
Hardware/Software Co-design
of an ATM Network Interface Card: a Case Study

Jean-Marc Daveau, Gilberto Marchioro, Ahmed Amine Jerraya
Laboratory TIMA -46, Avenue Felix Vianet 38031 Grenoble Cedex, France

Abstract

This paper discusses a case study, the co-design
of an ATM Network Interface Card (NIC). The NIC is
aimed to interface applications with the physical network
line. It is composed of a stack of four protocol layers:
TCP, IP, AAL and ATM.

In this study, the initial specification is given in a
language called SDL. The architecture exploration is
made using Cosmos, a co-design tool for multiprocessor
architecture. Several architectures are produced starting
from the same initial SDL specification. The
performance evaluation of these solutions was made
using CNHDL co-simulation.

This paper describes the experiment and the
lessons learned about the capabilities and the
restrictions of Cosmos and SDL. The use of SDL allows
for drastic reduction of the model size when compared to
CNHDL model. SDL simulation may be 100 times faster
than CNHDL simulation.

SDL provides powerful capabilities for system-
level specification, but lacks facilities for the expression
of DSP oriented computation.

1. Introduction

Advances in modern CAD tools and design
methodologies are enabling the design of complex
electronic systems under short time-to-market
constraints. In this paper the word system refers to a
multiprocessor distributed real time system composed of
programmable processors executing software and
dedicated hardware processors communicating through a
complex network. Such a system may be implemented as
a single chip, a board or a geographically distributed
system.

In a traditional design methodology, designers
make the hardware/software partitioning at an early stage
during the development cycle. The different parts of the
system are designed by different groups. The integration
of these different parts leads generally to a late detection
of errors meaning higher cost and longer delay needed
for the integration step. Besides, this early partitioning
restraints the ability to investigate a better trade-off. The
different parts of the system are generally oversized in
order to reduce last-minute risks.

A new generation of methods and tools for system
design is emerging; they are able to handle the design of
mixed hardware/software systems starting from system-
level specification. These are called co-design or
embedded system design tools; they provide a drastic
increase in the productivity [FeI97, Mic95, Gaj95,
Wo194, Th093, Hen94, Wi194, Chi96, Rom96, Gup94].

1092-6100/98 $10.00 @ 1998 IEEE

I

This gain in productivity may be used (0 explore several
architectural solutions to improve the quality and to
reduce the cost of the final design.

This paper discusses the co-design of an ATM
network interface card (NIC) using a co-design tool
called Cosmos. This experiment allowed design
exploration through the generation of several
hardware/software partitioning solutions starting from the
same initial specification given in SDL.

The next section introduces the ATM NIC system.
Section 3 deals with the co-design process of the NIc.
Section 4 highlights the results obtained and section 5
presents the lessons learned.

2. The ATM Network Interface Card
The NIC system is aimed to link applications to the

physical layer connected to the network. The NIC is
composed of a stack made of four protocol layers: TCP,
IP, AAL and ATM. Figure I shows two applications
connected to the network through the NICs.

Annlleation 1 I I Application 2

TCP TCP
IP IP

AAL AAL
ATM ATM
Physical Layerand Network

Fig. 1: Example of two applications connected
to the network via NICs.

2. 1. System Requirements

Several simplifications have been made in order to
allow the completion of the experimentation in
reasonable time. These are:

1- The NIC model takes into account only point to point
communication. All the algorithms related to routing,
traffic congestion and resources management have not
been implemented;
2- Error management and correction is not implemented.
For instance, the Internet Control Message Protocol
(ICMP) will not be present;
3- The reordering of frames will not be considered. The
sliding window algorithm is not implemented.

Despite these simplifications, the remaining part of
the NIC constitutes a quite complex system. In fact, the
four layers act on data blocks of different sizes and
performs different encapsulation of data. The rest of this
section outlines the capabilities of the NIc. Because of
lack of space only the TCP layer will be detailed.

111

The Transport Control Protocol layer (TCP)
[Com96] provides a reliable communication between
systems processing at different speed. This layer is in
charge of establishing connections. The data transmitted
is organized into frames. A frame is made of a header
part and a data part. The size of the data part is variable.
Figure 2 shows the state diagram of the TCP layer. This
model takes into account the restrictions listed above.

