
A Novel Design Assistant for Analog Circuits

Markus Wolf, Ulrich Kleine

Institute for Measurement Technologies and Electronics
Otto-von-Guericke University of Magdeburg

PO Box 4120
D-39016 Magdeburg, Germany

Tel: +49 391 67 14625
Fax.: +49 391 5 61 63 58

e-mail: mwolf@ipe.et.uni-magdeburg.de

Frédéric Schafer

Institut für Automation und Kommunikation e. V. Magdeburg
Steinfeldstraße

D-39179 Barleben, Germany
Tel: +49 39203 810 22
Fax: +49 39203 81100

e-mail: henning@ifak.fhg.de

Abstract This paper presents a new design assistant for
analog integrated circuits. The interactive tool is implemented in
the Design Framework II of Cadence and supports the designer
during circuit design. With the help of this new assistant analog
designers can create ad hoc layouts of their circuits. These
layouts are automatically extracted, and the updated netlist of
the circuit is used for further simulation and optimization steps.
Thus the optimization is speeded up and the reliability of the
design is improved due to the more accurate modeling of the
parasitic circuit elements. The use of the design assistant will be
demonstrated by various examples.

I. INTRODUCTION

In general, the synthesis process of analog circuits starts with
the selection of an appropriate circuit topology or an existing
circuit for a similar application. In a second step this circuit is
iteratively optimized by circuit simulations to meet the de-
sired specifications. Due to technology scaling, the electrical
parameters of MOS transistors get worse for analog circuits
and therefore, the design window, in which the dimensions of
elements must fit, decreases. Hence, the amount of optimiza-
tion will increase in the future, especially for low voltage ap-
plications. For a reliable optimization, the knowledge of
electrical parameters caused by the layout (e. g. parasitic ca-
pacitances, RC time constant of gates) is required. Therefore,
the layout of the circuit is already necessary during circuit de-
sign for high performance circuits.
Today, most analog layouts are hand-crafted by specialists
which is a very time consuming process. Consequently, the
parasitic elements are normally only roughly estimated during
the design and optimization phase without having a layout.
On the other hand, several tools have been developed to
automate the generation of analog layouts [1]-[4] by bypass-
ing the designer. Usually, these tools apply a top down ap-
proach taking the already optimized circuit netlist as input
and generating the layout for this circuit.
Applying the new aid analog designers can iteratively gener-
ate the layout during the optimization phase to get a more
precise estimation of the parasitic elements. This enables the
designer to consider the influence of parasitics already during
the circuit optimization. Due to analog constraints like
matching requirements, it is usual to build more or less com-
plex clusters of devices, hereafter called modules. In recent
years, several module generators have been presented [5]-[7]

for MOS and bipolar circuits. In contrast to bipolar circuits,
the geometrical parameters of MOS-Transistors (width,
length, number of foldings) can vary in a wide range for ana-
log applications. Therefore, module generators must be avail-
able which provide optimal layout topologies even for that
wide range of parameterization. Depending on parameter val-
ues, different optimal topologies can result from geometrical
constraints like latch up rules or from electrical properties
like matching and amount of parasitic elements. In addition to
this, the selection of an optimal topology depends heavily on
the special circuit application. This increases the complexity
of module construction drastically. For reusable modules the
description must be technology independent. The flexibility
of the modules can be further improved by additional appli-
cation dependent parameters which will be described in more
detail in Section II. An additional property is a clear descrip-
tion language [8] which allows an easy maintenance and reus-
ability of the modules. With the module generator environ-
ment [9] complex analog generators with these features can
be created. Thus the module library is kept reasonably small
and is maintainable.
In practice, the module creation is often limited to non opti-
mal single device modules [3] and thus the placement and
routing problem is increased by necessary analog constraints
like neighborhood and symmetry conditions. In contrast to the
"Device Level Editor (DLE)" of Cadence in which one ele-
ment of the schematic is translated into a single layout, in the
presented environment elements can be grouped in order to
create more complex modules than single device modules.
Due to the use of complex modules the remaining placement
and routing problem is simplified and does not influence the
parasitic calculation drastically because the modules already
support inner cell connections.
In the next two sections the examined electrical properties
will be presented and the design assistant will be explained in
more detail. Section IV will give an example of a layout for a
folded cascode amplifier for low voltage applications.

