
HDL Code Restructuring Using Timed Decision Tables

Jian Li
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

Rajesh K. Gupta
Information & Computer Science

University of California, Irvine
Irvine, CA 92697

http://www.ics.uci.edu/~iesag

Abstract

Behavioral HDL descriptions from designers are
structured in a program calling hierarchy for the pur-
poses of programming convenience and conceptualiza-
tion. This code structure is often not suitable for di-
rect synthesis into digital hardware. For instance, in-
formation regarding operation exclusivity and resource
sharing can be explored by restructuring the code. In
this paper, we present a method to restructure behav-
ioral HDL code using merging and decomposition of
Timed Decision Tables (TDTs).

1 Introduction

With the maturity of synthesis tools at various lev-
els of design abstractions, hardware design is getting
closer to software programming [1]. As in program-
ming, designers often use language level structures
such as subprograms (functions/procedure calls) to
organize the HDL descriptions. This structure in HDL
descriptions is useful for programming convenience
and design conceptualization.

However, the subprogram calling hierarchy most
suitable for design development and design compre-
hension is not always suitable for synthesis. In this
paper, we propose a method to change the subprogram
hierarchy in designer-specified HDL descriptions into
one that is more suitable for synthesis. The method
is implemented using a tabular model called Timed
Decision Tables (TDTs). We first use TDT merg-
ing to flatten subprogram calling hierarchy. Then we
use TDT decomposition to re-build a calling hierarchy
under cost matrices related to operation/subprogram
size.and calling frequency.

Due to space limitation, we focus on use of
TDT transformations rather than transformation al-
gorithms. Specifically, we use TDT merging and de-
composition transformations. We explain concepts of
TDT modeling, TDT merging, and TDT decomposi-
tion using examples in HardwareC [2].

1092-6100/98 $10.00 @ 1998 IEEE

The rest of this paper is organized as follows. Sec-
tion 2 introduces the TDT model and merging and
decomposition transformations on TDTs. Section 3
demonstrates code restructuring using an example fol-
lowed by a discussion of implementation and results.

2 Hierarchy Merging & Decomposi-
tion

In this section we first briefly introduce the TDT
model before we present TDT merging and decompo-
sition.
2.1 The TDT Model

The TDT representation models a hardware com-
ponent with a set of three tables: a control table, a
dependency table, and a delay table. The control ta-
ble models the control-flow of input HDL description.
It is organized in the form of decision tables [3, 4].
A decision table consists of four quadrants: condition
stub, condition entries, action stub, and action entries.
The condition stub list conditions which are condi-
tion checking in the conditional branches and condi-
tional loops in the input HDL. The action stub list
actions which are operations in the behavioral code.
Condition entries and action entries are two matri-
ces, each column of which forms a control path. The
dependency table specifies information such as data-
dependency, concurrency type [2], and serialization
relation between each pair of operations. The delay
table lists the execution delay associated with each
action. More details of TDT can be found in [5].

Example 2.1. Consider the following control table of a
TDT model with two action sets a2 and a3 in its two different
control paths. In this simple case we ignore the dependency
table and take the control table as the whole representation.

TDTI
I CJ II 1 I 0 I
~
~

Note that a '1' in the condition part indicates that condition

Cl takes a logic value TRUEwhile a '0' in the condition indicates

131

a logic value FALSE.A '1' in the action part indicates that the
action in the same row is selected for execution while a '0' indi-

cates that the corresponding action is not selected for execution

in this control path. 0

A TDT may call anather TDT as its actian. This
farms a hierarchical TDT representatian.