Fig. 2: State diagram of the TCP layer.
"Closed" is the start state. Transitions are labeled

by the enabling signals (Italic) and the produced signals.
Some of the states of this diagram are hierarchical. For
instance the state "Established" hides another state
diagram that performs the data exchange whenever a
connection is established.

The IP layer links TCP to the AALIATM layers. It
adds specific headers to the segments sent by TCP. This
layer acts on specific messages structures called
datagrams. IP exchanges messages with both TCP and
AAL layer.

The AAL (ATM Adaptation Layer) [Pry95] is in
charge of the decomposition (resp. recomposition) of
datagrams into (resp. starting from) ATM cells (53
bytes). The segmentation of the IP datagrams into ATM
cells is made into several steps. First the datagrams are
decomposed into packets made of I to 65535 bytes of
data. Secondly, the packets are decomposed into cells
made of 48 bytes; these are used for communication with
the ATM layer. The reassembling uses to reverse
scheme.

The ATM layer provide links to the physical layer.
It receives cells made of 48 bytes from the AAL side and
produces ATM cells made of 53 bytes by adding a
header.

2.2. System-level Specification

We used SDL (Specification and Description
Language) for the specification of the NIc. SDL is
intended for the modeling and simulation of

communicating systems. It is standardized by the ITU
[ltu93]. A system described in SDL is regarded as a set
of concurrent processes that communicate with each
others using two concepts: signalroutes and channels.
The block concept is used to the model hierarchy. A
block may be composed of a set of other blocks or a set
of processes.

Figure 3. shows the top hierarchy of an SDL
description of the NIC system. This model is made of
four blocks communicating through channels. Each block
in this model correspond to a layer of the NIC system.
The lines correspond to channels. Each channel is
defined by its name and a set of messages (signals)
carried by the channel. For instance TCP _layer and
IP_layer communicate through two channels
TCPIP _Cntrl and TCPIP _Packets. The first carries
control messages and the second data messages. The
channel TCPIP _Cntrl carries 5 kind of messages
(IPTCP _len, TCPIP _Daddr, TCPIP _len, TCPIP _SaddrS,
TCPIP _SaddrD). Each of these blocks may be refined
into a set of other blocks or processes.

block ATM

OSTCP _Cnt~
!OSTeP ,Aopon. OSTCP ,Popen.

OSTeP ,CIooe. OSTCP ,""'1
[TCPOS,End)

OSTCP _Streams
[TCPOS,"..ml
[OSTCP,s,"",""

PHY]rames
[PHYATM,'.-I
IATMPHY,"-I

Fig. 3: Structure of the NIC system
described in SDL.

The leaf units are called processes. In SDL, a
process is described as finite state machine that
communicates asynchronously with other processes. Each
process has an input queue where signals are buffered on
arrival. Signals are buffered and consumed in the order in
which they arrive (BFa queu~s).

Each process is composed of a set of states and
transitions. The arrival of an expected signal in the input
queue activate a transition and the process can then
execute a set of actions such as manipulating variables,
procedures call and emission of signals. The received
signals determine the transition to be executed. When a
signal has initiated a transition it is removed from the
input queue. In SDL, a variables are owned by a specific

112

- ---

process and cannot be modified by others processes. The
synchronization between processes is achieved mainly
using the exchange of messages (called signals in SDL).

Figure 4 represents one state extracted from the
SDL description of the process corresponding to the TCP
layer. Four transitions may be enabled starting from this
state. The full TCP layer is made of 13 states and 32
transitions. Of course, these are system-level states. Each
transition may hide complex computations, including
loops and procedure calls, that may hide internal states.
For instance, the transitions triggered by the signal
IPTCP _Packet include several conditional statements and
a loop. The overall specification is made of 9 processes.

(~)

~
~

(')

~
(.)

G u,

-
) (-,)(. .

Fig. 4: Extract of the behavioral description
of the TCP layer.

3. The Co-design Approach
The design flow adopted in this experimentation

combines three tools (figure 5): Object Geode [Obj97]
for SDL specification and simulation, Cosmos for
hardware/software co-design and VCI [VaI95] for
CNHDL cosimulation.