II. ELECTRICAL PROPERTIES IN ANALOG LAYOUTS

In this section electrical properties influenced by the layout
are described. It is very important to regard these electrical
properties during circuit design because they affect the func-
tionality of the circuit directly. There are two kinds of

properties which are considered: Firstly, the conditions that
need to be fulfilled in order to guarantee the functionality of a
circuit must be considered. An example of such a property is
the electromigration which defines the maximal current den-
sity in a metal wire. For the functionality of the circuit, it is
important to check that the width of a metal wire is at least as
large as the minimal width corresponding to the maximal cur-
rent density. If the rule is fulfilled the layout will not be af-
fected. In contrast to this, the second kind of properties de-
termines the performance of the circuit directly. For instance,
the bandwidth of an amplifier is influenced by parasitic ca-
pacitances caused by the layout. In this case the circuit per-
formance can be optimized by a proper design taking into ac-
count parasitic capacitances.

A. RC Time Constant of MOS Transistor Gates

The polysilicon gate of a transistor can be regarded as a re-
sistor including a capacitance to ground. Thus, the gate is a
RC-network with a time constant which can prevent the signal
from reaching the opposite side of a gate simultaneously at
high frequencies. In this case, the layout of a module must be
changed in order to reduce the RC time constant. In this sub-
section, the -3 dB corner frequency of the gate is calculated
with a distributed RC-network model [14].
In Fig. 1 a longitudinal section of a MOS transistor is de-
picted. The width and the length of the transistor are indicated
in this figure. The gate voltage is applied at point A or B.

The adequate distributed RC network of the gate is shown in
Fig. 2. R� is the resistance per square and c defines the gate
oxide capacitance per area. With these two technology con-
stants the resistance R and the capacitance C of the gate can
be calculated according to the equations in Fig. 2. The
equivalent lumped π network [14] for the distributed RC line
is shown in Fig. 3 with the admittance Y calculated by (1) and
with P given by (2) using the common complex frequency
variable p. The periodic transfer function is given by (3).
With the help of the transfer function (3) a maximal
frequency for a signal applied to the gate of a MOS transistor
can be obtained numerically by calculating the -3 dB corner
frequency. If the gate is contacted only at one side, C0 is the
capacitance of the gate extension over the transistor. It is cal-
culated by C cL endcap0 = ⋅ with the extension of the gate over

the transistor endcap. If the gate is connected at both sides of
the transistor, C0 is zero and only the half gate width is
relevant for the RC network.

Fig. 3: Lumped π network for the gate

Y
p

sRC

C
R=

sinh
 (1)

P pRC= cosh (2)

H s
Y

Y P pC
()

()
=

+ − +1 0

(3)

For the verification of equation (3), different simulations have
been performed with 1, 2, 10 and 100 connected lumped π
networks in order to obtain the - 3 dB corner frequencies of
the circuits. In Fig. 4 the simulated magnitude frequency re-
sponses are displayed for the four different connections of π
networks for a single transistor (W = 200 µm, L = 2 µm). The
calculated transfer function is also shown in this figure. The
calculated and the four simulated corner frequencies for these
simulations are depicted in Tab. 1. As can be seen, the simu-
lation of 100 π networks is a rather good approximation for
the real transfer function. Thus the solution of (3) is a good
method to calculate the RC time constant.

