
Abstract— Test Pattern Generation for combinational
circuits entails the identification of primary input assign-
ments for detecting each fault in a set of target faults. An
extension to this procedure consists of reducing the number
of required test patterns by using heuristic test compaction
techniques. In this paper we show that finding the optimally
compacted test set can be cast as an integer linear program-
ming (ILP) optimization problem, thus providing a formal
framework for characterizing this optimization problem as
well as the heuristics commonly used in its solution. One sig-
nificant property of the proposed ILP model is that its size is
polynomial in the size of the original circuit description.
Moreover, we describe techniques for reducing the size of the
proposed ILP formulation. These techniques include, for
example, identification of fault independence relations,
removal of redundant faults by preprocessing, and using
empirical upper bounds.

I.  INTRODUCTION

The test pattern generation problem (ATPG) for dif-
ferent fault models, as so many other key tasks in elec-
tronic design automation, is computationally hard, being
NP-complete [7, 9]. Furthermore, the problem of comput-
ing the minimum number of tests for detecting all faults in
an irredundant circuit is known to be NP-hard [10]. The
generalization of this problem to arbitrary combinational
circuits is also necessarily NP-hard and will be henceforth
referred to as theminimum test set problem. Modeling
and algorithmic solutions to this optimization problem can
be particularly significant for large circuits and for circuits
aimed for large scale production, since a smaller number
of tests necessarily implies smaller testing time as well as
smaller memory requirements for storing the test patterns
[1, 15, 16, 20]. An immediate application is for example in
the synthesis of Built-In Self-Test (BIST) logic, since a
smaller number of test patterns necessarily simplifies the
logic and the test application time.

Even though in this paper we solely address the mini-

mum test set problem, other optimization problems in test
pattern generation can be readily formulated using the
same modeling approach, each of which with potential
practical application. (See for example [5] for a descrip-
tion of additional optimization problems in testing.)

The main purpose of this paper is to develop integer
linear program (ILP) models for solving the minimum test
set problem. The proposed formulation is polynomial in
the original size of the circuit. To our best knowledge, no
other explicit formulations exist for solving this optimiza-
tion problem. In general, most work on tackling the mini-
mization of test sets has consisted of heuristic techniques
for test compaction [15, 16]. Nevertheless, a BDD-based
approach for the computation of minimum test sets has
been described in [13]. However, this approach is based on
implicitly representingall test patterns for each fault, thus
requiring worst-case exponential space, and so it is
impractical except for very small circuits. Another rele-
vant research topic has been on estimating the minimum
number of tests for circuits with special properties [14],
but no results have been established for arbitrary combina-
tional circuits. We should also note that the proposed ILP
formulation can easily be solved for small-size circuits.
Hence, besides its theoretical interest, the proposed ILP
formulations can be used in validating new and existing
test compaction heuristics [10, 15, 16, 20].

The paper is organized as follows. We start, in Section
II, by introducing several definitions that will be used
throughout the paper. In particular we review Conjunctive
Normal Form (CNF) formulas for representing circuits
and fault detection problems, ILP formulations, and
straightforward algebraic generalizations of CNF formu-
las. Section III develops an ILP formulation for the mini-
mum test set problem, shows that this formulation is
correct and describes techniques for reducing the size of
the resulting ILPs. Finally we conclude with directions for
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future research work, which include addressing the practi-
cal implementation of dedicated algorithms for solving the
proposed ILP formulation as well as additional techniques
for their simplification.

II. DEFINITIONS

We start by introducing unified representations for
circuits, fault detection problems, and associated optimi-
zation problems. These representations are used through-
out the paper and are key for developing the proposed ILP
formulations. A combinational circuitC is represented as a
directed acyclic graph , where the ele-
ments of , i.e. the circuit nodes, are either primary
inputs or gate outputs, with . The set of edges

 identifies gate input-output connections.
We shall assume gates with bounded fanin, and so

. For every circuit nodex in , the fol-
lowing definitions apply:

•  denotes thefanout nodes of nodex, i.e. nodesy in
 such that .

•  denotes thetransitive fanout of nodex, i.e. the
set of all nodesy such that there is a path connectingx
to y.

•  denotes thefanin nodes of nodex, i.e. nodesy in
 such that .

•  denotes thetransitive fanin of nodex, i.e. the set
of all nodesy such that there is a path connectingy to x.

•  denotesimmediate fanout cone of influence of
x, being defined as follows:

. (1)

•  denotesimmediate fanin cone of influence of x,
being defined as follows:

. (2)

The set of primary inputs is referred to asPI, and the
set of primary outputs asPO. Simple gates are assumed:
AND, NAND, OR, NOR, NOT and BUFF. Finally, the
number of stuck-at faults in the circuit isM, with

, since , being numbered
. The example in Fig. 1 illustrates the previous

definitions.

