
Space- and Time-Efficient BDD Construction via Working Set Control

Bwolen Yang� Yirng-An Cheny Randal E. Bryanty David R. O’Hallaron�

Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213. USA

Abstract— Binary decision diagrams (BDDs) have been shown
to be a powerful tool in formal verification. Efficient BDD con-
struction techniques become more important as the complexity
of protocol and circuit designs increases. This paper addresses
this issue by introducing three techniques based on working set
control. First, we introduce a novel BDD construction algorithm
based on partial breadth-first expansion. This approach has the
good memory locality of the breadth-first BDD construction while
maintaining the low memory overhead of the depth-first approach.
Second, we describe how memory management on a per-variable
basis can improve spatial locality of BDD construction at all lev-
els, including expansion, reduction, and rehashing. Finally, we
introduce a memory compacting garbage collection algorithm to
remove unreachable BDD nodes and minimize memory fragmen-
tation. Experimental results show that when the applications fit
in physical memory, our approach has speedups of up to 1.6 in
comparison to both depth-first (CUDD) and breadth-first (CAL)
packages. When the applications do not fit into physical memory,
our approach outperforms both CUDD and CAL by up to an order
of magnitude. Furthermore, the good memory locality and low
memory overhead of this approach has enabled us to be the first
to have successfully constructed the entire C6288 multiplication
circuit from the ISCAS85 benchmark set using only conventional
BDD representations.

I. INTRODUCTION

With the increasing complexity of protocol and circuit de-
signs, formal verification has become an important research
area. Binary decision diagrams (BDDs) have been shown to be
a powerful tool in formal verification [4]. Even though many
functions have compact BDD representations, some functions
can have very large BDDs. For example, BDD representations
for integer multiplication have been shown to be exponential

�Effort sponsored in part by the Advanced Research Projects Agency and
Rome Laboratory, Air Force Materiel Command, USAF, under agreement
number F30602-96-1-0287, in part by the National Science Foundation under
Grant CMS-9318163, and in part by a grant from the Intel Corporation. The
U.S. Government is authorized to reproduce and distribute reprints for Gov-
ernmental purposes notwithstanding any copyright annotation thereon. The
views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of the Advanced Research Projects Agency, Rome
Laboratory, or the U.S. Government.

ySupported in part by the Defense Advanced Research Project Agency
(DARPA) under contract number DABT63-96-C-0071.

in the number of input bits [5]. To address this issue, there are
many BDD related research efforts directed towards reducing
the size of the graph with techniques like new compact rep-
resentations for specific classes of functions (KFDD [9] and
*BMD [6]), divide-and-conquer (POBDD [11] and ACV [7]),
function abstraction (aBdd [12]), and variable reordering [19].
Despite these efforts, large graphs can still naturally arise for
more irregular functions or for incorrect implementations of a
specification. Incorrect implementation can break the structure
of a function and thus can greatly increase the graph size. For
example, the *BMD representation for integer multiplication
is linear. However, a mistake in the implementation of inte-
ger multiplication logic can cause an exponential explosion of
the resulting graph. The ability to handle large graphs effi-
ciently can enable us to represent more irregular functions and
to provide counterexamples for incorrect implementations.

Conventional BDD algorithms [2] are based on depth-first
traversal of BDD graphs. This approach has small memory
overhead, but poor memory locality. To address the issue of
constructing large BDDs efficiently, there have been many im-
plementations [14, 15, 1, 10, 18] based on breadth-first traver-
sal. The breadth-first approach, which exploits its graph traver-
sal pattern by using specialized memory layouts, has better
memory access locality and thus often has better performance.
However, the breadth-first approach can have a large memory
overhead, up to quadratic in the size of BDD operands. This
extra memory overhead can result in an increased number of
page faults and thus poor performance.

To maintain memory access locality with low memory over-
head, we introduce a new algorithm based onpartial breadth-
first expansion. This algorithm improves locality of reference
by controlling the working set size and thus reducing over-
head due to page faults. We describe how memory manage-
ment on a per-variable basis can improve spatial locality of
BDD construction at all levels, including expansion, reduc-
tion, and rehashing. Finally, we introduce a breadth-first BDD
garbage collection algorithm which performs memory com-
paction without incurring additional memory overhead. All
of these techniques work together to control the working set
size and have a significant impact on performance of BDD
construction. As these techniques exploit inherent properties
of BDD construction, graph reduction techniques (like *BMD,
POBDD, and dynamic variable reordering) can be incorporated
into our algorithms to further expand the usefulness of these

algorithms.
Experimental results show that when the applications fit in

physical memory, our approach has speedups of up to 1.6 in
comparison to leading depth-first (CUDD) and breadth-first
(CAL) packages. When the applications do not fit into physical
memory, our algorithm outperforms both CUDD and CAL by
up to an order of magnitude. Furthermore, to demonstrate how
our techniques can efficiently build very large graphs, we con-
structed the output BDDs for the C6288 multiplication circuit
from the ISCAS85 benchmark. To the best of our knowledge,
this has never been done before.