Example 2.2. Now suppose aj in Example 1.1. is models
by TDT2 below.

aj TDT2

~
~

~31
a4 1
as 1

Then we have a hierarchical TDT representation consisting of

TDTj calling TDT2. Note that for clarity, we have dropped the
'a's in the action part. 0

There are twa types .of TDTs: procedure TDTs,

and process TDTs. A pracedure TDT carrespands
ta nested canditianal branches .or a subprogram (pro-

cedure/functian). It is executed anly.once every time
it is invaked. Bath T DTI and T DT2 are examples .of

pracedure TDTs. A pracess TDT carrespands ta a
pracess .or a laap in a behaviaral HDL. It is executed
repeatedly .once invaked. A pracess TDT represent-
ing a canditianallaap exits at a certain paint while a
process TDT representing a process runs indefinitely.

Example 2.3. A simple loop "while(c) a;" may be repre-
sented as a process TDT:

~
~
~
~

S is a state variable. The double outlines indicate that this is a

process table. It starts when S == 0 and stops when S == 1.
0

2.2 Transformations on TDTs

This sectian briefly describes impart ant TDT trans-
farmatians far hierarchy aptimizatian. There are twa
categaries .of TDT transfarmatians: (1) transfarma-
tians invalving multiple TDTs, and (2) transfarma-
tians an a single TDT.

Transfarmatians invalving multiple TDTs include
TDT merging and TDT decampasitian. Merging is
the pracess .ofcreating a flattened TDT representatian
from a hierarchical TDT representatian. Decampasi-
tian is the pracess .of breaking a flattened TDT inta
TDTs .organized in a calling hierarchy.

Transfarmatians an a single TDT are either used
far the purpase .of reducing the size .of TDTs .or
make ather TDT transfarmatians passible. We have
presented transfarmatians targeting at size reductian

in [5]. Here we shaw .one transfarmatian which is used
in merging.

Serializatian specified in the dependency table may
be explicitly included in the cantral table by intraduc-
ing a state variable in the cantral table. In the sequel,
we first shaw a TDT with a dependency table, fallawed
by an equivalent TDT with serializatian infarmatian
included in the ~antral table.

Example 2.4. Consider the following TDT representation:

TDT4:

The 'm' in the dependency table indicates that action a3 modi-
fies condition C2. After introducing a state variable S to explic-
itly serialize aj and a2 in the control table, we get the following
TDT:

T DT4r: 9
The new TDT is a process TDT, which starts execution from

S == 0 and stops when S == 2. Actions a2 and a3 can also

be serialized in a similar fashion. 0

2.3 TDT Merging

Merging is the pracess .of creating a big flattened
TDT representatian fram a hierarchical TDT repre-
sentatian. Merging invalving .only pracedure TDTs
results in a pracedure TDT. Merging invalving a pra-
cess TDT always results in a pracess TDT.

2.3.1 Three Basic Merging Cases

Merging invalving .only pracedure TDTs may be clas-
sified inta three types: (1) merging TDTs in a hierar-
chy, (2) merging TDTs in a sequence, and (3) merging
TDT with a fallawing .or preceding actian set. Belaw
we shaw .one example far each merging case.

Base Case 1: merging TDTs in a hierarchy.
This carrespands ta merging TDTs canverted fram
behaviaral HDL cade with subpragram calls .or nested
canditianal branches.

Example 2.5. Given the hierarchical TDT representation
in Example 2.2. which consists of TDTj calling TDT2 as an
action set. They can be merged into one table as follows.

132

aj a2 a3

m

s
s

s 0 1 0 1 -

Cj 1 1 0 0 0
C2 - - 1 1 0

aj 1 1

a2 1 1
a3 1 1

-S-n 1 2 1 2 2

0

Base Case 2: merging TDTs in a sequence.
Merging in this case is valid when a concurrency type
of parallel is specified, or when a type of data-parallel
is specified and no action in a preceding TDT modifies
conditions of following TDTs. The dependency tables
need to be modified accordingly when where is data
dependency between actions in different TDTs.

Example 2.6. Given aTDT sequence {TDTs;TDT6} with
details of the two TDTs shown below.