For Automatic Test Pattern Generation (ATPG), the
following definitions apply. The single stuck-at line (SSF)
fault model is assumed [1]. We say that a stuck-at fault is
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detectable if and only if there exists an assignment of logic
values to the circuit primary inputs such that the effect of
the fault can be observed at one of the circuit primary out-
puts.

A. CNF Formulas and Test Pattern Generation

The application of Conjunctive Normal Form (CNF)
representations of circuits and fault detection problems in
ATPG has been extensively studied [4, 11, 18, 19]. In this
section we provide very simple and non-optimized CNF
representations of circuits and fault detection problems,
which will be assumed in the remainder of the paper.
These representations form the basis for the ILP models
introduced in the remainder of the paper.

The CNF formula of a circuit is the conjunction of the
CNF formulas for each gate output, where the CNF for-
mula of each gate denotes the valid input-output assign-
ments to the gate. (Derivation of the CNF formulas for
simple gates can be found for example in [11, 18].) If we
view a CNF formula as a set of clauses, the CNF formula

Fig. 1.  Example circuit — C17 [3]

(a) Circuit

x10 x22

x23

x11
x16

x19

x3

x1

x6 x2

x7

Nodex x11

O x( ) x16 x19,{ }

O∗ x( ) x16 x19 x22 x23, , ,{ }

I x( ) x3 x6,{ }

I∗ x( ) x3 x6,{ }

KO x( ) x2 x7 x10 x16 x19 x22 x23, , , , , ,{ }

KI x( ) x10 x2 x7 x1 x3 x6, , , , ,{ }

(b) Topological data forx11

Stuck-at faults 34

Collapsed faults 17

(c) Stuck-at faults



ϕ for the circuit is defined by the set union1 of the CNF
formulas for each gate:

(3)

In the context of test pattern generation, and for cap-
turing the fault detection problem, each nodex is charac-
terized by three propositional variables:

•  denotes the logic value assumed by the node in the
good circuit.

•  denotes the logic value assumed by the node in the
faulty circuit.

•  denotes whether  and  assume different logic
value [11]. We shall refer to this variable as the
sensitization status of node x. (Other semantic
definitions of the sensitization status have been
proposed [4, 19]. Nevertheless, the above definition is
used since it simplifies the ILP formulations derived in
subsequent sections. We should note, however, that the
other semantic definitions could also be used.)

Given the definition of variable , the condition
 must hold, which can be simplified to

:

(4)

that basically states that the logic values of  and
differ if and only if  assumes logic value 1.

Let  denote the CNF formula associated with gate
outputx. The notation  denotes the CNF formula forx
in the good circuit, i.e. using  variables, whereas
denotes the CNF formula forx in the faulty circuit, i.e.
using  variables. For astem fault z-a-v2, the CNF repre-
sentation of the associated fault detection problem con-
tains the following components:

• CNF formula for the circuit, denoting the good circuit,
.

• CNF formula for the circuit, denoting the faulty circuit,
. This formula only needs to contain the CNF

formulas for the nodes that are relevant for detecting the
given fault, i.e. nodes in the transitive fanout of nodez.

• CNF formulas for defining the sensitization status of

1. Set union in this context is to be understood as a product of
clauses.

2. See [1] for the definitions used throughout the paper for
ATPG.
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every node in the transitive fanout of the fault site, i.e.
nodez. Hence, for each of these nodes add , which
states that  if and only if .

• Clauses that prevent each nodex from being sensitized,

by having , wheneverx is not in the transitive

fanout ofz but at least one fanout node ofx is in the

transitive fanout ofz, i.e.x is in .

• Clauses requiring  on each nodex such thatx

is not in the transitive fanout ofz but at least one fanout

node ofx is in the transitive fanout ofz, i.e. x is in

. (Observe that this condition and the

previous one permit restricting the number of  and

 variables that must actually be used.)

• Clauses capturing conditions foractivating the fault, i.e.

by requiring  and by forcing a suitable logic

value on , .

• Clause requiring that at least one sensitization variable
of a primary output in the transitive fanout of the fault
site assumes value 1, .

(A more detailed derivation of formula  for
detecting a faultz s-a-v can be found in [18].)  will
henceforth be referred to as thefault detection formula.
Similarly, we define thefault-specific formula, , as
follows,

(5)

Fault-specific formulas contain only the clauses associated
with propagating the error signal to the primary outputs
and can be defined independently of the circuit formula.
The fault-specific CNF formula for faultx11 s-a-1 is given
in Fig. 2. Finally, we observe that a similar model can be
constructed forfanout-branch faults [11, 19].