Beyond the sequential world,another advantage of the partial
breadth-first algorithm is that it can be parallelized [22]. This
approach achieves speedups of up to four on eight processors
of a shared memory system.

The rest of this paper is as follows: Section II gives an
overview of BDDs and how they are constructed. Section III de-
scribes the partial breadth-first algorithm and other techniques
for controlling the working set size. Section IV presents perfor-
mance evaluation of our implementation. Section V demon-
strates the usefulness of this implementation by constructing
very large BDDs for 16-bit array multipliers. Finally, Sec-
tion VII summarizes this paper and offers some concluding
remarks.

II. BDD OVERVIEW

A boolean expression can be represented by a complete bi-
nary tree called abinary decision tree, which is based on the
expression’s truth table. Fig.1(a) shows the truth table for
a boolean expression and Fig.1(b) shows the corresponding
binary decision tree. Each internal vertex is labeled by a vari-
able and has edges directed toward two children: the 0-branch
(shown as a dashed line) corresponds to the case where the
variable is assigned 0, and the 1-branch (shown as a solid line)
corresponds to the case where the variable is assigned 1. Each
leaf node is labeled 0 or 1. Each path from the root to a leaf
node corresponds to a truth table entry where the value of the
leaf node is the value of the function and the path corresponds
to the assignment of the boolean variables.

f = (b ^ c) _ (a ^ b ^ c)

a b c f
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

(a)

0 1 0 1

a

b

c c

b

c

1 0

c

00

(b)

0 1

a

b

c c

b

(c)

Fig. 1. A boolean expression represented with (a) Truth table, (b) Binary
decision tree, (c) Binary decision diagram. The dashed-edges are 0-branches
and the solid-edges are the 1-branches.

A binary decision diagram (BDD) is a directed acyclic graph
(DAG) representation of a binary decision tree where equiva-

lent boolean subexpressions are uniquely represented. Fig.1(c)
shows the BDD representation of the binary decision tree in
Fig.1(b). Since all subexpressions in a BDD are uniquely rep-
resented, a BDD can be exponentially more compact than its
corresponding truth table or binary decision tree representa-
tions.

One necessary condition for guaranteeing uniqueness of the
BDD representation is that all the BDDs constructed must fol-
low the same variable ordering; i.e., for any two variablesx

and y, if x has higher precedence thany (x � y), then for
any path that contains bothx andy, x must appear beforey
on this path. Note that the BDD size can be very sensitive to
the variable ordering where the graph size of one ordering can
be exponentially more compact than the graph size of another
ordering.

Before describing the basis for BDD construction, we will
first introduce some terminology and notation.fx=0 andfx=1

are cofactor functionsof the functionf with respect to the
boolean variablex, wherefx=0 is equal tof with the value of
x set to 0, andfx=1 is equal tof with the value ofx set to 1. A
reachable subgraphof a noden is defined to be all the nodes
that can be reached fromn by traversing 0 or more directed
edges.BDD nodesare defined to be internal vertices of BDDs.
Given a BDDb, the functionf represented byb is recursively
defined by

f = x � fx=0 + x � fx=1 (1)

wherex is the variable corresponds tob’s root node and the
cofactor functionfx=0 is recursively defined by the reachable
subgraph ofb’s 0-branch child. Similarly,fx=1 is recursively
defined by the reachable subgraph ofb’s 1-branch child.

A. Basis for BDD Construction

BDD construction is a memoization-based dynamic pro-
gramming algorithm. Due to the large number of distinct sub-
problems, instead of a memoization table, a cache known as the
computed cacheis used to record the result of each subproblem.
Given a variable ordering and two BDDsf andg, the resulting
BDD r of a boolean operationf opg is constructed based on
the Shannon expansion

r = f opg = � � (f�=0 opg�=0) + � � (f�=1 opg�=1) (2)

where� is the variable (top variable) with the highest prece-
dence among all the variables inf andg, andf�=0, f�=1, g�=0,
andg�=1 are the corresponding cofactor functions off andg.

In the top-downexpansion phase, this Shannon expansion
process repeats recursively following the given variable order-
ing for all the boolean variables inf andg. The base case (also
called theterminal case) of this recursive process is when the
operation can be trivially evaluated. For example, the boolean
operationf ^ f is a terminal case because it can be trivially
evaluated tof . Similarly,f ^ 0 is also a terminal case. At the
end of the expansion phase, there may be unreduced subexpres-
sions like(x �h+x �h). Thus, in order to ensure uniqueness, a
bottom-upreduction phaseis necessary to reduce expressions

like (x � h + x � h) to h. This reduction phase also needs to
ensure that each BDD node created is unique.

