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Abstract−This paper describes a new redundant fault
identification algorithm with Exclusive-OR circuit
reduction.  The experimental results using this algorithm
with a FAN-based test pattern generation algorithm show
nearly 100% fault coverage for complex arithmetic logic
circuits.  Moreover we achieved 99.99% fault coverage
applying this algorithm with a weighted random pattern
generator to the LSIs (100-450 kgates) of Hitachi MP5800
mainframe computer.

1.  INTRODUCTION

With the increase in size and complexity of logic circuits
in recent years, fault diagnosis is becoming more and more
difficult. To overcome this difficulty, scan-design techniques
are generally used [1].  Using scan-design techniques, test
pattern generation (TG) for sequential circuits can be
replaced with that for combinational circuits.  This allows us
to use TG algorithms for combinational circuits, such as the
D-algorithm [2], PODEM [3], and FAN [4] which provide
high fault coverage.  However, there still remain aborted
faults for which test patterns cannot be generated and
redundancies cannot be proved.  The existence of aborted
faults may lower the reliability of an LSI.  Especially, for a
very large-scale computer which consists of many LSIs,
almost 100% fault coverage for each LSI is necessary to
obtain satisfiable reliability.

In order to generate test patterns or prove redundancies
for such hard faults in combinational circuits, several
approaches have been proposed.  One is SOCRATES which
accelerates the TG and the redundancy identification (RI)
processes with improved implication and improved
sensitization procedures [5].  Another is Nemesis which
proceeds TG and RI using the Boolean satisfiability method
[6].  We have also proposed an RI algorithm, REDUCT
(REDUndant fault identification algorithm using Circuit
reduction Techniques) which is aimed at RI and TG for hard
faults [7].  The methodology of REDUCT is a new one
which reduces the complexity of circuits making TG and RI
easier.  We have applied N2-V (the N2-Valued test pattern
generation algorithm) [8] which is a FAN-based TG
algorithm and then applied REDUCT which handles all of the
aborted faults of N2-V, to the ISCAS85 benchmarks [9], and
have obtained 100% fault coverage for all of the benchmarks
[7].

    The TG problem is NP-hard and the RI problem is co-
NP-complete [10].  The difficulties of the problems are
caused by a large number of reconvergences, head lines [4],
etc. in combinational circuits.  To determine the effects of
reconvergences and head lines in a combinational circuit,
REDUCT handles the redundant fault identification problem
by transforming the given circuit into another.  Given
combinational circuit X and the problem "Is fault f redundant
in X or not?", REDUCT transforms them into circuit Z
consisting of NOR-gates and primary inputs (PIs) and an
equivalent problem "Is the output of Z equal to 0 for any
input pattern or not?".  REDUCT next reduces circuit
complexity of Z, using four circuit reduction techniques.
And finally, REDUCT tries to justify the logic value 1 of the
reduced circuit output by backtracing and backtracking, and
determines whether or not an input pattern exists that causes
the circuit output to be 1.

We have also applied N2-V and REDUCT to several
arithmetic logic circuits, but the fault coverage was not as
good as with other types of circuit.  It is difficult in general
to achieve high fault coverage for an arithmetic logic circuit.
An arithmetic logic circuit includes many EOR-logics, so that
the complexity of the circuit increases.  REDUCT which
constructs the circuit with only NOR-gates and primary inputs
(PIs), cannot identify EOR-logics in the circuit nor the
complexity caused by EOR-logics.  Fig. 1 shows an example
of this case.  In Fig. 1, A, B, C, G, H, and K are NOR-gates,
and the output values of G and H are 0.  Because G =
EOR(K, C) = EOR(EOR(A, B), C) = EOR(A, B, C) and H =
EOR(A, C), B = EOR(G, H) = 0.  But not being able to
identify these EOR relations, REDUCT cannot infer that the
output value of B is 0.

To overcome this, it is necessary to identify EOR-logics
and to see how these EOR-logics relate to one another.
Therefore, in this paper we propose an improved REDUCT
which identifies EOR-logics, reduces the number of
neighbours of EOR-logics, and does improved implication
using the properties of EOR-logics during the justification
procedure.

