
A Path Analysis based Partitioning for Time Constrained Embedded Systems

Luc Bianco, Michel Auguin, Guy Gogniat, Alain Pegatoquet
I3S - Universite de Nice Sophia Antipolis -CNRS

41 Bd Napoleon III - 06041 Nice cedex
email: lastname@alto.unice.fr

Abstract

The HW/SW partitioning problem addressed in this
paper is one of the key steps in the co-design flow of
heterogeneous embedded systems. Generally the aim is to
provide solutions that respect timing constraints and
minimize an objective function such as the total area and!
or the power consumption. Minimizing the hardware area
conflicts with reducing execution time. Therefore, we
introduce an heuristic for synthesizing heterogeneous sys-
tems that uses a global metric to guide the mapping of
tasks according to the reusability of components and the
time margin induced by timing constraints.

1. Introduction

With advances of ASIC technologies and strong market
pressures there is a major interest in the investigation of
efficient co-design methodologies for embedded system
design. These systems are subject to stringent real time
and embedding constraints such as silicon area and/or
power consumption. Furthermore, due to the different
nature of processing involved in application specific sys-
tems, an heterogeneous architecture model composed of
multiple software components (e.g., DSPs and RISCs)
coupled with dedicated hardware units is generally the
only practical way to fit application requirements.
Therefore, numerous works have focused on hardware/
software partitioning which is a key step in the co-design
flow. For example, approaches in [6],(8],[10] target
monoprocessor based systems. Mutual exclusion of
hardware and software parts is assumed in [7]. In [3] the
aim is to determine a distributed real time system
composed of processing elements that may perform
preemptive schedule. In [12] is presented an extension of
the Kernighan/Lin algorithm for functional partitioning
but it assumes that the set of units of the target architecture
is defined first.

Our aim is to provide solutions that respect real time
constraints and minimize the silicon area. Minimizing the
area implies generally to make the best reuse of resources.
Since this objective may conflict with timing constraints, it
is of prime importance to dispose of a global metric able to
guide the partitioning heuristic in the allocation of

1092-6100/98 $10.00 @ 1998 IEEE

-

I

components. In [8], a global criticality metric is based on
the assumption that the target system contains only one
SW component, exploiting then the sequential nature of
software processing. With heterogeneous multiprocessor
systems, this assumption is not valid yet and a task may
have several SW implementations [9]. Consequently, we
use a path length metric based on the critical path length
introduced in [1]. But the aim of [1] is to achieve the
fastest schedule of a set of tasks on a predesigned system
defined as a set of interconnected processors.

2. Hardware-software co-design

2.1. The target architecture

Since the complexity of applications and ASIC
technologies are both increasing continuously, it is of
prime importance to deal with systems on a chip
composed of several processor cores associated with
dedicated functional units. Furthermore, according to the
nature of processing involved in the application, different
types of processor cores (e.g., RISC and DSP) could be
integrated in the target architecture. Therefore, based on a
library of HW and SW components, each one executing
one or several tasks, the aim of partitioning is to select the
set of components that corresponds to the better
implementation of the application, i.e. the implementation
which respects timing constraints and minimize an
objective function. In the sequel, our partitioning
algorithm attempts to minimize the total area of the system
but other objective functions could be investigated.

2.2. System specification

Numerous static signal processing applications can be
described with an acyclic data flow graph (DFG) [2],[11],
GT=(V-pET)' where nodes (tj E VT) represent tasks, and

edges (ejj E ET) represent dependencies. Each edge is
annotated with the volume of data dj,j to be transferred

between 'tj and 'tj' For sake of simplicity a single timing
constraint Trnaxis set up for all the ending nodes of GTbut
extending the algorithm with different timing constraints
is straightforward. In figure 1 is given an example (issued
from [1]) of a DFG representation of a system.

85

The function area is the incremental area that must be
added to the system to implement the function. Each task
must have at least one realization model in the library of
HW and SW units. In the example depicted in figure 1
each task has as many realization models than units in the
library.

v--
couples execution timet function area

Fig. 1.An acyclic Data Flow Graph

3. Path Analy~ based PartitioningAlgorithm (pA2)

One of the major problems encountered by partitioning
heuristics is to evaluate at each decision step the impact
implied by mapping a task on a component on future
iterations of the algorithm [9]. We use an extension of the
path analysis introduced in [1] to evaluate the time
criticality resulting of the assignment of a task to a
component.

