Space- and Time-Efficient BDD Construction via Working Set Control

Bwolen Yang Yirng-An Cheri Randal E. Bryarit David R. O’Hallarori

Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213. USA

Abstract— Binary decision diagrams (BDDs) have been shown in the number of input bits [5]. To address this issue, there are
to be a powerful tool in formal verification. Efficient BDD con- many BDD related research efforts directed towards reducing
struction techniques become more important as the complexity the size of the graph with techniques like new compact rep-
of protocol and circuit designs increases. This paper addresses resentations for specific classes of functions (KFDD [9] and
this issue by introducing three techniques based on working set *BMD [6]), divide-and-conquer (POBDD [11] and ACV [7]),
control. First, we introduce a novel BDD construction algorithm function abstraction (aBdd [12]), and variable reordering [19].
based on partial breadth-first expansion. This approach has the Despite these efforts, large graphs can still naturally arise for
good memory locality of the breadth-first BDD construction while more irregular functions or for incorrect implementations of a
maintaining the low memory overhead of the depth-firstapproach. specification. Incorrectimplementation can break the structure
Second, we describe how memory management on a per-variable of a function and thus can greatly increase the graph size. For
basis can improve spatial locality of BDD construction at all lev- example, the *BMD representation for integer multiplication
els, including expansion, reduction, and rehashing. Finally, we is linear. However, a mistake in the implementation of inte-
introduce a memory compacting garbage collection algorithm to ger multiplication logic can cause an exponential explosion of
remove unreachable BDD nodes and minimize memory fragmen- the resulting graph. The ability to handle large graphs effi-
tation. Experimental results show that when the applications fit ciently can enable us to represent more irregular functions and
in physical memory, our approach has speedups of up to 1.6 in to provide counterexamples for incorrect implementations.

comparison to both depth-first (CUDD) and breadth-first (CAL) Conventional BDD algorithms [2] are based on depth-first
packages. When the applications do not fit into physical memory, .5versal of BDD graphs. This approach has small memory
our approach outperforms both CUDD and CAL by uptoanorder oyerhead, but poor memory locality. To address the issue of
of magnitude. Furthermore, the good memory locality and low ¢qnstrycting large BDDs efficiently, there have been many im-
memory overhead of this approach has enabled us to be the first plementations [14, 15, 1, 10, 18] based on breadth-first traver-
to have successfully constructed the entire C6288 multiplication ¢ The breadth-first approach, which exploits its graph traver-
circuit from the ISCAS85 benchmark set using only conventional ¢ pattern by using specialized memory layouts, has better
BDD representations. memory access locality and thus often has better performance.
However, the breadth-first approach can have a large memory
overhead, up to quadratic in the size of BDD operands. This
extra memory overhead can result in an increased number of
With the increasing complexity of protocol and circuit de-page faults and thus poor performance.

signs, formal verification has become an important researchtg maintain memory access locality with low memory over-
area. Binary decision diagrams (BDDs) have been shown to Rgad, we introduce a new algorithm basedpartial breadth-

a powerful tool in formal verification [4]. Even though manysjrst expansion This algorithm improves locality of reference
functions have compact BDD representations, some functiog§ controlling the working set size and thus reducing over-
can have very large BDDs. For example, BDD representatiofgad due to page faults. We describe how memory manage-
for integer multiplication have been shown to be exponentighent on a per-variable basis can improve spatial locality of

*Effort sponsored in part by the Advanced Research Projects Agency aﬁ.PD ConStrUCthn at "_"” levels, .|nclud|ng expansmnz reduc-
Rome Laboratory, Air Force Materiel Command, USAF, under agreemeiiton, and rehashing. Finally, we introduce a breadth-first BDD
number F30602-96-1-0287, in part by the National Science Foundation undgarbage collection algorithm which performs memory com-

Grant CMS-9318163, and in part by a grant from the Intel Corporation. Th ; ; ; ; e
U.S. Government is authorized to reproduce and distribute reprints for Go@-acnon without incurring additional memory overhead. Al

ernmental purposes notwithstanding any copyright annotation thereon. Tﬂé these teChnique_S quk together to control the working set
views and conclusions contained herein are those of the authors and shouldsi@e and have a significant impact on performance of BDD

be interpreted as necessarily representing the official policies or endorsemegignstruction. As these techniques exploit inherent properties

either expressed or implied, of the Advanced Research Projects Agency, Ro : : : —
Laboratory, or the U.S. Government. BFBDD construction, graph reduction techniques (like *BMD,

tSupported in part by the Defense Advanced Research Project Agen_@PBDDa and (_jynamic variable reordering) can be incorporated
(DARPA) under contract number DABT63-96-C-0071. into our algorithms to further expand the usefulness of these

|. INTRODUCTION

algorithms. lent boolean subexpressions are uniquely represented. Fig.1(c)

Experimental results show that when the applications fit ishows the BDD representation of the binary decision tree in
physical memory, our approach has speedups of up to 1.6kig.1(b). Since all subexpressions in a BDD are uniquely rep-
comparison to leading depth-first (CUDD) and breadth-firsiesented, a BDD can be exponentially more compact than its
(CAL) packages. When the applications do not fit into physicalorresponding truth table or binary decision tree representa-
memory, our algorithm outperforms both CUDD and CAL bytions.
up to an order of magnitude. Furthermore, to demonstrate howOne necessary condition for guaranteeing uniqueness of the
our techniques can efficiently build very large graphs, we coBDD representation is that all the BDDs constructed must fol-
structed the output BDDs for the C6288 multiplication circuilow the same variable ordering; i.e., for any two variabtes
from the ISCAS85 benchmark. To the best of our knowledgend y, if = has higher precedence thgnz < y), then for
this has never been done before. any path that contains bothandy, x must appear beforg

Beyond the sequential world, another advantage of the partizi this path. Note that the BDD size can be very sensitive to
breadth-first algorithm is that it can be parallelized [22]. Thithe variable ordering where the graph size of one ordering can
approach achieves speedups of up to four on eight processbesexponentially more compact than the graph size of another
of a shared memory system. ordering.