TAB. 1: CORNER FREQUENCIES

nr. of
π networks

3 dB
frequency

1 223,3 MHz
2 253,7 MHz

10 270,7 MHz
100 271,5 MHz

calculated 273,3 MHz

-6

-5

-4

-3

-2

-1

0

1,00E+08 1,00E+09

f/Hz

A
/d

B

exact equation

nr = 10, 100

nr = 2

nr = 1

Fig. 4: Computed magnitude frequency responses

Equation (3) has been integrated into the module generator
environment in order to check the RC time constant of MOS
poly gates. The designer can specify a maximal frequency for
a module or single transistors of a module and the envi-
ronment will check this restriction during module generation.
If the RC time constant of a transistor gate is too great to meet
the defined frequency, a warning occurs. With this informa-
tion the module can be changed by modifying the number of
gates of a transistor in order to decrease the width of a tran-
sistor in an interdigital module, for example. This evaluation
can also be performed automatically. The automatic calcula-
tion and check of the RC time constant of gates is an example

Fig. 1: Longitudinal section of a MOS
transistor

Fig. 2: Distributed RC repre-
sentation of gate

for a condition which must be fulfilled in analog layouts.
Therefore, the design safety of an analog integrated circuit is
increased.

B. Parasitic Capacitances

Overlapping rectangles on different electrical potentials cause
excess parasitic capacitances [11] in analog layouts. These
excess parasitic capacitances in a module may or may not be
desired, depending on the function of the module. In a current
mirror of a bias network for example, high parasitic capaci-
tances are desired for stabilizing the voltage. In contrast to
this, excess parasitic capacitances must be avoided in a cur-
rent mirror for an active load. In order to keep the number of
different modules small the parasitic capacitances can be
controlled by a capacitance sensitivity matrix [10] in the
module generator environment. Hence, one module descrip-
tion can be used even for different circuit applications. With
the help of this matrix, which is defined graphically as an ex-
ternal input for the generator, overlaps between rectangles on
certain electrical potentials can be (i) allowed, (ii) allowed
only as a simple line cross, (iii) completely forbidden, (iv)
completely forbidden with minimal distance, or (v) desired.
The benefit of this approach is to enable the analog designer
to control the parasitic capacitances easily during module
generation. Examples for the use of this matrix will be pre-
sented in the following section.
The conditions required for controlling the overlap are real-
ized by automatically generated constraints for the compactor
creating the modules [9]. The condition for desired overlaps,
which is often applied in manual layouts to fill up empty
spaces in order to create excess ground capacitances, is real-
ized by a special filling algorithm which will be presented in
this subsection. This algorithm regards electrical connectivity
and the design rules automatically because it utilizes the in-
ternal compactor routines of the module generator environ-
ment and all its features [9].
Fig. 5a illustrates the function for scaling up a rectangle in all
directions. The parameters of this function are the rectangle
which is to be expanded and the direction which is omitted
during expansion. The direction is necessary for the recursive
call of this function in order to avoid endless loops due to re-
investigation of the rectangles previously expanded. During
the first function call, this parameter is omitted in order to ex-
pand the original rectangle in all directions. For each direc-
tion, the function for scaling up a rectangle calls the function
which calculates the allowed expansion (Fig. 5b) of a rectan-
gle in a given direction and inserts an appropriate geometry.

Fig. 5: Structogram for the scale up (a) and expansion (b) function

The function for expanding a rectangle has two parameters,
one for the rectangle and one for the direction of expansion.
At first, the maximal possible extension of the rectangle is
calculated with the function call calcExtension . This
function uses the compaction algorithm of the module gen-
erator environment in order to obtain this value. Rectangles
on the same electrical potential are not regarded and the de-
sign rules are evaluated automatically. The blocking edges,
up to which the rectangle can be extended, are returned in the
variable edges . If the calculated extension is greater or equal
to the minimal width of the expanded layer, a rectangle with
the calculated length is inserted and this new rectangle be-
comes the start rectangle for the further expansion by calling
recursively the function scaleUp . If the calculated extension
is smaller than the minimal width, all free spaces between the
blocking edges are investigated along the rectangle to deter-
mine if it can be expanded between these edges. A simple ex-
ample for this expansion algorithm is depicted in Fig. 6.