~
TDTs: ~

I al II 1 I I I

~
TDT6: ~

I A II I a2 I aa I

These two TDTs can then be merged into T DT m where

~
~

~.
Il

a2 1
"3 1

TDTm

0

Base Case 3: merging a TDT with an action
set. This transformation is invalid when one action

modifies the condition in a following TDT.

Example 2.7. We assume aa follows TDTI shown in
Example 2.1. in an action set of concurrency type serial. Action
aa and TDTI can be merged as shown in the following.

I :'1": I "' I

I C II 1 I 0 I
al 1 0
a2 0 1
aa 1 1

Note that to preserve the specified behavior, we have to modify

the dependency table. The symbol's' in column al indicates

that if both al and aa are selected for execution, they are run

in a sequential order where aa is alway run after al finishes. 0

2.3.2 Merging Involving
Conditions

Data-Dependent

To handle a data-dependent condition, we introduce
a state variable in TDTs to serialize the modification
and use ofthe condition. This may be better explained
using one example.

Example 2.8. Given a HardwareC code fragment:
c = e > f; if (c) a2; else aa;

The if statement can be converted into a TDT with one con-
dition c. We call this table TDT8:

TDT8:
I c II 1 I 0 I
I A II al I a2 I

We also mark "c = e > f; "as action al. Since al modifies the
condition in T DT4, they can not be merged following merging
case 3. Instead, we introduce a state variable to serialize them
in a resulting TDT:

~
.

S mi r

~
br
if ~

Here the symbols ini, br, and ex_br are symbolic state values.

The execution starts with S === ini. It stops when S ==
ex_br. We may assign arbitrary numerical value to these states

as in Example 2.4. Note that an additional action for computing

next sate has been added in each column. 0

2.3.3 Merging Involving Process TDT

When the calling TDT is a process TDT, we first pro-
ceed in the same way as if the calling TDT is a proce-
dure TDT. Then, we mark the result as a procedure
TDT. When a called TDT is a process TDT, it must
result from a conditional loop in the behavioral TDT.
We represent it using TDT with a state variable before
proceeding as if it is a procedure TDT.

Example 2.9. Consider an action set with two actions
including a process TDT which corresponds to a while loop.
Suppose it comes from the following HardwareC code:

[at;vhile(c) a2;]
The sequence may be represented in the following TDT with an
additional state variable.

~
~

~ll
a2 1

n p p ex- p

0

2.4 TDT Decomposition
TDT decomposition is the process of replacing a

flattened TDT with a hierarchical TDT that repre-
sents an equivalent behavior. It is the reverse process
of merging. The decomposition process must preserve
data dependency, concurrency type, serialization re-
lation among actions. As a result, the decomposition
process involves significant modification and use of the
dependency table in addition to changing the control
table.

Example 2.10. Consider TDT4r in Example 2.4. It may
be represented as a hierarchical TDT as follows:

E
I

~I
BI

.0.
C2

TDT.
aa

ITI:IT::QJ
~
~
IT::TI=r:::!Js

133

c1 1 1 1 0
c2 1 0 0 -
c3 - 1 0 -

aa 1

a4 1

as 1

a2 1

-
al 1
a2 1
aa 1
Sn br ex_r ex.hr

where T DTs is a sub- TDT containing two serialized actions a1
and a2:

m1 a2

II SilO I 1 II
TDTs:

s

Note that the dependency table has been split accordingly as
well. 0

In [6] we have presented an algorithm to automati-
cally decompose a flattened TDT. This algorithm uses
a two-level algebraic representation of the control ta-
ble. It consists four major steps:

1. Construct the two-level algebraic representations
of the control table.

2. Extract the algebraic kernels of the above expres-
SIon.

3. Select kernels that lead to valid transforma-
tions using specification in the dependency table.
(these kernels are called compatible primary ker-
nels [6])

4. Construct the hierarchical TDT representation
using original TDT and the compatible primary
kernels.

Example 2.11. The two-level algebraic expression of con-
trol table TDTsrc is

Sqa1 + Sqa2a3 + Sc1c2a1 + Sc1c2a2 + c1c2a3

If we introduce one more state bit S1 to include in control table
the serialization between a2 and a3, we get