The rest of this paper is as follows: Section Il gives an Before describing the basis for BDD construction, we will
overview of BDDs and howthey are constructed. Section Il ddirst introduce some terminology and notatigfy_o and f,—1
scribes the partial breadth-first algorithm and other techniquage cofactor functionsof the function f with respect to the
for controlling the working set size. Section IV presents perfooolean variable:, wheref, o is equal tof with the value of
mance evaluation of our implementation. Section V demors set to 0, and’, =1 is equal tof with the value ofz setto 1. A
strates the usefulness of this implementation by constructimgachable subgrapbf a noden is defined to be all the nodes
very large BDDs for 16-bit array multipliers. Finally, Sec-that can be reached from by traversing 0 or more directed
tion VII summarizes this paper and offers some concludingdgesBDD nodesare defined to be internal vertices of BDDs.
remarks. Given a BDDb, the functionf represented by is recursively

defined by

Il. BDD OVERVIEW [=T famo+ - fou 1)

A boolean expression can be represented by a complete Wiherez is the variable corresponds s root node and the
nary tree called &inary decision treewhich is based on the cofactor functionf,—o is recursively defined by the reachable
expression’s truth table. Fig.1(a) shows the truth table fasubgraph ob’s O-branch child. Similarlyf.—; is recursively
a boolean expression and Fig.1(b) shows the correspondigigfined by the reachable subgraplb'sfl-branch child.
binary decision tree. Each internal vertex is labeled by a vari-
able and has edges directed toward two children: the 0-branghBasis for BDD Construction
(shown as a dashed line) corresponds to the case where the . L ,
variable is assigned 0, and the 1-branch (shown as a solid line BDD construction is a memoization-based dynamic pro-

corresponds to the case where the variable is assigned 1. E4 ﬂmming _algorithm. Due to _the_large humber of distinct sub-
leaf node is labeled 0 or 1. Each path from the root to a |e£1,roblems, instead of a memoization table, a cache known as the

gmputed cachis used to record the result of each subproblem.
iven a variable ordering and two BDFsandg, the resulting
BDD r of a boolean operatiofi op g is constructed based on
the Shannon expansion

node corresponds to a truth table entry where the value of tfy
leaf node is the value of the function and the path correspon
to the assignment of the boolean variables.

f:(b/\c)V(a/\E/\E) 7“:fopg:?'(fr:OOpgr:O)+T'(fr:10pgr:1) (2)

wherer is the variable top variablg with the highest prece-
dence among all the variablesfrandg, andf,—o, fr=1, 9r=0,
andg.—1 are the corresponding cofactor functionsfadndg.

In the top-downexpansion phasehis Shannon expansion
process repeats recursively following the given variable order-
ing for all the boolean variables jhandg. The base case (also
Fig. 1 A boolean expression represented with (a) Truth table, (b) Binary called fchetermmal Casaa of this recursive process is when the
decision tree, (c) Binary decision diagram. The dashed-edges are 0-branch@@eration can be trivially evaluated. For example, the boolean
and the solid-edges are the 1-branches. operationf A f is a terminal case because it can be trivially

evaluated tgf. Similarly, f A O is also a terminal case. At the
end of the expansion phase, there may be unreduced subexpres-

Abinary decision diagram (BDD) is a directed acyclic graptsions like(Z - h + x - h). Thus, in order to ensure uniqueness, a
(DAG) representation of a binary decision tree where equivéottom-upreduction phasés necessary to reduce expressions

PrPRPRPrOOOO
PR OoOORr Rk ool
roORrOoOrOorOolo
P OOR K OO O

(@)

like (- h + - h) to h. This reduction phase also needs ta breadth-first traversal, the expansion phase expands opera-
ensure that each BDD node created is unique. tions one variable at a time with all the operations of the same
Fig.2 illustrates the Shannon expansion (Equation 2) for thariable expanded together. Furthermore, during the reduction
operationr = fopg. On the left side of this figure, the phase, all the new BDD nodes of the same variable are created
operation is represented with aperator nodavhich refers to together. The breadth-first construction exploits this structured
BDD representations of andg as operands. The right side access by clustering nodes (for both BDD and operator nodes)
of this figure shows the Shannon expansion of this operati@fthe same variable together in memory with specialized node
with respect to the variable. Further expansion of operator managers.
nodes can be performed in any order. In particular, the depth-Despite its better memory locality, the breadth-first construc-
first construction always expands the operator node with thi®n has much larger memory overhead in comparison to the
greatest depth. Note that the depth-first algorithm does ndepth-first construction. The number of operations that the
explicitly store the operations as operator nodes. Instead, thepth-first construction keeps tracks of at any given time is the
operation is implicitly stored in the stack as arguments to thdepth of the recursion, which is at most the number of vari-
recursive calls. ables. Since the number of variables is typically small, the
In the breadth-first construction, the Shannon expansion @&pth-first construction does not require much memory to store
performed top-down from the variables with the highest to th#hese operations. In contrast, for each top level operation, the
lowest precedence so that operations with the same top vareadth-first construction will keep all operations generated by
able are expanded together. The reduction phase is perfornfgtennon expansion of this top level operation until the result
bottom-up in reverse order. Thus, all operations with the sanfier this top level operation is constructed. Since the number of
top variable are reduced at the same time. operations can be quadratic in the size of the BDD operands,
the breadth-first approach can incur a large memory overhead.
Thus, on some applications where the depth-first construction

r fits in physical memory while the breadth-first construction
e does not, the performance of the breadth-first construction can
@ = . be significantly worse due to page faults.
A (@
f:O g =, gt=l

r
¢ [1l. OUR APPROACH TOBDD CONSTRUCTION
T= =1
Fig. 2. Shannon Expansion: The dashed edge represent the 0-branch ofa ~ Since BDD construction involves a large number of accesses
variable and the thick solid edge represents the 1-branch of many small data structures, localizing the memory access
pattern to bound the working set size is critical because good

_ _ . memory access locality results in good hardware cache locality
~ Forthe rest of this paper, we will refer to boolean operationgn fewer page faults. This section introduces three techniques
issued by a user of BDD package as tbp level operations 4 control the working set size by limiting memory overhead

to distinguish ther_n from operations generated internally by the, by improving both temporal and spatial locality. These
Shannon expansion process. are followed by a brief discussion on how these techniques can
work together with variable reordering algorithms.