Fig. 6: Example of the filling algorithm

In this example, two rectangles of different potentials exist
(Fig. 6a). The left rectangle shall be expanded to fill up the
empty area. Firstly, a rectangle is inserted up to the blocking
edge of the second rectangle (Fig. 6b). This inserted rectangle
then becomes the starting rectangle of the subsequent expan-
sion call. Of course, the new expansion into direction east re-
sults in the width of the inserted rectangle smaller than the
minimal width. Therefore, the spaces between the blocking
edges are investigated and in Fig. 6c the result of this step is
shown. Since this new rectangle cannot be extended in any
other direction, the first inserted rectangle is extended into di-
rection south (Fig. 6d) after backtracking. Fig. 6e shows the
subsequent extension of this rectangle and in Fig. 6f the final
filled up layout is depicted.

a) b)

Fig. 7: Example for scale up routine

An example in which this algorithm has been applied to a
module is shown in Fig. 7. Both modules consist of a current
mirror at the bottom and a folded transistor on the top. In
contrast to Fig. 7a the gate rectangles of the module in Fig. 7b
have been scaled up.

III. SIMULATION AND OPTIMIZATION ENVIRONMENT

In this section the simulation and optimization environment,
which has been integrated in the Cadence design frame-
work II (DFII), will be described in more detail. The graphi-
cal user interface has been implemented in SKILL, the inter-
preter language of Cadence. The user interface executes ex-
ternal programs (module generators) to create automatically
the layout of defined modules. The result is displayed in the
layout editor of DFII. A snapshot of this environment is de-
picted in Fig. 8. The schematic window (upper left window)
contains the schematic of a circuit which is to be laid out and
optimized. In the generator window (upper right window) a
schematic view of a generator which is used for the layout
generation is displayed. The layout window at the right bot-
tom shows the corresponding module layout.

Fig. 8: Snapshot of the simulation and optimization environment

In Fig. 9 the design flow of the environment is illustrated.
After entering the circuit into the layout editor of DFII, it is
clustered into several modules. For this purpose, the designer
selects the appropriate elements of a module in the schematic
editor and chooses a generator. In the next step the elements
of the circuit are assigned to the elements of the generator
view.

Fig. 9: Design flow in the presented environment

The parasitic capacitances of the modules are controlled with
the capacitance sensitivity matrix. After the layout generation,
an extraction is performed and the parasitic elements are back
annotated into the schematic. With this good parasitic estima-
tion the entire circuit is simulated. Then the parameters of the
circuit can be changed in order to optimize the circuit. The
optimization loop begins with a possible redefinition of the
capacitance sensitivity matrix.
The following subsections describe the main steps of this de-
sign flow in more detail.

A. Select Generator and Assign Objects

The generators can be selected from a list of existing genera-
tors which have been created with a module generator envi-
ronment [9]. They support the automatic layout generation
even for complex modules like current mirrors or differential
pairs. The use of complex modules instead of simple transis-
tors increases the quality of the layout and reduces the subse-
quent placing and routing problem of these modules. For the
correct application of a generator the external connections
and the properties (e. g. width and length of transistors) are
required. To obtain this information the selected objects of
the module in the entire circuit have to be assigned to the
elements in the schematic of the generator. This is done
graphically by successively clicking on two matching objects
in the two schematic views. Hereby the external terminals of
the generator are connected with the nets of the circuits. The
parameters of the generators are automatically read from the
designer's circuit. If these parameters are changed for optimi-
zation purposes the generators will automatically take the new
values for module generation.

Fig. 10: Defining a module

A snapshot of the dialog box for defining a module is de-
picted in Fig. 10. For checking the RC time constant of the
gates, a maximal frequency of signals applied to the gates can
also be specified in this window.

B. Capacitance Sensitivity Matrix

After having assigned each object of the module, the sensitiv-
ity of every node can be defined in order to control the para-

sitic capacitances [10]. With this option a matrix can be de-
fined for controlling the overlaps of all nets in the resulting
layout. Therefore, it is possible to evaluate different topolo-
gies of a module during circuit optimization. The matrix for
controlling the parasitic capacitances is defined graphically
(s. Fig. 11). The net names of the entire circuit are written in
the columns and rows of the matrix. Due to the symmetry of
the matrix (the overlap between net1 and net2 is the same as
between net2 and net1) only the upper right part of the matrix
is displayed. The possible values for the matrix are shown in
Fig. 12. The value can be changed by clicking on the appro-
priate button. The modules are constructed using a special
compaction algorithm [9]. The definitions in the capacitance
sensitivity matrix are automatically transformed into con-
straints for the compactor.