The design flow is an iterative scheme including
three main steps:

1- System-level specification and validation: this step
includes the specification of the system in SDL and the
functional validation [BeI91]. Object Geode [Obj97]. a
commercial framework, is used during this step. The
validation includes simulation and verification. This step

~

ensures the functional validation of the system. One can
note that the validation tools are more powerful than
what the classical CAD tools may provide. These act as
model checking tools allowing to prove some property of
the specification. For instance you may check that a
given signal is never lost due to asynchronous
communication. This verification is based on exhaustive
simulation that should be handled carefully in order to
avoid state explosion problems.

Implementation

Fig. 5: Design flow adopted for the architecture
exploration of the NIC system.

2- Hardware software co-design: This step makes use of
Cosmos, a hardware/software co-design tool for
multiprocessor architecture [Sta97]. Cosmos starts from
an SDL model, it performs hardware/software
partitioning and produces a distributed model made of
hardware processors described in VHDL and software
processors described as C-programs. Each processor
may execute one or several processes of the initial
specification. The SDL communication is refined into
communication controllers and interconnections through
simple wires.

3- Architecture co-simulation and calibration: This step
includes the validation of the produced CNHDL model
and the measurement of the performances of the
architecture in terms of number of clock cycles. For co-
simulation we use a tool called VCI [VaI95]. The
performances estimation is mostly manual in the present
version, it combines the results of simulation with
manual techniques in order to estimate the speed of the
solution. The design flow of figure 5 is iterative and
allows for architecture exploration. When a solution is
obtained and its performances estimated, the design
process may proceed to implementation or loop in order
to produce a new solution through another partitioning
step or through modifications of the initial model. The
next sections report on several architectural solutions
obtained using this model.

4. Results: Architecture exploration
Five solutions have been produced starting from the

initial specification in SDL. Each solution correspond to
a partitioning solution produced by Cosmos under the
control of the designers. Each solution generation takes
about 30 minutes on a SPARC station. This corresponds
to the elapsed time including the interaction with the
user.

113

-

The architecture exploration process acts on coarse
gain level. Each protocol layer is considered as an
indivisible task that should be allocated to one processor.
The performances of the five solutions are represented in
figure 6. The left part of figure shows the number and
types of processors that compose the architecture. Each
square labeled HW (resp. SW) corresponds to a hardware
(resp. software) processor. This part of the figure shows
also the allocation of the different task to processors. The
right part of figure 6 shows the performances of the
solutions. The speed of each solution is expressed in
terms of throughputs (Megabits/second) and in terms of
number of cycles needed to process one ATM cell. 25
Mb/s throughput corresponds to 5000 cycles/cell. We
assume that the software is executed on Pentium

processors. For example, the first solution is made of two
processors. The software processor executes the three top
layers of the protocol (TCP, IP, AAL) and the hardware
processor is dedicated to the ATM layer.

TCP I IP I AAL I ATM I Perfonnance (cycles/cell)

6 Mb/ssw

12Mb/s

19 Mb/s

60 Mb/s

41 Mb/s

!WI :mI)Itm1 l!IDI

Fig. 6: Performance of different ATM NIC
implementations.

The performances are computed based on
simulation of the CNHDL model produced by Cosmos.
The cycle count for hardware execution is given by
simulation and corresponds to the exact performances of
the final solution. The cycle count for software execution
is based on approximation. Table 1 summarizes the size
of the CNHDL code produced and the simulation and
co-simulation time.

(I) same order of magnitude than VHDL model;
(2) for solution 1 in fig. 6; (3) for all hardware solution

Table 1: SDL vs. CNHDL co-design and simulation.

This table shows clearly the benefit of using
system-level specification:

1- The initial SDL specification is 10 times smaller than
the produced CNHDL model. The difference is mainly
due to the refinement of the communication [Dav97,
Ort97, Mad95];
2- The simulation time of the SDL model is 15 times
faster than the VHDL model produced for solution 5 and
120 times faster than the co-simulation of the CNHDL
model produced for the first solution. The difference is

I

also related to the communication. In the SDL model
processes may exchange large data structures through
message passing by using implicit queues. In the
C/VHDL model these message passing are implemented
using specific protocols where the queues are explicit and
connected through physical buses. In the case of mixed
CNHDL models the simulation is even slower. In this
case, we use. a CNHDL co-simulation based on
UNIXlIPC [VaI95].