B. Memory Overhead and Access Locality

L . : . A. Partial Breadth-First Construction
BDD construction is often memory intensive, especially

when large graphs are involved. It not only requires a lot of For the pure breadth-first construction (which normally has
memory, it also requires frequent accesses to many small dggod memory locality), if the BDD operands do not fit in
structures (the node size is typically 16 bytes on 32-bit mghysical memory, then the pages of operator nodes swapped in
chines). The depth-first BDD construction has poor memomjuring the expansion phase will be swapped out by the time
behavior because of irregular control flow and memory accesise reduction phase takes place. Furthermore, as described
patterns. The control flow is irregular because the recursie Section 11.B, breadth-first construction can incur a large
expansion can terminate at any time when a terminal casensemory overhead.
detected or when the operation is cached in the computed cachefo overcome these drawbacks while bounding the memory
The memory access pattern is irregular because a BDD nogerhead, we introducgartial breadth-first expansiobased
can be accessed due to expansion on any of its many parewistontext switch Within each evaluation context, the breadth-
and, since the BDD is traversed in the depth-first manner, efirst expansion is used until a fixed evaluation threshold is
pansions on the parents are scattered in time. The performanegched. Upon reaching this threshold, the current context is
impact for the depth-first algorithm’s poor memory locality ispushed onto aontext stacland a new child context is started.
especially severe for BDDs larger than the physical memoryThe remaining operations of the parent context are partitioned
Recently, there has been much interest in BDD construaito smaller groups and the child context evaluates these oper-
tion based on breadth-first traversal [14, 15, 1, 10, 18]. Ilations one group at a time. This process repeats each time the

current evaluation context reaches its threshold. By keepirggd a helper function for this partial breadth-first construction.
the evaluation threshold to be a small fraction of the availableor each variable, there is an expansion queue and a reduction
physical memory, we can bound the number of BDD nodesueue. Arexpansion queugueues the operations of the same
and compute cache nodes created and accessed and thus vamable to be Shannon expanded during the expansion phase.
trol the working set size. Note that by setting the evaluatioA reduction queugueues the operations of the same variable
threshold to 1, this algorithm degenerates to depth-first cote be reduced in the reduction phase. The top level procedure
struction. Similarly, by setting the evaluation thresholdd¢ pbf-op() builds the result BDD by repeatedly doing the Shan-
this algorithm is identical to pure breadth-first construction. non expansion (line 3) and reduction (line 4) until there are no
Fig.3(a) shows an example of a context switch. In this figurenore operations in the top context (lines 5 to 8) and until there
the top triangle denotes the graph of the initial expansion. Up@re no more evaluation contexts on the context stack (lines 9 to
reaching the evaluation threshold, the remaining unexpand&tl). Procedure preprocess-op() first determines whether or not
operations are divided into two partitions (shown as two dashéldle operation is a terminal case or is cached (lines 13 to 15).
rectangles) and the new child context is started. This new chilfinot, this operation is added to its top variable’s expansion
context continues to expand on the first partition. After thgueue (lines 17 and 18) to indicate that further Shannon ex-
child context finishes building BDD results for the first parti-pansion is necessary for this operation. This operation is also
tion, it continues to expand on the second partition as shovimserted into the compute cache (line 19) to avoid expanding
in Fig.3(b). Note that expansion of these two partitions mightedundant operations in the future. This procedure returns ei-
share some operations in common. For these common opéitzer the BDD result (for the terminal case and for the case when
tions, the expansion of the second partition can benefit from thiee cached result is a BDD) or an operator node. If an operator
results computed from the expansion of the first partition viaode is returned, this operator node’s fiefaNode.resultwill
the compute cache. However, since the compute cache is natantain the result BDD after this operator node is processed in
complete cache, some common operations may need to betlee reduction phase.
computed. This figure also depicts how the partial breadth-first
construction can reduce memory overhead. The operator nodes
created from expanding the first partition do not need to be kept pbf-opip, f, g)
during the expansion of the second partition. In comparisof, OpNode« preprocess-opp, f, g)
the pure breadth-first construction (shown in Fig.3(c)) needs fo If 0PNodeis a BDD node, returopNode

keep all the operator nodes until after the reduction phase. S Call expansion()
4 call reduction()
_ 5 if top context of the context stack has operations, then
Ex%gggﬁébavg;tgggﬂ%n Expanding 2nd Partition No Context Switch 6 take a group of Operations from the tOp context
7 add each operation to its top variable’s expansion queue
8 goto line 3 and repeat until top context is empty
9 if context stack is not empty,
10 pop the top context and use it as the current context
11 goto line 3 and repeat until context stack is empty
12 returnopNode.result
(b)
preprocess-opp, f, g)
Fig. 3. A Context Switch Example. (a) Upon reaching the evaluation 13 if terminal case, return simplified result

threshold, current unexpanded operations are divided into two partitions 14 if the operationdp, f, g) is in compute cache,

(shown as two dashed rectangles) and the new child context continuesto 15
expand on the first partition. (b) After the reduction for the first partition, thisq g
child context expands on the second partition. (c) Pure breadth-first 17
expansion is shown for comparison. 18

19

return result found in cache
opNode« (op, f, g)
T + top variable off andg
addopNodeto 7's expansion queue
insertopNodeinto the compute cache

. 0 t Nod
Other than the memory locality and the memory overheaa, reflimoptiode

the evaluation threshold can also impact the effectiveness of i 4, partial Breadth-First Construction: top level procedure and a helper

compute cache. In the pure breadth-first traversal, the expandgttion

operator nodes must be kept until after the reduction phase.