Given the proposed CNF formulation for the fault
detection problem, we have the following formal results
(proofs of which can be found in [17]):

Proposition 1. Given a stuck-at stem faultz s-a-v, the fault
is detectable if and only if the associated fault detection for-
mula  is satisfiable.

We should also note that the above result can also be
established for the CNF model for a fanout-branch fault.
Furthermore, this result gives a formal guarantee of cor-
rectness for the fault detection CNF models described in
[4, 11, 19].
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Proposition 2. For any fault in a combinational circuit
composed of simple gates, the size of the associated fault
detection formula  is , clauses or literals, whereN
is the number of circuit nodes.

The proposed CNF formulations can be simplified
and improved (see for example [4, 11, 18, 19] for further
details). Nevertheless, for the purposes of this paper the
proposed formulation suffices and shall be assumed.

B. Integer Programs and Generalized Clauses

An integer linear program consists of a set of vari-
ables, which can only assume integer values, a set of linear
constraints on those variables, and a cost function that is to
be maximized or minimized. For the purposes of this
paper we further restrict the value of each variable to
either be 0 or 1. Hence, a 0-1 integer linear program (ILP)
is defined as follows:

(6)

where  is the vector of Boolean variables,  is the vec-
tor of coefficients for the cost function, and the matrices
and  define the set of linear constraints of the ILP.

The clausal formulations of the previous section were
defined assuming a Boolean algebra domain. Neverthe-
less, we can generalize the algebraic domain of each
clause. This generalization is commonly used in the field
of Operations Research for describing different optimiza-
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Fig. 2.  Example of fault-specific and fault detection CNF
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tion problems [8]. Let us consider, for example, the clause
. Since we want the clause to be satis-

fied, then it is also true that the linear inequality
 must hold [2]. Furthermore, given

that Boolean variables can only be assigned value 0 and 1,
we have . The application of this relation to
the above example clause yields .
Hence, clauses in CNF formulas can also be viewed as
inequalities and be handled as such. Given this view of
clauses, the set of constraints  in an ILP formula-
tion may include CNF formulas as well as other additional
constraints with arbitrary multiplicative constants.

III. M INIMUM TESTSETS

In this section we address the computation of the min-
imum number of test patterns which detect all detectable
faults in a combinational circuit. First, we provide an ILP
formulation for computing the minimum number of test
patterns which detect all faults in an irredundant circuit.
Afterwards, we extend this formulation to arbitrary combi-
national circuits, which may include redundant faults.

A. Irredundant Combinational Circuits

The first problem we address is to identify the mini-
mum number of test patterns that detect all faults in an
irredundant combinational circuit. Since there areM faults
to be detected, we need at least to specify a fault detection
formula for each fault. Moreover,M tests suffice for
detecting allM faults. As a result, we can createM copies
of each circuit formula, and for each such formula we can
createM associated fault-specific formulas, one for each
fault. A set of tests that detects all faults will do so in such
a composed formula (see Fig. 3). In general, we refer to
each copy of the circuit formula as , and refer to the
fault-specific formula associated with each faultj and copy

, of the circuit formula, as . In each copy
each variable  will be represented as . Accord-
ingly, variables associated with fault detection problems
and with nodex will be represented as  and in
each formula . Given the above, the problem of mini-
mizing the number of tests is now reduced to finding a set
of test patterns that detect all faults and that minimize the
number of copies  used.

Let us associate a Boolean variable  with each
fault-specific formula  which assumes value true
whenever faultj is detected with copy i of the circuit for-
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mula and associated fault-specific formula. This leads to
the following conditions for alli, j:

(7)

and,

(8)

Hence, faultj is detected with , if at least one sensiti-
zation variable  evaluates to true. In addition, either

 assumes value 0, or the error signal must reach at
least one primary output; hence condition (8). Clearly,
since each faultj is detectable and must be detected by a
test set, then the following conditions must hold,

(9)

for . Let us now introduce a variable ,
for each variable , such that,

(10)

and,

Fig. 3.  Global formula organization for detecting all faults
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Variable  evaluates to true whenever . In
such a situation, for all , . Thus, each vari-
able  permitsselecting the leasti for which fault j is
detected. Notice that the leasti for which faultj is detected
is such that  and .

In addition to the previous variables, we need to asso-
ciate a Boolean variable  that is assigned value true
whenever copyi of the circuit formula isused to detect at
least one fault which had not been detected with a smaller
i. Hence, we must have,

(12)

for . This condition basi-
cally states that the first copyi, for which fault j is
detected, is declared to be used for detecting faultj.
Hence, from the definition of  we have the following
result,

Proposition 3. Given the definition of  in (12), each
fault j can set exactly one variable  to true. Moreover,
more than one faultj can set the same variable .