5. Evaluation and lessons learned
There are mainly 2 lessons learned from this

application. These are related to the capabilities and
limitations of SDL as specification model and of Cosmos
as a co-design environment.

From the SDL point of view this experimentation
shows clearly that SDL is very suited for the specification
of protocols at the system-level. The main strength of
SDL is the use of a powerful communication model
based on asynchronous message passing. Additionally,
the availability of powerful CASE environment [Obj97]
makes the use of SDL very practical and convenient.

However, this experiment also pointed out some
restrictions of SDL. These are mainly:. SDL lacks some arithmetic operation (such as
modulo). The set of predefined arithmetic operation is
quite restricted in SDL. SDL supports Abstract Data
Types (ADT [Be19I D, which allows the user to define
new operators in C. However these are quite difficult to
use and are not currently supported by Cosmos;. SDL includes no explicit loop statement. Loops may
be expressed using decision, join and label concepts.
However this makes the use of loops quite difficult;. Several hardware oriented aspects such as bit
manipulation are not supported. This makes difficult the
specification of functions such as CRC computation.

The above restrictions make SDL not very suitable
for some application such as DSP where behavioral
specification generally requires the use of complex
arithmetic expressions and nested loops. One can note
that the single communication model may induce some
inefficiency in the model when asynchronous
communication is not needed.

From the Cosmos point of view this experiment
shows clearly the capabilities of the Cosmos approach.
The main strengths of Cosmos are:. It supports a large subset of SDL;. It allows a quite fast and easy design space
exploration.

However this experiment pointed out several
weakness in the approach:

I. The non-availability of a standard library of
communication unit to implement SDL queues implied
lots of extra work. Several communication units where
described in order to make the full path possible. This
problem should be solved in the next version where new

114

J

Lines
Simulation

Model
Behavior Communi- Time

cation
SOL 794 103 I min

VHOL 7.210 5.382 15 nUn (3)
C/YHOL (I) (I) 120 min (2)

communication synthesis will allow accessing standard C
& VHDL component. For instance, it will be possible to
use the queues provided by Synopsys's DesignWare to
implement communication in hardware.

2. The maximal performances obtained by this
automatic co-design is an order of magnitude less than
what a designer may produce. In fact the fastest solution
we obtained has a 60 Mb/s throughput. The ATM design
may require faster implementation. The main restriction
of Cosmos is the non-optimization of memory
management. The use of transformation similar to those
provided by Automium [Pet97] should induce a drastic
increase in performances.

6. Conclusion
This paper presented the results of the co-design of

an ATM Network Interface Card. The initial description
of the system was given in SDL. The co-design process
was performed using Cosmos, an SDL based co-design
environment. Several hardware/ software architectures
were produced starting from the same initial SDL model.
The main lessons learned from this study are:

1- SDL is clearly very suited for the specification of
control and protocol systems. However it lacks some
facilities for detailed hardware modeling and DSP like
computation;
2- The use of a system-level model may induce a drastic
reduction in the description size and the simulation time
when compared to lower level models such as C and
VHDL;

3- The use of co-design tools such as Cosmos allows for
fast design space exploration starting from high-level
description.

7. Acknowledgements
This work was supported by: France

Telecom/CNET; SOS- Thomson; .Esprit program under
project COMITY and project CODAC; MEDEA
program under project SMT; Aerospatiale and Verilog.

8. Bibliography
[BeI91] F. Belina. D. Hogrefe, A. Sanna, SDL with

Applications from Protocol Specification, Prentice Hall
International, 1991.....

[Chi96] M. Chiodo, D. Engels, P. Giusto, H. Hsieh, A.
Jurecska. L. Lavagno, K. suzuki, A. Sangiovanni-
Vincentelli, A Case Study in Computer Aided Codesign
of Embedded Controllers, Design Automation for
Embedded Systems, Vol. I, No. 1-2, pp. 51-67, January
1996.