This feature effectively resulted in a complete cache within

an expansion phase. Similarly for the partial breadth-first ap- Fig.5 shows the expansion phase. This top-down expansion

proach, expansion within each evaluation context maintainsgphase processes operations queued from the variable with the

complete cache. Thus, a larger evaluation threshold resultshiighest to the lowest precedence. Here, all the operations of

a larger and more complete cache for the current evaluatitiie same variable are Shannon expanded together (lines 3 to

context at the cost of higher memory overhead. 7). Thebranchy and thebranch fields of an operator node are
The rest of this section formally describes this partialised to store the results of Shannon expansion, and as described

breadth-first algorithm. Fig.4 shows the top level procedurearlier, these results returned by the procedure preprocess-op()

can be either a BDD node or an operator node. Inthe later case,
the procedure preprocess-op() would have queued the new gp-
erator nodes to be processed by the expansion phase later. the
variablenOpsProcessed used to track the size of the curren
evaluation context and when it exceeds a constant evaluatign

reduction()
for each variable: in the current evaluation context
from the lowest to highest precedence
for each nodepNodein z's reduce queue
(op, f, g) + opNode

thresholdevalThresholdthe current context is pushed onto they if opNode.branchis a BDD,
context stack and a new child context is started (lines 9 to 13). res) + opNode.branch
6 else
) 7 reg < opNode.branchresult
expansion() 8 if opNode.branchis a BDD,
1 nOpsProcessed- 0 _ 9 res, < opNode.branch
2 for each variable: in the current evaluation context 10 else
from the highest to lowest precedence 11 res, « opNode.branchresult
3 for each nodepNodein z’s expansion queue 12 if (res == res))
4 (op, f, g) « opNode 13 opNoderesult =res
5 opNode.branch«— preprocess-opp, fz=0, gz=0) 14 else
6 opNode.branc{u—_ preprocess-opp, fo—1, gz=1) 15 b+ BDD node ¢, res, res,)
7 addopNodeto variablez’s reduce queue 16 opNode.result— lookup(unique tableh)
8 nOpsProcessed-++ 17 if BDD nodeb does not exist in the unique table,
9 if (nOpsProcessert evalThresholyl 18 inserth into the unique table
10 partition the remaining operators into small groups. 1g opNode.result— b
11 push current context with these operation groups
onto the context stack Fig. 6. Partial Breadth-First Construction: reduction phase
12 start a new evaluation context
13 return

Fig. 5. Partial Breadth-First Construction: expansion phase phase will onIy traverse nodes of the same variable. Since

nodes of the same variables are clustered by the node man-
Fig.6 shows the reduction phase. This bottom-up reductioargers’ fch|s results in better memory locality. Compmed with
. . . . per-variable node managers, we can perform rehashing for each
algorithm is the same as the pure breadth-first construction's - . .
. : variable independently by traversing the memory blocks of the
reduction phase where Shannon expanded operations are pro- . ; : .
; . : ._'corresponding node manager. Again, this rehashing approach
cessed together one variable at a time, starting from the varlallglﬁ)a . " :

. . . as better memory locality than the traditional approach, which
with the lowest precedence moving upwards to the Var'abl?rsaverses the hash table
with the highest precedence. The results from the children are '
obtained in lines 4 to 11. Lines 12 to 19 perform the reduction
and ensure the result is unique. The result of a reduction & Garbage Collection

stored in theopNode.resulfield of an operator node (line 13 . .
and 19). No BDD package is complete without a good garbage col-

lector. External users of a BDD package can free references to
exported BDDs and since BDD construction is amemory inten-
sive application, reusing the space of unreachable BDD nodes
As in breadth-first BDD algorithms, specialized node maris important. Most BDD packages use reference counting and
agers are the key factors in exploiting structured access in th&aintain a free list of unreferenced nodes. This approach has
partial breadth-first approach. In our implementation, eacseveral drawbacks. Most notably it has poor memory locality
variable is associated with a BDD-node manager as in [18]Because the free-list approach can scatter newly created BDD
breadth-first algorithm. Each variable’s BDD-node managérodes in memory and thus reversing the clustering effects of
clusters BDD nodes of the same variable by allocating menspecialized node managers.
ory in terms of blocks and allocates BDD nodes contiguously In our implementation, a mark-and-sweep garbage collector
within each block. We further extend this clustering concept tevith memory compaction is used. Unlike a copying garbage
using one operator-node manager for each variable. With thisllector, our garbage collection algorithm performs memory
design, we not only benefit from good locality of node clustercompaction without requiring any additional memory. This
ing, we also eliminate the need for having both the expansi@ompaction algorithm istable i.e, the nodes’ linear ordering
and the reduction queues, since we can access all the oper&anaintained. This property allows nodes which are allocated
nodes of each variable by simply traversing memory blocks afearby in time to stay together. This can help access local-
each operator-node manager. ity because nodes allocated together are likely to be accessed
Furthermore, we associate one compute cache and dogether in the future.
unigue table per variable. Thus, cache lookup in the expan-Our garbage collection algorithm consists of two phases,
sion phase and the BDD unique table lookup in the reductidmth of which are breadth-first traversal from the variable with

B. Memory Management

highest precedence to the variable with the lowest precedence.
The first phase marks and compacts all the reachable nodesf'x'?nd'reirasho bl
and the second phase fixes all the references and rehashes téese clear al unique tavies
for each root node of exported BDDs

nod_e S: . 3 update root nodes of exported BDDs to the forwarded location
. Fig.7 shows the algorithm for the mark-and-compgct phasg. for each variable: from the highest to lowest precedence,

Line 1 marks all the roots of exported BDDs to indicate thag mgr + z’s Bdd-node manager

these nodes and their descendants are all the nodes thatwe eed for each node: in managemgr

to keep. The top-down breadth-first marking of descendarits n.left < n.left.forward

is performed by traversing BDD nodes in each node managgr n.right < n.right.forward

(lines 2 to 6). In this algorithmp denotes the marked BDD 9 insertn into variablez’s unique table

node that is being processed amelv denotes the next target 10 free all memory blocks imgr.freeBlocks

location for compaction. For each marked BDD nadets o ,

chicren are marked (ine 7). Line & estabishes the new ocatiff &, 03 Colecions Fane e Phase, Thsphase ot
new for noden by setting»’s forwardfield. Lines 9 and 10 copy

the relevant information im to this new target locationew.

