ifi £k
variable with mean (t) = m and variances?(t) = ct. Jim E [exp(jewoPik(t, 1)) = {exp(— laRkclt)) ifi=k (21)
Lemma 6.2
[ E [uz(t)} if 1>0 Lemma 7.4
E[a(t)a(t+T1)] = { E [Gz(t-l—f)} if T<O _ © - 1 5,
_ ) lim R(t,T) = Z Xi X" exp(—jiuwoT) exp(—zwgl clt|) (22)
Corollary 6.1 Asymptotically with t e i=—o

E [a(t)a(t+T1)] = m? 4 cmin(t,t +1) The spectrum ofs(t + a(t)) can now be determined as follows:

Definition 6.1 Two real valued random variable$; and W, are | emma 7.5 The spectrum ofgt +a(t)) is determined by the asymp-
calledjointly Gaussian if for all @,a; € IR, the real random variable ;i pehaviour of R,T) as t— . All non-trivial cyclostationary
a1 +a¥; is Gaussian. components are zero, while the stationary component of the spectrum
Theorem 6.2 Asymptotically with time,a(t;) and a(tp) become is given by:

jointly Gaussian.

The stochastic characterisation of the phase deviatiame ob- ey whi’c 23
tained in this section can be summarized by Remark 6.1, Lemma 6.2, Sw) - z XX ToAidc2 1 (0 +itp)2 (23)
Corollary 6.1 and Theorem 6.2. These provide adequate information I=-e 2%

for a practical characterisation of the effect of phase deviation the

signal generated by an autonomous oscillator, e.g., its spectral propBgre is also a term &g &(w) due to the DC part of (t), which is
ties, as we will see in Section 7 and Section 8. omitted in (23).




8 Phase noise/timing jitter characterisation Noise source contributions
Single-sided spectral density and total power The scalar constant appears in all of the characterisations we dis-

The PSDS(w) in (23) (defined for-o < @ < o, hence called a double-CUS3€d above. Itis given by

sided density) is a real and even functionwafbecause the periodic 1 /T
steady-states(t) is real hence its Fourier series coefficiektsn Def- c= T / V] (T)B(xs(T1))BT (xs(T))va(T)dt (29)
inition 7.1 satisfyX; = X*;. Thesingle-sidedspectral density (defined 0
for 0 < f <w)is given by whereB(.) : IR"—IR"™P represents thmodulationof the intensities of
o f2i2c the noise sources with the large-signal state. (29) can be rewritten as
So(f) =282nf) =2 5 XX 0 (24)

Lo TR fgi4c? + (f +ifg)?

P 1 /T p
_ | =3 1 JAGLTCIE S > o (30)
where we substituted = 2rtf andwy = 2mtfg. Thetotal power(i.e. i= 0 i=
the integral of the PSD over the range of the frequencies it is defined . . . . .
for) in Ss( ) is the same as i8(2ntf ), which is wherep is the number of the noise sources, i.e., the column dimension

of B(xs(.)), andB(.) is theith column ofB(xs(.)) which maps théth
. ® i 2 noise source to the equations of the system. Hegjaepresents the
Prot = Total power inSs( f) :/0 Sq(f)df = 'ZZ Xl (25)  contribution of theith noise source to. Thus, the ratio
1=

C

Lac 5D

Remark 8.1 The phase deviatiom(t) does not change the total —
power in the periodic signalstt), but it alters the power density in c=2
frequency, i.e., the power spectral density. For the perfect periodic Sigy, pe ysed asfigure of meritrepresenting the contribution of tit
nal x(t), the power spectral density hasunctions located at discrete qise source to phase noise/timing jitter.

frequencies (i.e., the harmonics). The phase deviatitin spreads
the power in thesé functions in the form given in (24), which can be(') i
experimentally observed with a spectrum analyzer. ne can define

Single-sideband phase noise spectrum in dBEiz ® 1T ¢ 5

In practice, we are usually interested in the PSD around the first har- G = ?/0 [vi (D) & dt (32)
monic, i.e.,Ss( f) for f aroundfy. Thesingle-sidebanghase noise

L (fm) (in dBc/Hz) that is very widely used in practice is defined as (Where 1< k < nande is thekth unit vector) as thphase noise/timing
jitter sensitivityof the kth equation (i.e., node), becaugerepresents

fot f a unit intensity noise source added to ktle equation (i.e., connected
w> (26) to thekth nodg) in (). q (
. 9 Numerical methods
For “small” values ot, and for 0< fy, < fo, (26) can be approximatedFrom Section 6, Section 7 and Section 8, for various phase noise char-
as acterisations of an oscillator, one needs to calculate the steady-state
£2c periodic solutiorxs(t), and the periodic vectory (t) in (29). Without
L (fm) ~ 10 logyo <4022> (27) providing details, we will present the outline of a time-domain method
efic? + 14 for computing the periodic vectar; (t)11. The procedure for calculat-
ing vy (t) in the time domain is as follows:

1. Compute the large-signal periodic steady-state solugidnfor
fo 2 0 <t < T by numerically integrating (1), possibly using a tech-
L (fm) =~ 10logy (—) c (28) nique such as the shooting method [21].
fm 2. Compute the state-transition matdXT,0) by numerically in-
tegratingy =A(t)Y, Y(0)=Infrom0toT, where the Jacobian
A(t) is defined in (3). Note thab(T,0) =Y(T).
3. Computeu; (0) using ui(0) = xs(0). Note thatup(0) is an

Phase noise sensitivity

L(fm) =10 Ioglo<

Furthermore, fonf§c<< fm < fo, L(fm) can be approximated by

Notice that the approximation &f( fy) in (28) blows up agy,— 0. For
0< fn< Trfgc, (28) is not accurate, in which case the approximation

'Tr_]. (2.7) §_hou|d be used. eigenvector ofp(T,0) corresponding to the eigenvalue 1.