[Com96] D. Comer, TCP/IP, Architecture, Protocole,
Application, Collection iaa, InterEditions, ISBN, 1996.

[Dav97] J.M. Daveau, G.F. Marchioro, C. A. Valderrama, A.
A. Jerraya, VHDL generation from SDL specifications,
Proceedings of the IFIP Conference on Hardware
Description Languages and their Application, pp. 182-
201. April 1997.

[FeI97] B. Felice, Hardware-Software Co-Design of Embedded
Systems - The Polis Approach, Kluwer Academic
Publishers, 1997.

(

[Kl095] D. Kloos, A.M. L6pez, T.M. Moro, T.R Valladares,
From Lotos to VHDL, Current Issue in Electronic
Modelling, Vol. 3, pp. 111-140, September 1995.

[Gaj95] D. Gajski, F. Vahid, Specification and Design of
Embedded Hardware/Software Systems, IEEE Design &
Test of Computers, pp. 53-67, Spring 1995.

[Gup94] R.K. Gupta, c.N. Coelho, G. de Michelli, Program
Implementation Schemes for Hardware Software Systems,
IEEE D~sign & Test of Computers, Vol. 27, No. I, pp.
48-55, January 1994.

[Hen94] J. Henkel, T. Benner R Ernst, W. Ye, N. Serafimov,
G. Glawe, COSYMA : A Software Oriented Approach to
Hardware/Software Codesign, The Journal of Computer
and Software Engineering, Vol 2, No 3, pp. 293-314,
1994.

[ltu93] ITU-T Z.I 00 Functionnal Specification and Description
Language, Recommandation Z.I 00 - Z.I 04, March 1993.

[Mad95] J. Madsen, B. Hald, An Approach to Interface
Synthesis, Proceedings of the 8th International
Symposium on System Synthesis, pp. 16-21. September
1995.

[Mic95] G.De Micheli, M Sami, Hardware/Sofware Co-
Design, Kluwer Academic Publishers, 1995.

[Obj97] ObjectGeode, http://www.verilogusa.comloglog.htmi.

[Ort97] RB. Ortega, G. Borriello, Communication Synthesis
for Embedded Systems with Global Considerations,
Proceedings of the European Design Automation
Conference with Euro-VHDL, pp. 69-73, September
1997.

[Pet97] P. Slock, S. Wuytack, F. Catthoor, Fast and Extensive
System-level Memory Exploration for ATM Applications.
10th International Symposium on System Synthesis
(lsss97), Belgium, September 17-19,1997.

[Pry95] M. De Pryker, ATM, Mode de Transfert Asynchrone,
Masson / Prentice Hall, ISBN 2-225-84874-X, 1995.

[Rom96] K.V. Rompaey, D. Verkest, I. Bolsens, H.De Man,
CoWare - A Design Environnement for Heterogeneous
Hardware/Software Systems, Proceedings of the
European Design Automation Conference with Euro-
VHDL, pp. 252-257, September 1996.

[Sta97] J. Staunstrup, W. Wolf, Hardware/Software Co-Design:
Principles and Practice, Kluwer Academic Publishers,
1997.

[Th093] D.E. Thomas, J.K. Adams, H. schmit, A Model and
Methodology for Hardware/Software Codesign, IEEE
Design & Test of Computers, Vol. 10 No.4, pp. 6-15,
December 1993.

[Val95] C. Valderrama, A. Changuel, P.V. Raghavan, M. Abid,
T.Ben Ismail, A.A. Jerraya, A Unified Model for
Cosimulation and Cosynthesis of Mixed
Hardware/Software Systems, Proceedings of the
European Design and Test Conference, pp. 180-184,
March 1995.

[Wil94] J. Wilberg, R Camposano, W. Rosenstiel, Design
Flow for Hardware/Software Co-Synthesis of a Video
Compression System, Proceedings of the Third
International Workshop on Hardware/Software Codesign,
pp. 73-80, September 1994.

[WoI94] W. Wolf, Hardware/Software Co-Design of
Embedded Systems, Proceedings of the IEEE, Vol 82, No
7, pp. 967-989, 1994.

115

	Main Page
	CODES98
	Front Matter
	Table of Contents
	Author Index