Line 11 advancesew to the next node in the node manager

mgr as the new target location. Line 12 advaneés the next after all the references to this node are fixed. This condition is
marked node in this node-manager. This process repeats ugtiaranteed by first fixing external references (lines 2 and 3 in
we have processed all the marked nodes in this node managég.8) and then performing the top-down breadth-first traver-
mgr; after which, all the marked nodes are compacted int®al, which updates all the parents’ references before inserting
memory blocks beforaewand thus all the blocks afteeware a node into the hash table. Thus, this two phase breadth-first
marked as free blocks to be freed after the second phase (lg@rbage collection algorithm is able to perform memory com-
13). paction without requiring any additional memory.

mark-and-compact() D. Variable Reordering

mark all the root nodes of exported BDDs we need to keep. pynamic variable reordering is an important part of BDD
for each variable from the highest to lowest precedence, construction. Even though we have not yet implemented dy-
mgr «- &'s BDD-node manager namic variable reordering, the following is an outline of poten-

1
2
3
g Ze; (f_lr?itrgir(l)(gg izoﬁ;r;gr}n;r;gmgr tial problems and their solutions.
6
7
8

while n is still in node managemgr,

mark childrenn.leftandn.right 1. Some variable reordering algorithms require reference

n.forward « new counts. Since garbage collection is generally invoked
9 new.lefte n.left right before variable reordering, we can compute reference
10 new.right« n.right counts during the mark-and-compact phase of garbage col-
11 new<— ManagerNextNode(gr, new) lection (line 1 and line 7 of Fig.7).
12 n < ManagerNextMarkedNode(gr, n)) . .
13 put memory blocks for all the nodes aftew 2. Dynamic variable reordering can counteract the cluster-
into mgr.freeBlocks ing effects achieved by the per-variable memory man-
agers [16]. The solutions proposed in [16] should be
Fig. 7. Garbage Collection’s Mark and Compact Phase. This phase marks directly applicable to our approach.

nodes that we want to keep and at the same time compact the memory to
avoid memory fragmentation.

IV. PERFORMANCE EVALUATION

Fig.8 shows the second phase of the garbage collection algo4n this section, we present a performance evaluation of our
rithm. Initially, all external references are updated (lines 2 and@pproach. The test cases are the ISCAS85 benchmarks [3], a
3). Then it proceeds in a top-down breadth-first manner to fixollection of ten circuits used in industry. The variable ordering
each BDD node’s children references (lines 7 and 8) and reiwe used is generated lmyder_dfsin SIS [20]. To get more
sert this node back into the unique table (line 9). After all théest cases, we generate difference size array multiplier circuits
references of a BDD-node manager are updated, its associdbaded on carry ripple adders [6]. For the rest of this section,
free blocks are freed (line 10). we shall refer to this multiplier circuit as MCRA (Multiplier

For the purpose of explanation, the garbage collection dbased on Carry Ripple Adders). Feibit multiplier with two
gorithm shown uses an additional fidgward for each BDD operandsd = Z?:}} 2'a; andB = Z?:}} 2'b;, the variable
node. Inthe actualimplementation, each BDD notdashNext ordering used i&,_1 < ap—2 < ... < ag < bp_1 < bp_2 <
field, used for chained hashing, is also used aftiveardfield ... < bg. For all the test cases, to minimize memory usage, we
during the garbage collection. This dual use of the same fiefcked the intermediate results (those that are neither inputs nor
is only correct if hash insertion of a node does not occur untilutputs of the circuit) immediately after its the last reference.

In this section, we use two leading BDD packages for conmnemory and thus can have a significant effect on the running
parison. The first package is CAL version 2.0 from UC Berketime.
ley, which implements the breadth-first algorithm described in

[18]. The second package is CUDD version 2.1.2 [21] fromr—=prashoidT cpU Time(seconds) / Memory Usage(MBytes)
the University of Colorado at Boulder, which implements the| («gytes) [C2670 [C3540 | MCRA14 | MCRA15
depth-first algorithm for BDD construction. Both are the latest) 57771691 25471581 979/ 134 | 3820/ 359
releases as of November, 1997. All packages are compiled ¢, 264 /169 | 252 /158 | 968 /133 | 3726 /359
with gcc using the optimization flag -O3. In this section, we 512 2687169 | 241/157| 884 /134 | 3477 /359
will refer to our package as PBF. 4096 | 240/180| 251/165| 837/139 | 3104 /365
For both CAL and CUDD, we used all the default settings| 32768 | 147/213| 234/198| 953/175 | 3343/419
with the exception of dynamic variable reordering featureg 00 102/278| 229/176| 964 /168 | 3561 /491

which we disabled for two reasons. First, we have not im-

plemented dynamic variable reordering yet. Second, tumi@. 9. Effects of Evaluation Thresholeo case corresponds to the case with
off the dynamic reordering features removes the performanf® Preadih-first

impact due to different dynamic reordering algorithms. For

the CAL package, the results we present are without its SU” Note that overall, the evaluation threshold of 4096 KBytes

perscalarity and pipelining features [18] because of adverg fikes a reasonable balance between memory usage and run-

performance impact. These features require decomposing ﬁirhg time. Since 4906 KBytes %_6 of the physical memory

:Sgrr]a:ilggsr:;gsiic?énalsrg;s;ztlﬁg %ﬁi}ngz:ntgi;nﬁgt'g'ggs 0 e (1 GBytes), for the rest of the performance evaluation in
: . S this paper, we choose the evaluation threshold for our package

and superscalarity of 10 with automatic pipelining increases thgg be L. of the physical memory size

memory usage by 30% with little (< 1%) or no performance 256 '

improvement. For C2670 and C3540 from ISCAS85 bench- . .

marks, the results are less clear. Thus, for these two circuif, Performance Comparison — No Paging

the results using superscalarity of 10 with automatic pipelining This section compares our approach (PBF) to CAL and

will also be included. CUDD when the test cases fit in physical memory. The sys-

tem used for evaluation is the same as in the previous section.