We applied N2-V and the original or improved REDUCT
to some arithmetic logic circuits.  Using N2-V and the
improved REDUCT, we obtained higher fault coverage than
was obtained using N2-V and the original REDUCT. We also
applied the improved REDUCT after applying a weighted
random pattern generator (WRPG) to the LSIs of Hitachi
MP5800 mainframe computer, and achieved 99.99% fault



coverage.
This paper begins with a description of the algorithm and

the circuit reduction techniques used to reduce circuit
complexity, of the original REDUCT in Sec. 2.  We then
describe in Sec. 3 the improvement of REDUCT (EOR-logic
reduction and improved implication).  Experimental results
are given in Sec. 4 and Sec. 5 concludes the paper.

2.  ORIGINAL REDUCT

2.1.  ALGORITHM

In this section, we will describe the original REDUCT
algorithm.

The flowchart in Fig. 2 outlines the REDUCT algorithm.
First, for each pair (f, C), where f is an undetected fault in
combinational logic X and C is a cone containing f, related
regions are determined.  Here, a cone is a single-output sub-
circuit of X, whose primary output (PO) is one of the POs of
X, and the related region for (f, C) is the limited region such
that the redundancy of f in this region is equivalent to that in
C.  Fig. 3 shows an example of related regions.  The circuit
in Fig. 3 has three cones X1, X2, and X3.  Assume that either
a s-a-0 or a s-a-1 fault on line l1 (l2) has been detected at
either O1 or O2(O3).  Fig. 3(a) shows the related region R(f,
X1) (= R(f, X2)) for fault f and X1 (X2).  Fig. 3(b) shows the
related region R(f, X3) for f and X3.  After related region
determination, it is enough to treat R(f, X1) and R(f, X3)
instead of X1, X2, and X3 for f.
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Fig. 1.  Example of EOR-logics
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Fig. 2.  REDUCT algorithm

Then, for each pair of faults and cones, the related region
R is transformed into a single-output circuit Y for the co-SAT
(co-SATisfiability problem) as described in the flowchart in
Fig. 4, and circuit Y is transformed into an equivalent circuit
Z consisting of NOR-gates and PIs.  Fig. 4(a) shows circuit
R, with a fault f on line lf.  If f is s-a-1,  let R' be a sub-
circuit of R whose PO is lf.  If f is s-a-0, let R' be a circuit
obtained by adding a NOT-gate to PO lf of the above R'.
Fig. 4(b) shows R'.  Let R'' be a sub-circuit of R obtained by
deleting from R the gates and the lines, which cannot be
accessible to the circuit output without passing through lf.
Fig. 4(c) shows R''.  Next, let R''(0) and R''(1) be the circuits
assigned 0 and 1 to lf of R'', respectively.  Circuit Y is then
constructed with R', R''(0), R''(1), an ENOR-gate E, and an
output NOR-gate O as shown in Fig. 4(d).

Then the RI problem "Is f redundant in R?" for fault f and
the related region R is equivalent to the co-SAT "Does the
output of Y  (Z) become 0 for any input pattern?" for circuit
Y  (Z).  The solution of the co-SAT may be one of the
following: yes (i.e., f is redundant in R), no (i.e., f is
detectable in R), or unknown (i.e., f cannot be identified as
either redundant or not because the computational effort to
solve the problem exceeds the limit).  If the solution is no,
then a test pattern for f is generated by justifying all the logic
values assigned to head lines while solving the co-SAT.