3.1. Communications between components

The partitioning algorithm uses a simple communica-
tion model to evaluate delays due to data transfers
between tasks:

d, ,
I,]

tck,m('ti,'tj) = Dk,m
if k :F-m, 0 if k = m.

where dj,j is the number of data to be tran~ferred between

tasks 'tj et 'tj on units k and m and Dk,m is equal to the low-
est input and output throughputs of units k and m.

3.2. Path length evaluation

PA2 is based on the study of the path lengths issued
from a task to any ending task of the graph. The approach
presented in [1] attempts to determine the partition that
minimizes the total execution time and only minimum

critical path lengths are evaluated. Since the aim of PA2 is
to provide solutions that respect timing constraints and
minimize the total area, we consider both minimum and
maximum path lengths. The minimal (resp. maximum)
path length plmin(resp. plmax)from a task 'tj is the shortest
(longest) path in the DFG from 'tj to any ending task. The

....

evaluation of these paths takes data communications into
account:

plmin ('ti' uk) = texe('ti' Uk) +

Max(Min'tjE succ('t), U/(tCUk'U/('ti' 'tj) + plmin ('tj' U/)))
plmax ('ti' Uk) = t

~

e ('ti' Uk) +

Max't.ESUCC ('t.) U tcu U ('ti"t],) +Plmax('t]"u/»)J , ,/ k' 1

where texe<'tj,uk) is the execution time of the task 'tj on uk,

succ('tj) represents the set of direct successors of task 'tj

and ul is the component that executes 'tj' These two path
lengths are evaluated for each task and each component of
the library. The longest path length plmax('tj,uk) whatever

'tj, a source node of the DFG, is noted PLMAX' An exam-

ple of computation of the minimum path issued from 'ts

(figure 1) is given in figure 2.

Task execution time Execution times of successors

Plm;,I",P{) =\ + M,",(M;n(~'» = 7
Task Component Communication times

Fig. 2. Example of a path length computation

From a given task, the path lengths provide the esti-
mated boundaries on time delays until complete
executions of ending tasks of the graph. Evaluations of
these paths do not depend on the schedule of tasks and can
be performed in a former static step of the partitioning
algorithm [1].

The partitioning heuristic is based on a schedpling
algorithm that determines an assignment and a schedule to
data ready tasks, i.e. tasks whose predecessors have been
scheduled. In order to guide the partitioning process, the
algorithm computes available times associated with
couples <task, implementation model>. The computation
of an available time takes into account the time constraints
settled on ending tasks, path lengths issued from the task
and instants of availability of data deduced from the
schedule of predecessors of the task.

3.3. Available times of tasks

For each data ready task, available times are computed
for any HW and SW components that are able to realize it.
Since the partitioning algorithm is based on an iterative
process, we distinguish instances of components that have
been added in the architecture in previous iterations from
new instances deduced from models of the component

86

--

Task Type PI P2 P3

'tl I 2/2 1/3 2/2
't2 2 4/10 1/15 3/12
't3 3 6/1 2/5 3/4
't4 4 5/3 3/8 4/4
'ts 5 3/3 3/3 2/6
't6 3 6/1 2/5 3/4
't7 6 3/2 1/4 1/6

library. The available time Titj,uk) of a task tj associated

to a new instance uk is given by:

Ta(ti,uk) = T ax-

Max'jE pred(,;)l tender) + tCp('j)' Uk(1:/ 1:i)

where p(tj) is the component in the architecture executing
tj' This time depends only on availability of data. The
available time Ta(tj,uk) associated with an instance uk of

the architecture depends also on the utilization of uk by
tasks that have been previously scheduled on it:

T(t"uk)=T -Max (Max~
1

ted (t.),
a I max 'j ()

n J
P 'j =Uk

MaX'jEPred<,;)(tend(ti) +tCp(9'Uk (1:/ti»))

In practice, an accurate value of Ta(tj,uk) is evaluated
by scanning the idle time slots of uk in order to find the

earliest time slot greater than ~xec(tj,uk) and such that data
required by tj are available.