The memory usage limit is set to 1 GBytes. The evaluation

threshold chosen for our package is 4 MBytes whic%@of

In this section, we examine how different evaluation threstRNysical memory size of 1 GBytes.
olds impact the memory usage and running time of our ap- Fig. 10 shows the results of this study. The results for smaller
proach. The system used for this evaluation is an SGI PowgRSes are shown at the top half of this tab_le. The results for
Challenge with 1 GBytes of physical memory. This systethe C6288 and C7552 cases are not available because they
has 12 processors running IRIX 6.2 with 32-bit address spad¥®th exceeded the memory limit. Note that fqr CAL, C2670
Each processor is a 196MHz MIPS R10000. We perform o@d C.354_folhave better performance using CALs'superscaIarlty
experiments using one processor under light load conditioR§d Pipelining feature at the cost of 71% to 84% higher memory

where our processes are the only active processes. TimiHﬁ"Tige- These results are marked with Fig. 10. _
results reported are measured CPU time. he results show that for the larger cases, PBF consistently

In this study, the evaluation threshold ranges from 8 KByteQutPerforms both CAL and CUDD, with speedups ranging from

to co where theoco case corresponds to the pure breadth—firét'lO (MCRALS) to 1.60 (C3540) in comparison to the best

case. The results from very small cases10 seconds CPU of CAL a”‘?' CUDD. For the smaller cases, PBF is slower.
time and< 10 MBytes memory usage) are omitted. However, since these smaller cases take less than 2 seconds to

The results in Fig.9 show that in general, the running timgnlsh, performance differences among the different approaches

varies about 10 to 20%, except for the C2670. For C2670, thefLe less significant. ,
As for memory usage, PBF's memory usage tracks very

is a speedup of 2 for theo case vs. the cases with smaller . . o)
evaluation thresholds. This is most likely caused by the fag{osely with CUDD's depth-first implementation. For small

that a larger evaluation threshold results in a more comple gesasefné? I\o/lvl?a>ﬁ1eesa)1(,j Z?Fesr \gﬁg}g d:f:gfrJitzL%ZeL%lC\/ee:/Zr
cache (as discussed in Section Ill.LA). This is substantiat% Y P i '

by the fact that theo case has a total of 23 million Shannon or large cases like C3540 and MCRA circuits, PBF's mem-

expansions, while the smaller evaluation thresholds cases haVe usag?ﬁ S ;?tu?"éil:_ghtlrg fnmz;xller than iCUDtD S n;er?orryf
over 135 million Shannon expansions. usage. contrast, > memory Usage 1S up 1o a factor o

The resultsin Fig.9 also show that different evaluationthresr%—'6 (MCRALS) in comparison to PBF's memory usage.

olds can have an impact on the memory usage; e.g, for C2670
the ratio between maximum and minimum memory usage &
1.64. In general, this memory usage difference may be theThis section compares our approach (PBF) to CAL and
key factor on whether or not an application fits into physicaCUDD when the test cases do not fit into physical memory. We

A. Evaluation Threshold

' Performance Comparison — Paging

V. ARRAY MULTIPLIERS

Circuit CPU Time(seconds) Memory(MBytes)

PBF CAL CUDD | PBF CAL CUDD In this section, we demonstrate the effectiveness of our tech-
C432 1.08 0.94 1.02] 55 37 2.7 niques by building very large output BDDs of two types of in-
C499 025 045 019] 29 19 0.9 teger multiplication circuits. The first type is based on C6288
c8s0 | 025 0.23 011 25 18 1.0 from ISCAS85 benchmark. C6288 is a 16-bit array multiplier
C1355 | 0.74 083 0.57] 54 3.0 2.0| using carry save adders. Based on its design, we derived corre-
C1908 | 0.39 066 030] 30 1.9 1.6/ sponding circuits from 1 to 15 bits. The second type is an array
C5315 0.90 0.86 0.32 55 3.1 2.4

multiplier with carry ripple adder (MCRA) as in Section IV. In
C2670 | 240 573 795/ 180 217 148| this study, we characterize both multipliers from 1 to 16 bits.
292 372 The system used for this evaluation is an SGI Power Chal-
C3540 251 658 403 165 176 169 lenge with 4 GBytes of physical memory. This system has 16

6388 ; 53@; ; ; 3257 ; processors running IRIX 6.2 with 64-bit address space. Each
Na wa Nfa| wa wa Nal processor is a 194MHz MIPS R10000. We perform our exper-
C7552 n/a n/a n/a| nla n/a n/a

iments under dedicated mode using one processor. Note that
for BDD applications, memory usage on 64-bit machines is
generally twice that of 32-bit machines.
Fig. 10 Performance comparison when the test cases fit in physical memory. Fi9.12 shows the results for this experiment. Fig.13 plots
Both C6288 and C7552 cases exceeded the 1 GBytes memory limit and thifile memory usage of output BDDs and memory usage for
the results are not available. Numbers marked Witihe CAL's results using constructing C6288 and MCRA circuits in a semi-log graph.
superscalarity of 10 with automatic pipelining. Note that the output BDD sizes grows exponentially at a factor
of about 2.87 per bit of word size.

Fig.13 also shows that other than the initial overhead, which
repeated the experiments on a smaller system — a 200Midffects the memory usage of smaller circuits, the total memory
Pentium Pro with 256 KBytes L2 Cache and 128 MBytes ofisage grows at the same rate as the output BDDs’ memory
60ns EDO DRAM. This system is running Linux 2.0.30 withusage. This plot is a semi-log plot to clearly show the numbers
32-bit address space. All measurements were obtained unétar small cases. However, it is worth noting that even though
single user mode. Timing results reported are elapsed tintige total memory usage for the 16-bit multiplier is about a factor
and time limit is set to be 24 hours of elapsed time. For thisf three to four over the size of output BDDs, this semi-log plot
experiment, we chose the test cases which use more memdaemphasizes this difference.
than available physical memory (128 MBytes). To better understand the memory usage, we analyze the BDD

Fig.11 shows that our approach (PBF) consistently outpetonstruction for building the C6288 circuit. The maximum
forms both CAL and CUDD with speedups ranging from 1.5Inemory usage for building this circuit is 3803 MBytes. The
(C2670) to 13.2 (MCRA14) in comparison to the best of CAlmaximum number of BDD nodes that exist simultaneously
and CUDD. The significant speedup of MCRA14 is mainly dugjuring the BDD construction process is about 110 million (3352
to the fact that our approach’s memory usage for this case gBytes). To accommodate these BDD nodes, the unique tables
only slightly more than the available physical memory. Thisiave a combined total of 48 million bins (366 MBytes). Thus
case demonstrates the importance of limiting the memory ovehe memory overhead of the operator nodes, the compute cache,
head. Another interesting point to note that both the PBF (o@hd other auxiliary data structures is 85 MBytes which is only
approach) andthe CAL (breadth-first) approach have muchbet2% of the total memory usage. This result demonstrates that
ter paging locality than the CUDD (depth-first) approach. Fasur approach has very little memory overhead. As far as we
the C3540 circuit, this locality resulted in an order of magnitudrnow, this is the first time that the entire C6288 circuit has been
difference in performance. built using conventional BDD representations.