Fig.2 illustrates the Shannon expansion (Equation 2) for the
operationr = f opg. On the left side of this figure, the
operation is represented with anoperator nodewhich refers to
BDD representations off andg as operands. The right side
of this figure shows the Shannon expansion of this operation
with respect to the variablex. Further expansion of operator
nodes can be performed in any order. In particular, the depth-
first construction always expands the operator node with the
greatest depth. Note that the depth-first algorithm does not
explicitly store the operations as operator nodes. Instead, the
operation is implicitly stored in the stack as arguments to the
recursive calls.

In the breadth-first construction, the Shannon expansion is
performed top-down from the variables with the highest to the
lowest precedence so that operations with the same top vari-
able are expanded together. The reduction phase is performed
bottom-up in reverse order. Thus, all operations with the same
top variable are reduced at the same time.

f
τ=0 τ=1f gτ=1τ=0g

op

τ

op

op

f g

r

r

Fig. 2. Shannon Expansion: The dashed edge represent the 0-branch of a
variable and the thick solid edge represents the 1-branch

For the rest of this paper, we will refer to boolean operations
issued by a user of BDD package as thetop level operations
to distinguish them from operations generated internally by the
Shannon expansion process.

B. Memory Overhead and Access Locality

BDD construction is often memory intensive, especially
when large graphs are involved. It not only requires a lot of
memory, it also requires frequent accesses to many small data
structures (the node size is typically 16 bytes on 32-bit ma-
chines). The depth-first BDD construction has poor memory
behavior because of irregular control flow and memory access
patterns. The control flow is irregular because the recursive
expansion can terminate at any time when a terminal case is
detected or when the operation is cached in the computed cache.
The memory access pattern is irregular because a BDD node
can be accessed due to expansion on any of its many parents;
and, since the BDD is traversed in the depth-first manner, ex-
pansions on the parents are scattered in time. The performance
impact for the depth-first algorithm’s poor memory locality is
especially severe for BDDs larger than the physical memory.

Recently, there has been much interest in BDD construc-
tion based on breadth-first traversal [14, 15, 1, 10, 18]. In

a breadth-first traversal, the expansion phase expands opera-
tions one variable at a time with all the operations of the same
variable expanded together. Furthermore, during the reduction
phase, all the new BDD nodes of the same variable are created
together. The breadth-first construction exploits this structured
access by clustering nodes (for both BDD and operator nodes)
of the same variable together in memory with specialized node
managers.

Despite its better memory locality, the breadth-first construc-
tion has much larger memory overhead in comparison to the
depth-first construction. The number of operations that the
depth-first construction keeps tracks of at any given time is the
depth of the recursion, which is at most the number of vari-
ables. Since the number of variables is typically small, the
depth-first construction does not require much memory to store
these operations. In contrast, for each top level operation, the
breadth-first construction will keep all operations generated by
Shannon expansion of this top level operation until the result
for this top level operation is constructed. Since the number of
operations can be quadratic in the size of the BDD operands,
the breadth-first approach can incur a large memory overhead.
Thus, on some applications where the depth-first construction
fits in physical memory while the breadth-first construction
does not, the performance of the breadth-first construction can
be significantly worse due to page faults.

III. OUR APPROACH TOBDD CONSTRUCTION

Since BDD construction involves a large number of accesses
of many small data structures, localizing the memory access
pattern to bound the working set size is critical because good
memory access locality results in good hardware cache locality
and fewer page faults. This section introduces three techniques
to control the working set size by limiting memory overhead
and by improving both temporal and spatial locality. These
are followed by a brief discussion on how these techniques can
work together with variable reordering algorithms.

A. Partial Breadth-First Construction

For the pure breadth-first construction (which normally has
good memory locality), if the BDD operands do not fit in
physical memory, then the pages of operator nodes swapped in
during the expansion phase will be swapped out by the time
the reduction phase takes place. Furthermore, as described
in Section II.B, breadth-first construction can incur a large
memory overhead.

To overcome these drawbacks while bounding the memory
overhead, we introducepartial breadth-first expansionbased
oncontext switch. Within each evaluation context, the breadth-
first expansion is used until a fixed evaluation threshold is
reached. Upon reaching this threshold, the current context is
pushed onto acontext stackand a new child context is started.
The remaining operations of the parent context are partitioned
into smaller groups and the child context evaluates these oper-
ations one group at a time. This process repeats each time the

current evaluation context reaches its threshold. By keeping
the evaluation threshold to be a small fraction of the available
physical memory, we can bound the number of BDD nodes
and compute cache nodes created and accessed and thus con-
trol the working set size. Note that by setting the evaluation
threshold to 1, this algorithm degenerates to depth-first con-
struction. Similarly, by setting the evaluation threshold to1,
this algorithm is identical to pure breadth-first construction.