SS1qa1 + SS1Qa2 + SS1a3 + Sc1c2a1 + SC1c2a2 + c1c2a3

A primary kernel which has two co-kernels and does not appear

to be a kernel of another such kernel is Sa1 +Sa2' This kernel is

essentialy two actions a1 and a2 executing in a sequence. They

may be factored out as a procedure if this leads to resource

reduction in synthesis. 0

The decomposition algorithm is driven-by cost func-
tions related to maximizing the number of times a
subtable is called, and to minimizing the size of the
subtable. Decomposition is done in an iterative man-
ner with merging to construct alternative hierarchical
structure.

3 HDL Code Restructuring
The merging and decomposition algorithms have

been implemented in a program called PUMPKIN.
We use TDT merging and TDT decomposition in HDL
code restructuring- In this section we give one exam-
ple to show how restructuring is done.

Example 3.1. Consider the following code fragment of

a HardwareC version of the i8251 UART design. It contains
the receiver synchronous component of the i8251 UART, writ-
ten as a HardwareC process rcvr..sync which calls a procedure

["
= " "~"..-- --... =

named hunt.mode. The process rcvr..sync reads data from a
serial line, packs it up according to a control command from
the main control process called i8251, and sends it to process
i8251. Procedure hunt.mode finds the synchronization point in
time for process rcvr..sync before rcvr ..sync starts packing and
sending data.

procedure hunt_mode(rxd, drdy, sync1, sync2, mode)
in port rxd, drdy;
in port sync1[8] , sync2[8] , mode[8];

{

k1
k1
k1

boolean done., data[8] , ncount [3] ;
done = FALSE;
ghile (! done) {

data = Oxff;
ghile (data != sync1) [

gait (drdy);
data[7:7] = read (rxd);
data = data» 1;
done = TRUE;

k2
k2
k2

k1 k2
k1 k2
k1 k2

k2
k2

]
if (mode[7:7] == 0)

ncount [2 : 2] = 1;
ncount[0:1] = mode[1:2];
ghile (ncount) [

gait (drdy);
data[7 :7] = rxd;
data = data» 1;
ncount = ncount - 1;

]
done = (data == sync2);

}
}
process rcvr_sync(rxd, drdy, valid, mode, control,

sync1, sync2)
in port rxd, drdy, valid;
in port mode[8],control[8], sync1[8] , sync2[8];

{
boolean sync_mode, ncount[3] , data[8];
channel i8251;
if (valid) {

sync_mode = (mode[6:7] ==0);

if (sync_mode) [
if (control[7:7])

hunt_mode(rxd, drdy, sync1, sync2, mode);
ncount[2:2] = 1;
ncount[0:1] = mode[1:2];
ghile (ncount) [

gait (drdy);
data[7:7] = read (rxd);
data = data » 1;
ncount =ncount - 1;

k2
k2
k2

k1 k2
k1 k2
k1 k2

k2
k2]

send(i8251, data);

}
}

]

0

We first convert the HardwareC programs into a
hierarchical TDT representation. Then we perform
merging to get a flattened TDT representation. Us-
ing the algorithms presented in [6], we have found two
primary compatible kernels k 1 and k2 as indicated in
Example 3.1. above. We pick k2 containing a sub-
traction ncout -1 operation and a shifting operation
data » 1 since it leads to bigger potential size reduc-
tion. We reconstruct a sub- TDT using this primary
compatible kernel. From this sub-TDT, we generate a
HardwareC procedure as shown in Figure 1.