Fig. 11: Defining the capacitance sensi-
tivity matrix

Fig. 12: Possible overlaps for
the capacitance sensitivity

matrix

Fig. 13: Schematic of a differential pair

In order to demonstrate the influence of this matrix on the
module generation two different results of a module will be
presented. In Fig. 13 the schematic of a MOS differential pair
is depicted. This is a very common structure for the input
module of a differential amplifier. One possible layout topol-
ogy for this module is a cross coupled structure with two in-
terdigital transistors for each input transistor. The layout for
this module is shown in Fig. 14 and Fig. 15, respectively. In
Fig. 14, the overlap between the drain and source of each
transistor has been forbidden just as the overlap (except cross
overlap) between the outer source and bulk connection over
the gate connections. In contrast to this, the mentioned over-
laps have been allowed in Fig. 15. For this reason, the cou-
pling capacitances increase while the area decreases. The de-
signer has to decide which alternative is the best for his cir-
cuit. The design assistant supports the designer in assessing

the alternatives because the circuit can be simulated with dif-
ferent topologies including the exact parasitics obtained by an
extractor.

Fig. 14: MOS differential pair and appropriate capacitance sensitivity matrix
(forbidden overlaps)

Fig. 15: MOS differential pair and appropriate capacitance sensitivity matrix
(overlaps allowed)

The result of the module generation is monitored in a layout
editor of DFII. The computation time for the layout of a mod-
ule is only a few seconds. Hence, it can be used interactively
and iteratively for evaluating modules with different parame-
ters or topologies. The layout of operational amplifiers (s.
section IV) have been generated with this method. With
adequate tools, the subsequent placement and routing can be
done manually or automatically. In this assistant the
placement is performed by an automatic "schematic-like"
placement or by an interactive relative placement of modules
using the compaction command. The remaining nets between
the complex modules are routed by a point-to-point router.

C. Extraction and Back Annotation of Parasitics

After the layout generation an extraction of parasitic elements
can be performed using the extractor tool of Cadence. From
this extraction, the line capacitances and transistor capaci-
tances (drain area, drain perimeter etc.) are back annotated
into the schematic. The instances for the parasitics of line ca-
pacitances are correctly connected because the net names are
read from the layout which are identical to the schematic net
names. With this extraction the designer gets a good estima-
tion for the parasitics because the subsequent routing of the
circuit will not increase these parasitics drastically due to the
use of complex modules with inner module routing. The back
annotation of the extracted parasitics values is used for a
resimulation and optimization of the entire circuit. The
resimulation can be done directly with the schematic includ-

ing the additional parasitics. If the designer changes a value
to optimize the circuit performance, the layout is automati-
cally regenerated and the parasitics are recalculated. Hence, a
direct feedback from the layout generation is provided and
the circuit can be optimized more rapidly and more accu-
rately.
After the definition and the layout generation, the modules are
stored in the database. The affected modules in the schematic
window are highlighted in a specific color denoting the clus-
tering. The module definition can be changed by several
modification functions.

IV. RESULTS

In Fig. 16 the schematic of a folded cascode amplifier for low
voltage applications [12, 13] is depicted. The simulated per-
formance data of the amplifier are: Power supply voltage
3.3 V, open loop gain 60 dB, 0 dB-bandwidth for 20 pF load
capacitance 28 MHz, slew rate 15 V/µs, output swing 1 V,
and power consumption 52 mW. The partitioning of the mod-
ules is indicated by the shaded rectangles. The corresponding
layout of the amplifier in a 1.2µ-technology is shown in Fig.
17. The modules have been created automatically using the
new assistant. Identical module generators have been used for
the bias network and the cascode stage. The different re-
quirements for the parasitic capacitances are considered with
corresponding sensitivity matrices.