Two relations between path lengths and task available
timesare obvious (Figure 3):

I

I

I

\

I

.(a) If plmjn(tj,uk)< Ta(tj,uk) and plmax(tj,uk)< Ta(tj,uk)
then scheduling tj on uk is not harmful for successive
partitioning iterations.

.(b) If plmin(tj,uk» Titj,uk) and plmax(tj,uk» Titj,uk)
then the schedule of tj on uk leads to the obvious failure
of the partitioning due to timing constraint violations.

Taplmin
(a) I

(b)

plmax
I

plmin
I

plmax
I

plmin pimax(c)
timeO('tj,Uk)

Fig. 3 .Task allocation times

But these relations are not sufficient to guide the
partitioning algorithm in all cases (Figure 3.c). Other
metricsare introduced to help the assignation process.

.Relative execution time drop: e(tj,uk)

This value represents the difference between the
executiontime of tj by uk and the lowest execution time of
tj bycomponentsof the library:

e(ti,uk) = texe(ti,uk) -Minu/E library (texe (t), U/)

.Maximum freedom of schedule: O(tj,Uk)

This value gives the maximum available time frame to
schedule tj (and successors of tj) on uk (Figure 3):

I O(ti,uk) = Ta(ti,uk) -plmin(1:i,uk) I

Components with the largest values of O(tj,Uk) are those

that impose the lowest constraints on the partitioning.

.Discrimination factor:)'(tj,uk)

e(1:i,uk) plmax(ti,uk)

Y(1:i' uk) = 1- 0 (t u) x PLi' k MAX

The discrimination factor is a weighted relative value giv-
ing the amount of time taken by uk on the available time
frame O(tj,Uk)associated with tj and its successors. This
factor is weighted by the relative task position to lessen its
influence as the algorithm proceeds.

3.4. Task partitioning

Based on this set of metrics, the partitioning algorithm
iterates with data ready tasks. Let tj and An be respectively
a data ready task and an architecture under construction.

In a first phase, the algorithm encourages the reuse of
instances of An' With instances UkEAn able to realize tj
the algorithm constructs three lists (Figure 4):

.List L Ireuse: In this list are placed instances ukE An such
that plmax(tj,uk) S;Ta(1:j,uk)'.List L2reuse: This list contains instances UkEAn such
that)'(tj,uk) ;:::Treusewhere Treuseis a threshold value set
up by the designer. Setting Treuseclose to 0 enforces the
reuse of instances. On the contrary, fixing Treuseclose to
I attempts to provide solutions with lower execution
times since the algorithm keeps a greater temporal
margin according to time constraints.

.List Lothers: Remaining instances of An able to realize
tj and such that plmjn(tj,uk) S;Titj,uk) are placed in the
list Lothers.

With new instances derived from the library, the
algorithm constructs a new list Lnewand updates the list
Lothers:

.List Lnew: This list contains new instances uk such that
)'(tj,uk) ;:::Tnewwhere Tnewis a second threshold value
set up by the designer. If Tnewis close to I the algorithm
attempts to provide solutions with fast components. If
Tnewis close to 0 the algorithm tries to minimize the

87

total silicon area.

. List Lothers:This list is updated with new instances uk
such that plmin('ti,uk) ~ TaC'ti,uk)'

The partitioning algorithm operates as follows:

while all the tasks of GT are not scheduled do

select data ready tasks 'ti;

Coreacb implementation model uk of'ti do

compute "(('i,uk); place uk in the corresponding list;
endfor;
caseoC

L Jreuse;t 0: select ukE L JreusJplmax ('i,uk) minimum; break;

L2reuse;t 0: select UkEL2reuse I "(('i,uk) maximum; break;

Lnew;t 0: select ukELnew I Area(uk) minimum; break;
Lothers;t 0: select ukE Lothers I if T new+Treuse> I then "(('i,uk)

maximum else Area(uk) minimum endif; break;
otherwise: error(Uthe partitioning is not feasible"); break;

endcase;
schedule as soon as 'i on Ukaccording to available time slots of uk;

endwbile;

new
instances

new instances
or instances E An.4 ~

I Lothers I

Uk/'Yk<Treu5O
uk h'k < T new

~ 4 ~
if Tnew + Treuse>1
then list sorted by

decreasing 'Ykelse
area optimization.