Fig. 5 outlines the algorithm for solving the co-SAT
process in Fig. 2.  Circuit Z is reduced by using the circuit
reduction techniques.  The original REDUCT has four
circuit reduction techniques (binding identical sub-logics (BI),
renewal of head lines (RH), reduction 1 (R1), and reduction 2
(R2)).  If the co-SAT has not been solved during circuit
reduction, then justify the logic value 1 of the reduced circuit
output by backtracing and backtracking. If the justification
fails for all possible backtracking, the solution of the co-SAT
is yes.
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2.2.  CIRCUIT REDUCTION TECHNIQUES

In this section the four reduction techniques to reduce the
complexity of the circuit is described (circuit reduction
processing in Fig. 5).  BI and R1 reduce reconvergences,
and RH and R2 decrease the number of head lines, and ER
reduces the number of neighbours of EOR-logics.  Before
describing these techniques, we introduce independency and
dependency of gates in a circuit.  The dependency of gates is
important for SAT (SATisfiability problem), because higher
dependency generally makes it more difficult to solve SAT.

Let  G1, G2, ..., and Gn be gates or PIs in a circuit, whose
output lines are l1, l2, ..., and ln, respectively.  Here, G1,
G2, ..., and Gn are defined to be independent (or l1, l2, ..., and
ln to be independent) if for any n-tuple vector v=(v1, v2, ...,
vn)∈{0, 1} n there exists an input pattern which controls the
logic value of li to be vi for all i.  If G1, G2, ..., and Gn are
not independent, we say that G1, G2, ...., and Gn are
dependent (or l1, l2, ..., and ln are dependent).  All the PI

lines and all the head lines provide examples of independent
lines.  Of the four reduction techniques, BI handles special
dependent cases, RH tries to find a set of independent gates
located nearer to the circuit output than the head lines, and R1
finds dependent gates.

A.  Binding identical sub-logics (BI)

A typical example of dependent gates is a pair of gates
that have identical sub-logic.  In this case, the two gates can
be bound.  BI is essentially the same as the alignment of [11].

Fig. 6 shows an example of BI.  In Fig. 6(a), NOR-gates
A and B express the same sub-logic, because A and B have the
same source gates C and D.  Fig. 6(b) shows the circuit after
gates A and B have been bound into one gate A.

B.   Renewal of head lines (RH)

RH is a technique to reduce head lines.  First we define
an independent cutset of circuit Z as a set G of lines satisfying
the following conditions.
(1) Lines in G are independent.
(2) Any path from any PI to the output of Z passes through at

least one line in G.
It is clear that the set of all the PI lines is an independent
cutset and so is the set of all head lines.  The concept of an
independent cutset resembles that of the basis node of TOPS
[12].  Unlike the basis node, however, the independent
cutset takes into account the precise controllability of lines.
If there exists an independent cutset whose lines are head
lines or are located nearer to the output of Z than the head
lines, the lines in this independent cutset can be treated as
head lines.  Using this property RH reduces head lines.

Fig. 7 shows an example of RH.  In Fig. 7(a), the output
lines of PIs I1, I2, I3, and I4 are head lines and the output line
of I1 has fan-out branches.  Fig. 7(b) shows the circuit after
implication of the assignment of 0 to the output of I1.  In Fig.
7(b), the outputs of NOR-gate A, B, and C can be controlled
by the values of the output lines of I2, I3, and I4, which are
head lines.  Fig. 7(c) shows the circuit after cutting lines
whose logic values are 0 or 1 and then deleting gates and PIs
unconnected to a sink gate.  The output line of D is the head
line renewed from the output lines of PIs I1, I2, I3, and I4.

C.  Reduction 1 (R1)

For a sub-logic expressed by a gate in a circuit, a case
exists where the sub-logic can be expressed more simply.  A
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Fig. 6.  Binding identical sub-logics
(a) Initial situation  (b) Binding A and B
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(a) Initial situation
(b) Implication of the assignment of 0 to the output of I
(c) Final situation: line cut and gate deletion

technique called R1 that simplifies gate expressions in the
circuit is described in this section.  R1 first investigates the
relation of the objective gate R and the gates in the fan-in side
of R, then using this relation reduces the fan-in side logics of
R.  We describe R1 using the two examples in Fig. 8 and Fig.
9.