Iming jiter . _4. v;(0) is an eigenvector ab' (T, 0) corresponding to the eigen-
In some applications, such as clock generation and recovery, one is  \jue 1. To computer; (0), first compute an eigenvector of
interested in a characterisation of the phase/time deviatjonitself ®T(T,0) corresponding tc; the eigenvalue 1, then scale this
rather than the spectrum af(t + a(t)) that was calculated in Sec- L T ; e

eigenvector so that (0)' u;(0) = 1 is satisfied.

tion 7. In these applications, an oscillator generates a square-wave lik L .
waveform to be used as a clock. The effect of the phase deviation 5. Compute the periodic vectwi(t) for 0 <t <T by numerically
solving the adjoint system

on such a waveform is to cregttter in thezero-crossingr transition
times. In Section 6, we found out thaft) (for an autonomous oscil- o ATt 33
lator) becomes a Gaussian random variable with a linearly increasing y=—-A(t)y (33)

varianceqz(t) = ct. Let us take one of the transitions (i.e., edges) of usingvy (0) = v4(T) as the initial condition. Note that (t) is a
a clock signal as a reference (i.e., trigger) transition and synchronize  periodic steady-state solution of (33) corresponding to the Flo-

it with t = 0. If the clock signal is perfectly periodic, then one will quet exponent that is equal to 0, ijg,= 0. It is not possible to
see transitions exactly §t= kT, k=1,2,... whereT is the period. calculatevy (t) by numerically integrating (33¥prwardin time,

For a clock signal with a phase deviatiarit) that has a linearly in- because the numerical errors in computing the solution and the
creasing variance as above, the timing ofkttetransitionty will have numerical errors in the initial conditiom (0) will excite the

a variance (i.e., mean-square errarj(t,—kT)?] = ckT. The spec- modesof the solution of (33) that grow without bound. How-
tral dispersion caused ly(t) in an oscillation signal can be observed ever, one can integrate (3Bxckwardsn time with the “initial”

with a spectrum analyzer. Similarly, one can observe the timing jitter ~ conditionvy(T) = v41(0) to calculatevy(t) for 0<t < T in a
caused byx(t) using a sampling oscilloscope. McNeill in [20] experi- numerically stable way.

mentally observed the linearly increasing variance for the timing of the 6. Then,cis calculated using (29).

trans.lt'ons of a clock Slgnal generated by an autonomous oscillator, a8e also developed a frequency domain numerical method based on an harmonic bal-
predicted by our theory. ance formulation.




10 Examples

Oscillator with a bandpass filter and a nonlinearity [22]

This oscillator (Figure 1) consists of a Tow-Thomas second-order
bandpass filter and a comparator [22]. If the OpAmps are considered to
be ideal, it can be shown that this oscillator is equivalent (in the sense
of the differential equations that describe it) to a parallel RLC circuitin
parallel with a nonlinear voltage-controlled current source (or equiva-
lently a series RLC circuit in series with a nonlinear current-controlled
voltage source). In [22], authors breadboarded this circuit with an ex-
ternal white noise source (intensity of which was chosen such that its
effect is much larger than the other internal noise sources), and mea-
sured the PSD of the output with a spectrum analyzer.(rer1 and

fo = 6.66 kHz, we performed a phase noise characterisation of this
oscillator using our numerical methods, and computed the periodic 0s-
cillation waveformxs(t) for the output and = 7.56 x 10~8 se@.Hz.
Figure 2(a) shows the PSD of the oscillator output computed using
(24), and Figure 2(b) shows the spectrum analyzer measur&ment
The single-sideband phase noise spectrum using both (27) and (28)
is in Figure 3 . Note that (28) can not predict the PSD accurately be-
low the cut-off frequencyf; = nfgc = 10.56 Hz (marked with & in
Figure 3) of the Lorentzian.

Power Spectral Density (dBm)
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Figure 4: Ring-oscillator

Monte Carlo noise simulations to verify the results of their analytical
results. They obtain qualitative and some quantitative results, and offer
guidelines for the design of low phase noise ring-oscillators with ECL
type delay cells. However, their results are only valid for their spe-
cific oscillator circuits. We will compare their results with the results
we will obtain for the above ring-oscillator using the general phase
noise characterisation methodology we have proposed which makes
it possible to analyze a complicated oscillator circuit without simpli-
fications. We performed several phase noise characterisations of the
bipolar ring-oscillator. The results are shown in Figure 4(a), wkgre

is the collector load resistance for the differential pair (DP) in the delay
cell, rp is the zero bias base resistance for the BJTs in thdfFs

the tail bias current for the DP, arfg is the oscillation frequency for

the three stage ring-oscillator. Note that the chang&s andr}, affect

the oscillation frequency, unlike the changesdp. Figure 4(b) shows

a plot of (211f,)? ¢ versuslgg using the data from Figure 4(a). This

wency 60 prediction of the dependence of phase noise/timing jitter performance
on the tail bias current is in agreement with the analysis and experi-
(a) Computed PSD (4 harmonics) (b) Measured PSD [22] mental results presented in [20] and [23] for ring-oscillators with ECL
type delay cells. Note that larger values f@rrrfo)zc indicateworse

Figure 2: Computed and measured PSD
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