instances E An4 ~ 4

I L Ireuse I L2reuse [

uk/plmaxSTa('j,uk) uk/'Yk~Treu5O
4 ~4 ~4
list sorted by list sorted by area
increasing plmaxdecreasing 'Yk optimization

Lnew

'Yk~Tnew

Order of selection of lists

Fig. 4 . The partitioning task

Note that since the effect of the discrimination factor

y('ti,uk)is lessened as the algorithm proceeds, the number

of instances placed in lists L2reuseand Lnewincreases and
in the meanwhile the temporal margin kept by the
algorithm decreases. This feature permits to approach the
time constraints when ending tasks and tasks close to end-
ing tasks are scheduled.

4. Results

This algorithm has been developed in C. Results about
the simple example given in figure 1 are detailed first. We
consider three different time constraints: 9,14 and 20 time
units. Values of minimum and maximum path lengths are
given in figure 5.Results of our partitioning algorithm and
a comparaison with the HCP algorithm[l] are illustrated in

figure 6. If the time constraint is set up to 9 time units, PA2
with Treuse=0.2and Tnew=0.9 provides the same results
than HCP, i.e, 8 time units and two components (n and

P3). When Tmax=14, PA2 approaches the time
constraint(13 time units) with only one component (P2)

and a total area of 43 units. When Tmax=20,PA2 selects

"-

only the component P3 giving an execution time of 18
time units and a total area of 38 units.

Fig. 5 . Results of the static phase

0 I 2 3 4 5 6 7 8 9 10 11 12 I3 14 15 16 17 18

Fig. 6. Partitioning and scheduling results

processor with a mean I/O throughput of 107 words/sec-
ond and two hardware components (figure 8). Static values
used by the algorithm are also given. The sampling
frequency imposes a time constraint of 8 ms. With a soft-
ware only solution, there is a time constraint violation.
Figure 9 shows results of partitioning that illustrate the
effect of threshold values. In the second column, the
algorithm assigns a software component SW to the initial
task 1.This unit is used again, until the task 19 is reached
where y(19,SW) < Treuse'Then a hardware unit HW2 is
added and remaining tasks of the graph are scheduled on
it, in order to match the time constraint. In this solution,

88

taskplmin('j,PI)plmin('j,P2)plmin('j,P3)plmaX<'t;,PI)plmax('j,P2)plmax('j,P3)

,I 9 7 9 31 30 30
,2 14 6 10 27 26 28
,3 11 5 7 20 17 18
,4 5 3 . 4 5 3 4
,5 7 5 5 9 11 10
,6 6 2 3 6 2 3
,7 3 I I 3 I I

t5 t6 t7
P3I I I I

tl t2 t3 t4
II 1 P2

HCP and PA2with Tmax =9, Treu5O=0.2, Tnew= 0.9, area = 47

tt t5 t7 t6 t2 t3 t4
I II I I I I P2

PA2 with Tmax =14, Treuse = 0.2, Tnew = 0.9 area = 43

...

tl t5 t7 t6 t2 t3 t4
I P3I I I I I I

PA2with Tmax =20, Treu5O=0.09, Tnew =0.9 area =38
r

--

FFf type tasks are executed without parallelism by both
HW2and sw. By increasing Tnewto 0.96, this situation is

TasksI Type

Eft

diy

conw
add2d

4 iff!

6 Eft

7 to 141 cony?
molt

98

Fig. 8 .Gmdfa: static values

Fig. 9 . Gmdfa: partitioning results
a. Area values neither include data memories nor hardware
resources for data transfers

avoidedsince the algorithm selects for the task 1 a HW2
unit in place of the SW unit and maps all the successive
FFf type tasks on HW2. This leads to...alower execution
time with a similar area. Notice that HWI is not used in
these cases since the task 2 imposes a SW unit and for
successive tasks 'ti supported by both SW and HWI, the
conditiony('ti'SW) > Treuseholds. If Treuseis set up to 0.93
then we get solution of the third column. These results

show that PA2 permits a codesign space exploration by
adjusting threshold values according to design objectives.