Fig.3(a) shows an example of a context switch. In this figure,
the top triangle denotes the graph of the initial expansion. Upon
reaching the evaluation threshold, the remaining unexpanded
operations are divided into two partitions (shown as two dashed
rectangles) and the new child context is started. This new child
context continues to expand on the first partition. After the
child context finishes building BDD results for the first parti-
tion, it continues to expand on the second partition as shown
in Fig.3(b). Note that expansion of these two partitions might
share some operations in common. For these common opera-
tions, the expansion of the second partition can benefit from the
results computed from the expansion of the first partition via
the compute cache. However, since the compute cache is not a
complete cache, some common operations may need to be re-
computed. This figure also depicts how the partial breadth-first
construction can reduce memory overhead. The operator nodes
created from expanding the first partition do not need to be kept
during the expansion of the second partition. In comparison,
the pure breadth-first construction (shown in Fig.3(c)) needs to
keep all the operator nodes until after the reduction phase.

Expanding 1st Partition
Context Switch and

(a)

Expanding 2nd Partition

(b)

No Context Switch

(c)

Fig. 3. A Context Switch Example. (a) Upon reaching the evaluation
threshold, current unexpanded operations are divided into two partitions
(shown as two dashed rectangles) and the new child context continues to
expand on the first partition. (b) After the reduction for the first partition, this
child context expands on the second partition. (c) Pure breadth-first
expansion is shown for comparison.

Other than the memory locality and the memory overhead,
the evaluation threshold can also impact the effectiveness of the
compute cache. In the pure breadth-first traversal, the expanded
operator nodes must be kept until after the reduction phase.
This feature effectively resulted in a complete cache within
an expansion phase. Similarly for the partial breadth-first ap-
proach, expansion within each evaluation context maintains a
complete cache. Thus, a larger evaluation threshold results in
a larger and more complete cache for the current evaluation
context at the cost of higher memory overhead.

The rest of this section formally describes this partial
breadth-first algorithm. Fig.4 shows the top level procedure

and a helper function for this partial breadth-first construction.
For each variable, there is an expansion queue and a reduction
queue. Anexpansion queuequeues the operations of the same
variable to be Shannon expanded during the expansion phase.
A reduction queuequeues the operations of the same variable
to be reduced in the reduction phase. The top level procedure
pbf-op() builds the result BDD by repeatedly doing the Shan-
non expansion (line 3) and reduction (line 4) until there are no
more operations in the top context (lines 5 to 8) and until there
are no more evaluation contexts on the context stack (lines 9 to
11). Procedure preprocess-op() first determines whether or not
the operation is a terminal case or is cached (lines 13 to 15).
If not, this operation is added to its top variable’s expansion
queue (lines 17 and 18) to indicate that further Shannon ex-
pansion is necessary for this operation. This operation is also
inserted into the compute cache (line 19) to avoid expanding
redundant operations in the future. This procedure returns ei-
ther the BDD result (for the terminal case and for the case when
the cached result is a BDD) or an operator node. If an operator
node is returned, this operator node’s fieldopNode.resultwill
contain the result BDD after this operator node is processed in
the reduction phase.

pbf-op(op, f , g)
1 opNode preprocess-op(op, f , g)
2 if opNodeis a BDD node, returnopNode.
3 call expansion()
4 call reduction()
5 if top context of the context stack has operations, then
6 take a group of operations from the top context
7 add each operation to its top variable’s expansion queue
8 goto line 3 and repeat until top context is empty
9 if context stack is not empty,
10 pop the top context and use it as the current context
11 goto line 3 and repeat until context stack is empty
12 returnopNode.result

preprocess-op(op, f , g)
13 if terminal case, return simplified result
14 if the operation (op, f , g) is in compute cache,
15 return result found in cache
16 opNode (op, f , g)
17 � top variable off andg
18 addopNodeto � ’s expansion queue
19 insertopNodeinto the compute cache
20 returnopNode

Fig. 4. Partial Breadth-First Construction: top level procedure and a helper
function

Fig.5 shows the expansion phase. This top-down expansion
phase processes operations queued from the variable with the
highest to the lowest precedence. Here, all the operations of
the same variable are Shannon expanded together (lines 3 to
7). Thebranch0 and thebranch1 fields of an operator node are
used to store the results of Shannon expansion, and as described
earlier, these results returned by the procedure preprocess-op()

can be either a BDD node or an operator node. In the later case,
the procedure preprocess-op() would have queued the new op-
erator nodes to be processed by the expansion phase later. The
variablenOpsProcessedis used to track the size of the current
evaluation context and when it exceeds a constant evaluation
thresholdevalThreshold, the current context is pushed onto the
context stack and a new child context is started (lines 9 to 13).