Fig. 16: Schematic of the folded cascode amplifier with partitioning

Fig. 17: Layout of the folded cascode amplifier

V. CONCLUSION

In this paper a new simulation and optimization aid for the
design of analog integrated circuits has been presented. This
environment supports the analog designer in circuit optimiza-
tion by providing the layout and the extracted parasitic ele-
ments already in the optimization phase. Additional electrical
properties caused by the layout are taken into account. One
example of electrical properties are the RC time constants of
gates which are normally not considered. The circuit
performance is optimized by controlling the parasitic
capacitances already in the design phase of a circuit. Due to
the knowledge of the parasitic elements the optimization is
much more effective and reliable. If parameters are changed
in the schematic after a resimulation step, the affected
modules are rebuilt and the parasitics are automatically
recalculated. Therefore, the actual value of parasitic elements
is always present in the circuit schematic. Due to
parameterizable, technology and application independent
modules, the number of module generators can be kept small.
The usability of the environment has been demonstrated with
the creation of a layout for a low voltage folded cascode
amplifier.

REFERENCES

[1] J. Rijmenants, et al., "ILAC: An Automated Layout Tool for Analog
CMOS Circuits," IEEE J. Solid-State Circuits, Vol. 24, No. 2, pp.
417-425, April 1989.

[2] H. Y. Koh, et al., "OPASYN: A Compiler for CMOS Operational
Amplifiers," IEEE Trans. Computer-Aided Design, Vol. 9, No. 2, pp.
113-125, Feb. 1990.

[3] J. M. Cohn, et al., "KOAN/ANAGRAM II: New Tools for Device-
Level Analog Placement and Routing," IEEE J. Solid-State Circuits,
Vol. 26, No. 3, pp. 330-342, March 1991.

[4] V. Meyer zu Bexten, et al., "ALSYN: Flexible Rule-Based Layout
Synthesis for Analog IC's," IEEE J. Solid-State Circuits, Vol. 28, No.
3, pp. 261-268, March 1993.

[5] W. Schardein, et al., "Analog Module Generator for Effective Design
Assistance," Proc. ESSCIRC'94, Ulm, pp. 160-163, Sept. 1994.

[6] J. Kuhn, "Analog Module Generators for Silicon Compilation," VLSI
System Design, pp. 75-80, May 1987.

[7] A. Greiner, F. Pétrot, "Using C to Write Portable CMOS VLSI
Module Generators," EURO-DAC 1994, pp. 676-681, 1994.

[8] B. R. Owen, et al., "BALLISTIC: An Analog Layout Language," IEEE
Custom Integrated Circuits Conference, 1995, pp. 3.5.1-3.5.4.

[9] M. Wolf, et al., "A Novel Analog Module Generator Environment,"
Proc. The European Design & Test Conference, pp. 388-392, March
1996.

[10] M. Wolf, et al., "Application Independent Module Generation in
Analog Layouts," Proc. The European Design & Test Conference, p.
624, March 1997.

[11] U. Choudhury and A. Sangiovanni-Vincentelli, "Automatic Generation
of Parasitic Constraints for Performance-Constrained Physical Design of
Analog Circuits," IEEE Transactions on CAD of Integrated Circuits and
Systems, pp. 208-224, Feb. 1993.

[12] P. E. Allen et al., "CMOS Analog Circuit Design," Holt, Rinehart at
Winston, 1987.

[13] T. C. Choi et al., "Highfrequency CMOS Switched-capacitor filters
for commuinaction applications," IEEE. J. Solid-State Circuits, Vol.
18, pp. 652-664, Dec. 1983.

[14] B. Ahuja, "Implementation of Active Distributed RC Anti-Alias-
ing/Smoothing Filters" IEEE. J. Solid-State Circuits, Vol. SC-17, No.
6, pp. 1076-1080, Dec. 1983.

	CD-ROM Home Page
	ASP-DAC98
	Front Matter
	Table of Contents
	Session Index
	Author Index