5. Concluding remarks and future works

Our algorithm performs the HW/SW partitioning and
the scheduling of a time constrained static task graph
specification and constructs a model of an heterogeneous
system that may have one or more processor cores and
hardware accelerators. The aim of this algorithm is to pro-

[

vide solutions that respect time constraints with reduced
area. Two threshold parameters dealing with the
reusability of previous instances and the time margin
imposed by time constraints allow to adapt the partitioning
objectives in order to perform a rapid evaluation of vari-
ous alternatives. By selecting adequate values to these
threshold parameters the designer can investigate
solutions with rapid execution times or reduced area.

Some improvements are under investigation. One of
them concerns the communication model that must be
extended in order to deal with more realistic structure of

components. For example a DSP or a RISe core may have
different types of I/O ports, each one with different timing
characteristics (e.g., parallel or serial ports). Therefore, an
effective selection of I/O ports combined with well suited
communication resources may lead to a lower area to sup-
port data transferts between components of the
architecture.

6. References

[I] P. Bj~rn-J~rgensen, J. Madsen. Critical path driven
cosynthesis for heterogeneous target architectures. Proc. 5th
Codes/CASHE'97, 15-19, Braunschweig, March 1997.

[2] J. Buck, S. Ha, E. Lee, D. Messerschmitt, Ptolemy: a
framework for simulating and prototyping heterogeneous
systems, Int. J. Computer Simulation, vol. 4, april, 1994.

[3] B. Dave, G. Lakshminarayana,N Jha, COSYN:hardware-
software co-synthesis of embedded systems, Proc. DAC'97,
Anaheim, CA, pp 703-708,1997

[4] L. Freund, M. Israel, F. Rousseau, J.M. Berge, M. Auguin, C.
Belleudy, G. Gogniat. A codesign experiment in acoustic
echo cancellation: Gmdfa. ISSS'96, La Jolla California,
November 1996.

[5] D. Gajski, F. Vahid. Specification and design of embedded
HW-SW systems. IEEE journal design and test of comput-
ers, 53-67, Spring 1995.

[6] R. Gupta, G. De Micheli, Hardware-Software Cosynthesis
for Digital Systems, IEEE J. Design and Test of Computers,
sept., pp 29-41, 1993.

[7] J. Henkel, R. Ernst, A hardware/software partitioner using a
dynamically determined granularity, Proc. DAC'97,
Anaheim, CA, pp 691-696, 1997.

[8] A. Kalavade, E. Lee. A global criticality/local phase driven
algorithm for the constrained hardware/software partitioning
problem, Int. Workshop on Hardware-Software Co-Design,
sept. 22-24, Grenoble, France, 1994

[9] A. Kalavade, E. Lee. The extended partitioning problem:
hardware/software mapping and implementation bin-selec-
tion. Proceedings Int. Workshop on rapid system prototyping,
12-18 Chapel Hill, NC, June 1995. .

[lO]P. Knudsen, J. Madsen. PACE: a dynamic programming
algorithm for hardware/software partitioning. Proc. Codes/
CASHE'96, 85-92. 1996.

[II]R. Lauwereins,M. Engels,M.Ade,J.A.Peperstrete.GrapeII:
a system level prototyping environment for DSP applica-
tions.lEEE Computer, 35-43, Feb. 1995.

[12]F. Vahid. Modifying Min-cut for hardware and software
functional partitioning. Proc. 5th CodesiCASHE'97, 43-48.
Braunschweig, March 1997.

89

Tasks Treuse=0.85, Treuse=O.4, Treuse=O.93,

T new=0.9 T new=O.96 T new=O.96

1 sw HW2 HW2
2 SW SW SW
3 SW SW HWI
4 SW HW2 HW2
5 SW SW HWI

6 SW HW2 HW2

7upto14 SW SW HWI

15upto 18 SW HW2 HW2

19up to 22 HW2 HW2 HW2

23 up to 26 SW HW2 HW2

27 up to 30 HW2 HW2 HW2
Totalarea' S =2.56 mm2 S =2.4 mm2 S =2.86 mm2

Execution time T =7.41 ms T=3.23 IDS T = 2.12 ms

	Main Page
	CODES98
	Front Matter
	Table of Contents
	Author Index