MCRA14 | 837 2016 1004| 139 207 152
MCRA15 | 3104 7383 3425 365 646 482

Circuit Elapsed Time(seconds Memory(MBytes)
PBF CAL CUDD | PBF CAL CUDD
C2670 | 1169 1773 7071 169 217 148 There are many research efforts based on breadth-first BDD
C3540 | 1058 1925 22629 157 176 169 construction [14, 15, 1, 10, 18]. However, none of these pro-
MCRA14 | 1173 15506 22135 134 207 152| pose how to bound the memory overhead of the breadth-first
MCRA15 | n/a n/a nfa) nla nla nal construction. To address this issue, we introduced a hybrid
Fio 11 Pert , on the test do ot fit info b algorithm which performs the breadth-first construction to ex-
e e ok 3 s i Blot memory oty and switches o the depth-fst construc-
packages. CAL's numbers are measured without its superscality nor tion when the memory overhead becomes too high [8]. This
pipelining features to reduce the memory usage and minimize paging. hybrid approach has the drawback that when a BDD operation
is much larger than the switch-over threshold, this hybrid ap-
proach will be dominated by the depth-first portion and thus

VI. RELATED WORK

#of | Output Size| CPU Time(seconds)| Memory(MBytes) = 6288
Bits | (# of nodes)| C6288 | MCRA | C6288 | MCRA e I
1 3 0.01 00L] 04 05 i I (RS
2 14 0.01 0.01 0.7 0.7 100+
3 46 0.04 0.03 2.7 2.0 7 104
4 140 0.06 0.08 3.9 5.2 2 14
5 404 0.10 0.10 5.9 6.0 ‘i’ o1 _
6 1156 0.15 0.15 7.4 8.0 qE)]
7 3256 0.27 0.23 9.3 9.3 = 0014
8 9258 0.59 0.55 10.4 11.9 0.001
9 26,217 2.02 1.72| 17.4 15.3 00001 &
10 74,456 6.96 5.87 26.3 24.8 000001
11 212,088 26.97 19.70| 37.1 33.2 ' 12 3 s 67 s o 1011 12 13 14 15 16 !
12 605,883 108.63 70.57 70.2 54.9 Number of Bits
13 1,733,156 403.15 288.47| 162.6 134.6
14 4,955,083 1483.66 996.63| 438.0 320.5 Fig. 13 Maximum memory usage for both C6288 and MCRA compared
15 14,181,971 5529.94| 3378.62| 1277.2 974.7 with memory usage of output BDDs (labeled as BDD).
16 40,563,945 22175.23| 12257.76| 3803.7 | 2795.6

Fig. 12 Results for multiplier circuits. Note that since a 64-bit machine is

used for this study, the memory usage is roughly twice as big as results on a e
32-bit machine. of the breadth-first BDD construction while maintaining the

low memory overhead of the depth-first approach. Second,
we have described how memory management on a per-variable

basis can improve spatial locality of BDD construction at all

have poor memory behavior. Note that this hybrid is Slmlla{evels, including expansion, reduction, and rehashing. Finally,

to the mixed depth-first and breadth-first approach that prunes ; . .

) e we have introduced a memory compacting garbage collection
unnecessary recursion branches for the quantification and rela- _ . . ;
. : algorithm to avoid memory fragmentation due to unreachable
tional product operations [18].

) BDD nodes. These algorithms work together in controlling
SMV [13]'s BDD package uses mark-and-sweep garbaqﬁe working set size to gain better memory access locality with

collector without memory compaction. In [15, 1, 17], memory. . o
C . ; ittle memory overhead. As these techniques exploit inherent
compaction is used to avoid memory fragmentation. These . . : .
operties of BDD construction, graph reduction techniques

three approaches are all based on reference counting. In [1 e *BMD, POBDD, and variable reordering) can be incor-

the compaction algorithm istable(i.e., linear ordering of the : :
. o ; g orated into our algorithms to further expand the usefulness of
nodes is maintained) and does not require additional memo Nose algorithms

Our approach is quite similar to this. In[1], the garbage collec-
tion uses a free-list and when memory fragmentation becomesExperimental results show that by controlling the evaluation
high, a separate memory compaction algorithm based on cogipreshold, the partial-breadth approach can reduce the memory
ing is used. In [17], garbage collection phase is also free-ligsage by 60% in comparison to our pure breadth-first case (
based and memory compaction is performed after garbage ce¥aluation threshold). In the performance comparison study,
lection only when memory fragmentation becomes high. Thi§e results show that when the applications fit in physical mem-
compaction is performed by moving the newest set of live nod@$y, our approach is consistently faster for larger caseg (
to fill the holes left behind by the oldest set of dead nodes; thugeconds) with speedups of up to 1.6 in comparison to the leading
no additional memory is required. This algorithm has the adlepth-first (CUDD) and breadth-first (CAL) packages. When
vantage of moving minimum number of nodes necessary bilte applications do not fit into physical memory, our approach
it does not maintain the linear ordering of the live nodes. Theutperforms both CUDD and CAL by up to an order of mag-
performance impact of this tradeoff deserves further study. Ounitude. Furthermore, to demonstrate how our techniques can
approach combines many attributes of the approaches abovegffciently build very large graphs, we constructed the output
integrating a mark-and-sweep garbage collector with a statfDs for the C6288 multiplication circuit from the ISCAS85
memory compaction without any additional memory overheaenchmark and showed that the memory overhead of our ap-
proach is 2.2%. These results show that our techniques have

successfully achieved better memory locality while reducing

This paper has introduced three techniques to control theBeyond the sequential world, another advantage of the par-
working set size by limiting memory overhead and improvingial breadth-first algorithm is that it can be parallelized by using
both temporal and spatial locality. First, we have introducedach processor’s context stack as a distributed work queue [22].
a novel BDD construction algorithm based on partial breadtfFhis approach achieves speedups of up to four on eight proces-
first expansion. This approach has the good memory localisprs of a shared memory system.