expansion()
1 nOpsProcessed 0
2 for each variablex in the current evaluation context

from the highest to lowest precedence
3 for each nodeopNodein x’s expansion queue
4 (op, f , g) opNode
5 opNode.branch0 preprocess-op(op, fx=0, gx=0)
6 opNode.branch1 preprocess-op(op, fx=1, gx=1)
7 addopNodeto variablex’s reduce queue
8 nOpsProcessed++
9 if (nOpsProcessed> evalThreshold)
10 partition the remaining operators into small groups.
11 push current context with these operation groups

onto the context stack
12 start a new evaluation context
13 return

Fig. 5. Partial Breadth-First Construction: expansion phase

Fig.6 shows the reduction phase. This bottom-up reduction
algorithm is the same as the pure breadth-first construction’s
reduction phase where Shannon expanded operations are pro-
cessed together one variable at a time, starting from the variable
with the lowest precedence moving upwards to the variables
with the highest precedence. The results from the children are
obtained in lines 4 to 11. Lines 12 to 19 perform the reduction
and ensure the result is unique. The result of a reduction is
stored in theopNode.resultfield of an operator node (line 13
and 19).

B. Memory Management

As in breadth-first BDD algorithms, specialized node man-
agers are the key factors in exploiting structured access in the
partial breadth-first approach. In our implementation, each
variable is associated with a BDD-node manager as in [18]’s
breadth-first algorithm. Each variable’s BDD-node manager
clusters BDD nodes of the same variable by allocating mem-
ory in terms of blocks and allocates BDD nodes contiguously
within each block. We further extend this clustering concept to
using one operator-node manager for each variable. With this
design, we not only benefit from good locality of node cluster-
ing, we also eliminate the need for having both the expansion
and the reduction queues, since we can access all the operator
nodes of each variable by simply traversing memory blocks of
each operator-node manager.

Furthermore, we associate one compute cache and one
unique table per variable. Thus, cache lookup in the expan-
sion phase and the BDD unique table lookup in the reduction

reduction()
1 for each variablex in the current evaluation context

from the lowest to highest precedence
2 for each nodeopNodein x’s reduce queue
3 (op, f , g) opNode
4 if opNode.branch0 is a BDD,
5 res0 opNode.branch0
6 else
7 res0 opNode.branch0.result
8 if opNode.branch1 is a BDD,
9 res1 opNode.branch1
10 else
11 res1 opNode.branch1.result
12 if (res0 == res1)
13 opNode.result =res0

14 else
15 b BDD node (x, res0, res1)
16 opNode.result lookup(unique table,b)
17 if BDD nodeb does not exist in the unique table,
18 insertb into the unique table
19 opNode.result b

Fig. 6. Partial Breadth-First Construction: reduction phase

phase will only traverse nodes of the same variable. Since
nodes of the same variables are clustered by the node man-
agers, this results in better memory locality. Combined with
per-variable node managers, we can perform rehashing for each
variable independently by traversing the memory blocks of the
corresponding node manager. Again, this rehashing approach
has better memory locality than the traditional approach, which
traverses the hash table.

C. Garbage Collection

No BDD package is complete without a good garbage col-
lector. External users of a BDD package can free references to
exported BDDs and since BDD construction is a memory inten-
sive application, reusing the space of unreachable BDD nodes
is important. Most BDD packages use reference counting and
maintain a free list of unreferenced nodes. This approach has
several drawbacks. Most notably it has poor memory locality
because the free-list approach can scatter newly created BDD
nodes in memory and thus reversing the clustering effects of
specialized node managers.

In our implementation, a mark-and-sweep garbage collector
with memory compaction is used. Unlike a copying garbage
collector, our garbage collection algorithm performs memory
compaction without requiring any additional memory. This
compaction algorithm isstable; i.e, the nodes’ linear ordering
is maintained. This property allows nodes which are allocated
nearby in time to stay together. This can help access local-
ity because nodes allocated together are likely to be accessed
together in the future.

Our garbage collection algorithm consists of two phases,
both of which are breadth-first traversal from the variable with

highest precedence to the variable with the lowest precedence.
The first phase marks and compacts all the reachable nodes
and the second phase fixes all the references and rehashes these
nodes.

Fig.7 shows the algorithm for the mark-and-compact phase.
Line 1 marks all the roots of exported BDDs to indicate that
these nodes and their descendants are all the nodes that we need
to keep. The top-down breadth-first marking of descendants
is performed by traversing BDD nodes in each node manager
(lines 2 to 6). In this algorithm,n denotes the marked BDD
node that is being processed andnew denotes the next target
location for compaction. For each marked BDD noden, its
children are marked (line 7). Line 8 establishes the new location
new for nodenby settingn’s forwardfield. Lines 9 and 10 copy
the relevant information inn to this new target locationnew.
Line 11 advancesnew to the next node in the node manager
mgr as the new target location. Line 12 advancesn to the next
marked node in this node-manager. This process repeats until
we have processed all the marked nodes in this node manager
mgr; after which, all the marked nodes are compacted into
memory blocks beforenewand thus all the blocks afterneware
marked as free blocks to be freed after the second phase (line
13).

mark-and-compact()
1 mark all the root nodes of exported BDDs we need to keep.
2 for each variablex from the highest to lowest precedence,
3 mgr x’s BDD-node manager
4 n first marked node in managermgr
5 new first node in managermgr
6 whilen is still in node managermgr,
7 mark childrenn.left andn.right
8 n.forward new
9 new.left n.left
10 new.right n.right
11 new ManagerNextNode(mgr, new)
12 n ManagerNextMarkedNode(mgr, n)
13 put memory blocks for all the nodes afternew

into mgr.freeBlocks.