Using the co-kernels and the flattened TDT rep-
resentation, we can construct the main TDT in the

134

.. - --

.

procedure sharable(rxd, drdy, data, mode)
in port rxd, drdy; in port mode[8];
out port data[8];
[

boolean ncout[3];
ncount[2:2] = 1;
ncount[O:l] = mode[1:2];
while (ncount) [

wait (drdy);
data[7:7] = rxd;
data = data» 1;
ncount = ncount - 1;

]

Figure 1: The extracted sharable procedure.

resulting hierarchical TDT representation. From this

TDT representation, we generate the rest of the pro-

cess rcvr ...sync as shown in Figure 2.

4 Discussion and Summary
We have presented a TDT-basedmethod to modify

the subprogram hierarchy in behavioral HDL descrip-
tions. This code restructuring is a generalization of
code transformation and motion techniques in com-
pilers.

Earlier work on code structuring forms a part of
compiler optimizations in high level programming lan-
guages [7, 8]. The TDT based code-restructuring is
different from conventional compiler optimizations [7]
in several ways. First, there are multiple levels of
nested concurrent operations in a behavioral HDL de-
scription in contrast to a sequential code. While par-
allelism between operations is defined and used ex-
tensively, the correctness of the final result is still de-
fined by the original sequential code (i.e., sequential
consistency must be maintained). In HDL code, how-
ever, correctness of the transformed code is defined by
the partial order and specification of concurrent op-
erations in the original HDL. For this reason, timing
semantics of HDL statements in terms of number of
cycles taken by an operation and partial ordering of
operations must be maintained through the transfor-
mations. We capture the timing attributes of opera-
tions in the delay table of TDTs and use it to generate
concurrent final HDL code. Second, the objective in
TDT-based optimizations is very different from that in
conventional compilers. Compilers mainly optimize to
reduce the execution time of software programs while
inHDL code transformations, we are targeting at re-
ducing sensitivity of synthesis results to HDL coding
styles, increasing resource sharing, as well as reducing
the schedule length when possible.

We are conducting experiments on benchmark de-
signsto identify exactly what hierarchical structure is

I
-

process rcvr_sync(rxd, drdy, valid, mode,
status, sync1, sync2)

in port rxd, drdy, valid;
in port mode [8], control [8], data[8];
in port sync1[8] , sync2[8];

control,

{
boolean sync_mode;
channel i8251;
if (valid) {

sync_mode.= (mode[6:7] == 0);

if (sync_mode) [
if (control[7:7]) {

boolean done;
done = FALSE;
while (! done) {

data = Oxff;

while (data != sync1) [
wait (drdy);
data[7:7] = read (rxd);
data = data» 1;
done = TRUE;

}

]
if (mode[7:7] == 0)
sharable(rxd, drdy, data, mode);

done = (data == sync2);

}
sharable(rxd, drdy, data, mode);
send(i8251, data);

]
}

}

Figure 2: The rest of the rcvr ...sync process which
calls procedure sharable twice.

needed that leads to most efficient synthesis. Results

from the experiments will be presented at the work-
shop.

References

[1] R. K. Gupta and S. Y. Liao, "Using a programming
language for digital system design," IEEE Design and
Test of Computers, pp. 72-80, Apr.-Jun. 1997.

[2] D. Ku, HardwareC - A Language for Hardware Design
Version 2.0.

[3] J. R. Metzner and B. H. Barnes, Decision Table Lan-
guages and Systems. Academic Press, 1977.

[4] P. J. H. King, "Decision tables," The Computer Jour-
nal, vol. 10, no. 2, August 1967.

[5] J. Li and R. K. Gupta, "HDL Optimization Using
Timed Decision Tables," in Proc. DAC, 1996.

[6] J. Li and R. K. Gupta, "Decomposition of Timed Deci-
sion Tables and its Use in Presynthesis Optimizations,"
in Proc. ICCAD, 1997.

[7] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers:
Principles, Techniques and Tools. Addison Wesley,
1986.

[8] B. S. Baker, "An algorithm for structuring flow-
graphs," Journal of the ACM, vol. 24, no. 1, pp. 98-
120, January 1977.

135

	Main Page
	CODES98
	Front Matter
	Table of Contents
	Author Index