ACKNOWLEDGEMENT

We thank Claudson F. Bornstein and Henry R. Rowley for

numerous discussions on efficient BDD implementations. We
also thank Rajeev K. Ranjan for his help in setting up our pe[i2]

formance study with CAL package. This work utilized Silicon

Graphics Power Challenge shared memory machines on both
the Pittsburgh Supercomputing Center and the National Center
for Supercomputing Applications at Urbana-Champaign. Waa3]

are very grateful to the wonderful support staff in both super-

computing centers.

(1]

(2]

(3]

[4]

5]

[6]

[7]

(8]

9]

[10]

REFERENCES

R. Ashar and M. Cheong. Efficient breadth-first manipulatiorPS]

of binary decision diagrams. IRroceedings of the Interna-
tional Conference on Computer-Aided Desigages 622—627,
November 1994.

[16

K. Brace, R. Rudell, and R. E. Bryant. Efficientimplementation
of a BDD package. IRroceedings of the 27th ACM/IEEE Design
Automation Conferenc@ages 40-45, June 1990.

F. Brglez and H. Fujiwara. A neutral netlist of 10 combinational
benchmark circuits and a target translator in Fortran1985
International Symposium on Circuits And Systedune 1985.
Partially described in F. Brglez, P. Pownall, R. Hum. Accelearted
ATPG and Fault Grading via Testability Analysis. 1885 In-
ternational Symposium on circuits and Systepagies 695-698,
June 1985.

R. E. Bryant. Graph-based algorithms for Boolean function
manipulation.|EEE Transactions on ComputerS-35(8):677—
691, August 1986.

R. E. Bryant. On the complexity of VLS| implementations
and graph representations of Boolean functions with application

to integer multiplication. IEEE Transactions on Computers [20]

40(2):205-213, Feburary 1991.

R. E. Bryant and Y.-A. Chen. Verification of arithmetic cir-
cuits with binary moment diagrams. [Rroceedings of the

32nd ACM/IEEE Design Automation Conferengages 535—

541, June 1995.

Y.-A. Chen and R. E. Bryant. ACV: An arithmetic circuit verifier.

In Proceedings of the International Conference on Computef22]

Aided Designpages 361-365, November 1996.

Y.-A. Chen, B. Yang, and R. E. Bryant. Breadth-first with depth-
first BDD construction: A hybrid approach. Technical Report
CMU-CS-97-120, School of Computer Science, Carnegie Mel-
lon University, 1997.

R. Drechsler, A. Sarabi, M. Theobald, B. Becker, and M. A.

Perkowski. Efficient representation and manipulation of switch-
ing functions based on ordered kronecker functional decision
diagrams. InProceedings of the 31st ACM/IEEE Design Au-

tomation Conferencepages 415-419, June 1994.

A. Hett, R. Frechsler, and B. Becker. MORE: Alternative im-
plementation of BDD-packages by multi-operand synthesis. In
Proceedings of the European Design Automation Conference
pages 16—20, September 1996.

(14]

(17]

(18]

(19]

[21]

[11] J. Jain, J. Bitner, J. A. Abraham, and D. S. Fussell. Functional

partitioning for verification and related problems. Pmoceed-
ings of the Brown/MIT VLSI Conferenqeages 210-226, March
1992.

S. Jha, Y. Lu, M. Minea, and E. M. Clarke. Equivalence check-
ing using abstract BDDs. 11997 IEEE Proceedings of the
International Conference on Computer Desigages 332—-337,
October 1997.

K. L. McMillan. Symbolic Model Checkindluwer Academic
Publishers, 1993.

H. Ochi, N. Ishiura, and S. Yajima. Breadth-first manipulation
of SBDD of Boolean functions for vector processing. Rro-
ceedings of the 28th ACM/IEEE Design Automation Conference
pages 413-416, June 1991.

H. Ochi, K. Yasuoka, and S. Yajima. Breadth-first manipulation
of very large binary-decision diagrams. Rtoceedings of the
International Conference on Computer-Aided Desjgages 48—
55, November 1993.

R. K. Ranjan, W. Gosti, R. K. Brayton, and A. Sangiovanni-
Vincentelli. Dynamic reordering in a breadth-first manipulation
based BDD package: Challenges and solutions1 997 IEEE
Proceedings of the International Conference on Computer De-
sign pages 344-357, October 1997.

R. K. Ranjan and J. Sanghavi. CAL-2.0: Breadth-
first Manipulation Based BDD Library. Public soft-
ware. University of California, Berkeley, CA, June 1997.
http://www-cad.eecs.berkeley.edu/Researchical/.

R. K. Ranjan, J. V. Sanghavi, R. K. Brayton, and A. Sangiovanni-
Vincentelli. High performance BDD package based on exploit-
ing memory hierarchy. IfProceedings of the 33rd ACM/IEEE
Design Automation Conferengeages 635—640, June 1996.

R. Rudell. Dynamic variable ordering for ordered binary decision
diagrams. InProceedings of the International Conference on
Computer-Aided Desigmpages 139-144, November 1993.

E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Mur-
gai, A. Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton, and
A. L. Sangiovanni-Vincentelli. SIS: A system for sequential cir-
cuit synthesis. Technical Report UCB/ERL M92/41, Electronics
Research Lab, University of California, May 1992.

F. Somenzi. CUDD-2.1.2: CU Decision Diagram Package
April 1997. ftp://visi.colorado.edu/pub/cudd-2.1.2.tar.gz.

B. Yang and D. R. O’'Hallaron. Parallel breadth-first BDD con-
struction. InNinth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programmingpages 145-156, June 1997.

	CD-ROM Home Page
	ASP-DAC98
	Front Matter
	Table of Contents
	Session Index
	Author Index