Fig. 8 shows an example of R1.  In Fig. 8(a), NOR-gate
R is an objective gate.  Fig. 8(b) shows the circuit after
implication of the assignment of 1 to the output of R.  The
result of implication shows that the output value of R is 1 only
if the output values of B, C, and I are all 0.  Fig. 8(c) shows
the circuit after replacing the sub-circuit surrounded by R, B,
C, and I by a simple logic NOR(B, C, I).

Fig. 9 shows another example of R1.  In Fig. 9(a), NOR-
gate R is an objective gate.  Fig. 9(b) shows the circuit after
implication of the assignment of 1 to the output of R.
During implication, a contradiction occurs.  Thus, the output
value of R must be 0.  Fig. 9(c) shows the circuit assigned 0
to the output of R.

D.  Reduction 2 (R2)
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(b) Implication of the assignment of 1 to the output of R
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(a) Initial situation
(b) Implication of the assignment of 1 to the output of R
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R, line cut, and gate deletion

R2 reduces head lines. Let C be an one-output NOR
constructed circuit and h be a head line in C.  In general,
there are several paths from h to the circuit output and the
effect of h on the circuit output is very complex.  However,
in special cases, h has a useful property which is stated in the
theorem below.
Theorem 1. Assume that each path from h to the output of
circuit C has an odd number of NOR-gates.  Then circuit C'
obtained by the assignment h=0 has no input pattern which
causes the output of C' to be 1, if and only if C has no such
input pattern.

On the other hand, assume that each path from h to the
output of C has an even number of NOR-gates.  Then circuit
C' obtained by the assignment h=1 has no input pattern which
causes the output of C' to be 1, if and only if C has no such
input pattern.
Proof (sketch in the case of odd number of NOR-gates):  It
is obvious that if C has no input pattern which causes the
output of C to be 1, then C’ has no such input pattern.
Assume if C’ has no input pattern which causes the output of
C’ to be 1 but C has one such input pattern T.  The logic
value of h must be 1 under T.  When the logic value of h is
changed from 1 to 0, the output value of C becomes 0.  This
logic value propagation means that under T, there is a path
from h to the output of C on which there emerges 0 and 1
logic values alternatively, which is impossible because there
is no even number of NOR-gates path from h to the output of
C. Q.E.D.

R2 reduces head lines using the properties stated in
Theorem 1.

Fig. 10 shows an example of R2.  In Fig. 10(a), from the
head line h to the output of O (circuit output gate) there are
two paths, A-C-O and B-D-O, each of which consists of three
NOR-gates.  Fig. 10(b) shows the circuit assigned 0 to h.

3.  IMPROVEMENT OF REDUCT

The improved REDUCT has EOR-logic reduction
technique (ER) added to the original four techniques BI, RH,
R1, R2 for circuit reduction, and does improved implication
for EOR logics in the circuit.  ER reduces the number of
neighbours of EOR-logics

3.1.  EOR-LOGIC REDUCTION (ER)
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Fig. 10.  Reduction 2
(a) Initial situation
(b) Implication of the assignment h=1, line cut, and gate deletion



ER identifies product-sum sub-circuits expressing
EOR(ENOR)-logics in the circuit and reduces the neighbours
of the EOR(ENOR)-logics, to reduce the complexity caused
by EOR(ENOR)-logics.

Fig. 11 shows an example of identifying EOR-logic.  In
Fig. 11(a), G is the objective NOR-gate.  The output logic of
G is equal to the product-sum logic expressing EOR(I1, I2, I3).
Fig. 11(b) shows the circuit after replacing the product-sum
logic with an EOR-gate G.

There are two ways to reduce the number of neighbours of
an EOR-gate.  One is to reduce the fan-in inverters of an
EOR(ENOR)-gate and the other is to reduce the fan-in
EOR(ENOR)-gates of an EOR(ENOR)-gate.  Fig. 12 and
Fig. 13, respectively, show examples of the former and latter
reductions.