Fig. 7. Garbage Collection’s Mark and Compact Phase. This phase marks
nodes that we want to keep and at the same time compact the memory to
avoid memory fragmentation.

Fig.8 shows the second phase of the garbage collection algo-
rithm. Initially, all external references are updated (lines 2 and
3). Then it proceeds in a top-down breadth-first manner to fix
each BDD node’s children references (lines 7 and 8) and rein-
sert this node back into the unique table (line 9). After all the
references of a BDD-node manager are updated, its associated
free blocks are freed (line 10).

For the purpose of explanation, the garbage collection al-
gorithm shown uses an additional fieldforward for each BDD
node. In the actual implementation,each BDD node’shashNext
field, used for chained hashing, is also used as theforwardfield
during the garbage collection. This dual use of the same field
is only correct if hash insertion of a node does not occur until

fix-and-rehash()
1 clear all unique tables
2 for each root noder of exported BDDs
3 update root nodes of exported BDDs to the forwarded location
4 for each variablex from the highest to lowest precedence,
5 mgr x’s Bdd-node manager
6 for each noden in managermgr
7 n.left n.left.forward
8 n.right n.right.forward
9 insertn into variablex’s unique table
10 free all memory blocks inmgr.freeBlocks.

Fig. 8. Garbage Collection’s Fix and Rehash Phase. This phase updates all
the children references and reinserts the BDD nodes into unique tables.

after all the references to this node are fixed. This condition is
guaranteed by first fixing external references (lines 2 and 3 in
Fig.8) and then performing the top-down breadth-first traver-
sal, which updates all the parents’ references before inserting
a node into the hash table. Thus, this two phase breadth-first
garbage collection algorithm is able to perform memory com-
paction without requiring any additional memory.

D. Variable Reordering

Dynamic variable reordering is an important part of BDD
construction. Even though we have not yet implemented dy-
namic variable reordering, the following is an outline of poten-
tial problems and their solutions.

1. Some variable reordering algorithms require reference
counts. Since garbage collection is generally invoked
right before variable reordering,we can compute reference
counts during the mark-and-compact phase of garbage col-
lection (line 1 and line 7 of Fig.7).

2. Dynamic variable reordering can counteract the cluster-
ing effects achieved by the per-variable memory man-
agers [16]. The solutions proposed in [16] should be
directly applicable to our approach.

IV. PERFORMANCEEVALUATION

In this section, we present a performance evaluation of our
approach. The test cases are the ISCAS85 benchmarks [3], a
collection of ten circuits used in industry. The variable ordering
we used is generated byorder dfs in SIS [20]. To get more
test cases, we generate difference size array multiplier circuits
based on carry ripple adders [6]. For the rest of this section,
we shall refer to this multiplier circuit as MCRA (Multiplier
based on Carry Ripple Adders). Forn-bit multiplier with two
operandsA =

P
n�1
i=0 2iai andB =

P
n�1
i=0 2ibi, the variable

ordering used isan�1 � an�2 � ::: � a0 � bn�1 � bn�2 �

::: � b0. For all the test cases, to minimize memory usage, we
freed the intermediate results (those that are neither inputs nor
outputs of the circuit) immediately after its the last reference.

In this section, we use two leading BDD packages for com-
parison. The first package is CAL version 2.0 from UC Berke-
ley, which implements the breadth-first algorithm described in
[18]. The second package is CUDD version 2.1.2 [21] from
the University of Colorado at Boulder, which implements the
depth-first algorithm for BDD construction. Both are the latest
releases as of November, 1997. All packages are compiled
with gcc using the optimization flag -O3. In this section, we
will refer to our package as PBF.

For both CAL and CUDD, we used all the default settings
with the exception of dynamic variable reordering features
which we disabled for two reasons. First, we have not im-
plemented dynamic variable reordering yet. Second, turning
off the dynamic reordering features removes the performance
impact due to different dynamic reordering algorithms. For
the CAL package, the results we present are without its su-
perscalarity and pipelining features [18] because of adverse
performance impact. These features require decomposing all
operations into a single operation type. For the multipliers,
such decomposition increases the running time by up to 60%
and superscalarity of 10 with automatic pipelining increases the
memory usage by 30% with little (< 1%) or no performance
improvement. For C2670 and C3540 from ISCAS85 bench-
marks, the results are less clear. Thus, for these two circuits,
the results using superscalarity of 10 with automatic pipelining
will also be included.