Finally, we must define the cost function that we want
to minimize. Clearly, this cost function should minimize
the number of copies of the circuit formula that are used
for detecting all faults, and so we get,

(13)

TheM replicas of the clausal representation of the circuit,
each with itsM copies of the fault detection problems, as
well as (7) through (13) capture the problem of computing
the minimum number of tests for a given irredundant cir-
cuit. For our running example, the data for the associated
ILP formulation is summarized in Fig. 4. Finally, we can
establish the following formal results (see [17] for proofs
of these results).

Proposition 4. The size of the ILP for the minimum test
set problem (described above) is .

Proposition 5. The minimum value of (13) denotes the
minimum number of tests that detect all faults in the irre-
dundant combinational circuitC. Furthermore, each of the
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assignments to the primary inputs of each circuit copy ,
for which , denote a test pattern.

B. Arbitrary Combinational Circuits

The next problem we address is the identification of
the minimum number of test patterns which detect all
detectable faults in a given arbitrary combinational circuit,
as well as the identification of all the redundant faults in
that circuit. This problem is quite similar to the problem of
the previous section, with the added difficulty that some
faults are now redundant.

One simple solution to this problem is to introduce
additional variables and modify some of the equations of
the ILP of the previous section. First, let us define a vari-
able , with , that is true when faultj is
declaredredundant. Given that some faults are indeed
redundant, (12) must be modified to capture this fact:

(14)

for . This condition requires that either the
fault is detected by at least one copy of the circuit formula
or otherwise it must be declared redundant. The next step
is to modify the cost function so as to penalize the exist-
ence of redundant faults. This can be done by giving a suf-
ficiently large weight to variables declared redundant,
such that the cost of declaring a fault redundant is larger
than the sum of all  variables. Hence, the minimum
value is achieved only when the actual redundant variables
are declared redundant, since these faults cannot be
detected. Consequently, we obtain the following cost func-
tion:

Fig. 4.  Upper bounds on the ILP formulation

# Clauses # Formulas

Circuit formula 34

Fault-specific formula

Detection requirement 34

Fault detection selection

Propagation of selection

Usage of replicai

Cost function 1

34
2

1156=

34
2

1156=

33 34× 1122=

34
2

1156=

ϕi
G

ui 1=

r j j 1 … M, ,{ }∈

di j,
i 1=

M

∑ r j+
 
 
 

dj i,
i 1=

M

∑ r j+ 1≥
 
 
 

⇔

j 1 … M, ,{ }∈

ui

(15)

This cost function splits the range of possible values into
disjoint sets according to the number of variables  set to
true. Valid ranges are, , ,

, etc. The size of these ranges is,
respectively, , etc. Intuitively, the mini-
mum value will be achieved when all detectable faults are
indeed detected and in the least number of copies of the
circuit formula. The ILP formulation for this problem is
summarized in Table I.

Proposition 6. The minimum value of (15), assuming (14)
instead of (9), denotes the minimum number of tests that
detect all detectable faults and identify all redundant faults
in a combinational circuitC. In addition, the assignments to
the primary inputs of each circuit copy , for which

, denote a test pattern. Finally, each variable  set
to true indicates that faultj is redundant.

C. Practical Considerations

Different techniques for reducing the size of the ILPs
associated with minimum test set computation are
described in [17]. These techniques involve removing
redundant faults from the fault set, applying fault domi-
nance and independence relationships, and using empirical
upper bounds. For the example circuit of Fig. 1, C17, there
are a total of 34 stuck-at faults. This leads to the ILP
model described in Fig. 4. In contrast, by running the
ATPG algorithm ATALANTA [12], four test patterns are
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identified. Thus, instead of an ILP model that contains
 fault-specific formulas, using the empirical

upper bound of 4 tests, the number of fault-specific formu-
las is guaranteed to be at most . Moreover,
by taking into account dominance relations, the set of
faults can be collapsed into 17 faults [3] (see Fig. 1-(c)).
Thus, only  fault-specific formulas need to
be considered. Clearly, similar savings are expected in
most practical examples.

IV.  CONCLUSIONS ANDONGOINGWORK

In this paper we describe CNF formulations for the
identification of test patterns and show how these formula-
tions can be used for constructing integer linear programs
(ILP) for solving optimization problems in testing, in par-
ticular the minimum test set problem. The size of the pro-
posed ILPs is in the worst-case polynomial in the number
of circuit nodes, in contrast with previous solutions, which
require worst-case exponential-size representations [13].
Besides their theoretical interest, the proposed ILP formu-
lations can be used in small-size circuits for validating
new heuristics for test set compaction.

Current research work targets the simplification of the
proposed ILP models, by simplifying the models them-
selves, and by using problem-specific information. In
addition, we have developed ILP models for other optimi-
zation problems in testing [5], with promising experimen-
tal results.
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