In Fig. 12, G is an EOR-gate and I1, I2, I3, A, B, and C are
NOR-gates.  In Fig. 12(a1), G = EOR(I1, I2, C) = EOR(A, B,
C), hence I1 and I2 can be reduced as in Fig. 12(b1).  In Fig.
12(a2), G = EOR(I1, I2, I3) = ENOR(A, B, C), hence I1, I2,
and I3 can be reduced by changing G from an EOR-gate to an
ENOR-gate as in Fig. 12(b2).

In Fig. 13, G and H are EOR-gates and A, B, and C are
NOR-gates. In Fig. 13(a1), G = EOR(H, C) = EOR(A, B, C),
hence H can be reduced as in Fig. 13(b1).  In Fig. 13(a2), G
= EOR(H, C) = ENOR(A, B, C), hence H can be reduced by
changing G from an EOR-gate to an ENOR-gate as in Fig.
13(b2).

3.2.  IMPROVED IMPLICATION
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Fig. 11.  Example of identifying EOR-logic
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During the implication following backtracing and
backtracking, the improved REDUCT does improved
implication using the properties of the EOR-gate.  Fig. 14
shows an example of this improved implication.  In Fig.
14(a), the output values of EOR-gates G and H are both 0;
and A, B, and C are NOR-gates.  Because G = EOR(A,B,C)
and H = EOR(A,C), we have B = EOR(G,H) = 0 (Fig. 14(b)).
If G and H are constructed with only NOR-gates we cannot
obtain the information that the output value of B is 0.

4.  EXPERIMENTAL RESULTS

We applied N2-V and REDUCT to arithmetic logic
circuits containing many EOR-logics.  N2-V is a FAN-based
TG algorithm which handles normal values and faulty values
separately in order to express the value assignment situation
in more detail.  We first applied N2-V to the circuits and
then applied REDUCT to the aborted faults for which N2-V
failed to generate test patterns and to prove redundancies.
We used a Hitachi M680 mainframe computer for this work.
In the results described below, fault coverage is defined as
( no. of detected faults ∗ 100 ) / ( no. of assumed faults − no.
of redundant faults ).

Table 1 shows the results for real combinational
arithmetic logic circuits.  Using N2-V and the original
REDUCT, we did not obtain 100% fault coverage for any of
the nine circuits.  But, using N2-V and the improved
REDUCT, we produced higher fault coverage for all of the
circuits and for seven of the nine we obtained 100% fault
coverage.

Table 2 shows the results for full-scanned sequential



complex arithmetic logic circuits of actual VLSIs.  The TG
system that we used divided the circuit into combinational
sub-circuits, and N2-V and REDUCT were applied to each of
them.  Using N2-V and the improved REDUCT, we
obtained higher fault coverage than was obtained using N2-V
and the original REDUCT, and the number of aborted faults
was much lower.

From the results shown in Tables 1 and 2, we can
conclude that the improved REDUCT is very effective in
achieving higher fault coverage for arithmetic logic circuits.

We also applied a WRPG with VCLAS (Vector
Command array Library Active Simulation: a vectorized LCC
(Levelized Compiled Code) fault simulation [13]) and the
improved REDUCT to more than 30 LSIs (100-450 kgates)
of MP5800.  Applying a WRPG with VCLAS only we
achieved 99.94% fault coverage on the average, but applying
the improved REDUCT after this we achieved 99.99% fault
coverage on the average.  This result shows that the
improved REDUCT is also effective for TG and RI of very
large circuits.

5.  CONCLUSION

We refined an RI algorithm REDUCT which was
proposed in [7].  This improved algorithm deals with the RI
problem by transforming a given circuit into another.  Then
it uses five circuit reduction techniques to reduce the
complexity of the transformed circuit caused by a large
number of reconvergences, head lines, and EOR-logics in the
circuit.  It also proves redundancies and generates test
patterns for hard faults of circuits containing many EOR-
logics more efficiently than conventional TG algorithms.
Using a combination of  N2-V and the improved REDUCT,
we obtained higher fault coverage for arithmetic logic circuits
than was obtained using N2-V and the original REDUCT.
Also using the improved REDUCT with a WRPG to the LSIs
of MP5800 we achieved 99.99% fault coverage.
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