A. Evaluation Threshold

In this section, we examine how different evaluation thresh-
olds impact the memory usage and running time of our ap-
proach. The system used for this evaluation is an SGI Power
Challenge with 1 GBytes of physical memory. This system
has 12 processors running IRIX 6.2 with 32-bit address space.
Each processor is a 196MHz MIPS R10000. We perform our
experiments using one processor under light load conditions
where our processes are the only active processes. Timing
results reported are measured CPU time.

In this study, the evaluation threshold ranges from 8 KBytes
to 1 where the1 case corresponds to the pure breadth-first
case. The results from very small cases (< 10 seconds CPU
time and< 10 MBytes memory usage) are omitted.

The results in Fig.9 show that in general, the running time
varies about 10 to 20%, except for the C2670. For C2670, there
is a speedup of 2 for the1 case vs. the cases with smaller
evaluation thresholds. This is most likely caused by the fact
that a larger evaluation threshold results in a more complete
cache (as discussed in Section III.A). This is substantiated
by the fact that the1 case has a total of 23 million Shannon
expansions, while the smaller evaluation thresholds cases have
over 135 million Shannon expansions.

The results in Fig.9 also show that different evaluation thresh-
olds can have an impact on the memory usage; e.g, for C2670,
the ratio between maximum and minimum memory usage is
1.64. In general, this memory usage difference may be the
key factor on whether or not an application fits into physical

memory and thus can have a significant effect on the running
time.

Threshold CPU Time(seconds) / Memory Usage(MBytes)
(KBytes) C2670 C3540 MCRA14 MCRA15

8 277 / 169 254 / 158 979 / 134 3820 / 359
64 264 / 169 252 / 158 968 / 133 3726 / 359
512 268 / 169 241 / 157 884 / 134 3477 / 359
4096 240 / 180 251 / 165 837 / 139 3104 / 365
32768 147 / 213 234 / 198 953 / 175 3343 / 419
1 102 / 278 229 / 176 964 / 168 3561 / 491

Fig. 9. Effects of Evaluation Threshold.1 case corresponds to the case with
pure breadth-first.

Note that overall, the evaluation threshold of 4096 KBytes
strikes a reasonable balance between memory usage and run-
ning time. Since 4906 KBytes is1256 of the physical memory
size (1 GBytes), for the rest of the performance evaluation in
this paper, we choose the evaluation threshold for our package
to be 1

256 of the physical memory size.

B. Performance Comparison – No Paging

This section compares our approach (PBF) to CAL and
CUDD when the test cases fit in physical memory. The sys-
tem used for evaluation is the same as in the previous section.
The memory usage limit is set to 1 GBytes. The evaluation
threshold chosen for our package is 4 MBytes which is1

256 of
physical memory size of 1 GBytes.

Fig. 10 shows the results of this study. The results for smaller
cases are shown at the top half of this table. The results for
the C6288 and C7552 cases are not available because they
both exceeded the memory limit. Note that for CAL, C2670
and C3540 have better performance using CAL’s superscalarity
and pipelining feature at the cost of 71% to 84% higher memory
usage. These results are marked withx in Fig. 10.

The results show that for the larger cases, PBF consistently
outperforms both CAL and CUDD, with speedups ranging from
1.10 (MCRA15) to 1.60 (C3540) in comparison to the best
of CAL and CUDD. For the smaller cases, PBF is slower.
However, since these smaller cases take less than 2 seconds to
finish, performancedifferences among the different approaches
are less significant.

As for memory usage, PBF’s memory usage tracks very
closely with CUDD’s depth-first implementation. For small
cases (< 10 MBytes), PBF’s memory usage is higher due to
the memory overhead of per variable data structures. However,
for large cases like C3540 and MCRA circuits, PBF’s mem-
ory usage is actually slightly smaller than CUDD’s memory
usage. In contrast, CAL’s memory usage is up to a factor of
1.6 (MCRA15) in comparison to PBF’s memory usage.

C. Performance Comparison – Paging

This section compares our approach (PBF) to CAL and
CUDD when the test cases do not fit into physical memory. We

Circuit CPU Time(seconds) Memory(MBytes)
PBF CAL CUDD PBF CAL CUDD

C432 1.08 0.94 1.02 5.5 3.7 2.7
C499 0.25 0.45 0.19 2.9 1.9 0.9
C880 0.25 0.23 0.11 2.5 1.8 1.0
C1355 0.74 0.83 0.57 5.4 3.0 2.0
C1908 0.39 0.66 0.30 3.0 1.9 1.6
C5315 0.90 0.86 0.32 5.5 3.1 2.4

C2670 240 573 795 180 217 148
292x 372x

C3540 251 658 403 165 176 169
536x 325x

C6288 n/a n/a n/a n/a n/a n/a
C7552 n/a n/a n/a n/a n/a n/a

MCRA14 837 2016 1004 139 207 152
MCRA15 3104 7383 3425 365 646 482

Fig. 10. Performance comparison when the test cases fit in physical memory.
Both C6288 and C7552 cases exceeded the 1 GBytes memory limit and thus
the results are not available. Numbers marked withx are CAL’s results using
superscalarity of 10 with automatic pipelining.

repeated the experiments on a smaller system — a 200MHz
Pentium Pro with 256 KBytes L2 Cache and 128 MBytes of
60ns EDO DRAM. This system is running Linux 2.0.30 with
32-bit address space. All measurements were obtained under
single user mode. Timing results reported are elapsed time
and time limit is set to be 24 hours of elapsed time. For this
experiment, we chose the test cases which use more memory
than available physical memory (128 MBytes).

Fig.11 shows that our approach (PBF) consistently outper-
forms both CAL and CUDD with speedups ranging from 1.51
(C2670) to 13.2 (MCRA14) in comparison to the best of CAL
and CUDD. The significant speedup of MCRA14 is mainly due
to the fact that our approach’s memory usage for this case is
only slightly more than the available physical memory. This
case demonstrates the importance of limiting the memory over-
head. Another interesting point to note that both the PBF (our
approach) and the CAL (breadth-first) approachhave much bet-
ter paging locality than the CUDD (depth-first) approach. For
the C3540 circuit, this locality resulted in an order of magnitude
difference in performance.

Circuit Elapsed Time(seconds) Memory(MBytes)
PBF CAL CUDD PBF CAL CUDD

C2670 1169 1773 7071 169 217 148
C3540 1058 1925 22629 157 176 169

MCRA14 1173 15506 22135 134 207 152
MCRA15 n/a n/a n/a n/a n/a n/a

Fig. 11. Performance comparison when the test cases do not fit into physical
memory. MCRA15 case exceeded the time limit of 24 hours for all three
packages. CAL’s numbers are measured without its superscality nor
pipelining features to reduce the memory usage and minimize paging.

V. ARRAY MULTIPLIERS

In this section, we demonstrate the effectiveness of our tech-
niques by building very large output BDDs of two types of in-
teger multiplication circuits. The first type is based on C6288
from ISCAS85 benchmark. C6288 is a 16-bit array multiplier
using carry save adders. Based on its design, we derived corre-
sponding circuits from 1 to 15 bits. The second type is an array
multiplier with carry ripple adder (MCRA) as in Section IV. In
this study, we characterize both multipliers from 1 to 16 bits.

The system used for this evaluation is an SGI Power Chal-
lenge with 4 GBytes of physical memory. This system has 16
processors running IRIX 6.2 with 64-bit address space. Each
processor is a 194MHz MIPS R10000. We perform our exper-
iments under dedicated mode using one processor. Note that
for BDD applications, memory usage on 64-bit machines is
generally twice that of 32-bit machines.

Fig.12 shows the results for this experiment. Fig.13 plots
the memory usage of output BDDs and memory usage for
constructing C6288 and MCRA circuits in a semi-log graph.
Note that the output BDD sizes grows exponentially at a factor
of about 2.87 per bit of word size.

Fig.13 also shows that other than the initial overhead, which
affects the memory usage of smaller circuits, the total memory
usage grows at the same rate as the output BDDs’ memory
usage. This plot is a semi-log plot to clearly show the numbers
for small cases. However, it is worth noting that even though
the total memory usage for the 16-bit multiplier is about a factor
of three to four over the size of output BDDs, this semi-log plot
deemphasizes this difference.

To better understand the memory usage, we analyze the BDD
construction for building the C6288 circuit. The maximum
memory usage for building this circuit is 3803 MBytes. The
maximum number of BDD nodes that exist simultaneously
during the BDD construction process is about 110 million (3352
MBytes). To accommodate these BDD nodes, the unique tables
have a combined total of 48 million bins (366 MBytes). Thus
the memory overheadof the operator nodes, the compute cache,
and other auxiliary data structures is 85 MBytes which is only
2.2% of the total memory usage. This result demonstrates that
our approach has very little memory overhead. As far as we
know, this is the first time that the entire C6288 circuit has been
built using conventional BDD representations.

VI. RELATED WORK

There are many research efforts based on breadth-first BDD
construction [14, 15, 1, 10, 18]. However, none of these pro-
pose how to bound the memory overhead of the breadth-first
construction. To address this issue, we introduced a hybrid
algorithm which performs the breadth-first construction to ex-
ploit memory locality and switches to the depth-first construc-
tion when the memory overhead becomes too high [8]. This
hybrid approach has the drawback that when a BDD operation
is much larger than the switch-over threshold, this hybrid ap-
proach will be dominated by the depth-first portion and thus

of Output Size CPU Time(seconds) Memory(MBytes)
Bits (# of nodes) C6288 MCRA C6288 MCRA

1 3 0.01 0.01 0.4 0.5
2 14 0.01 0.01 0.7 0.7
3 46 0.04 0.03 2.7 2.0
4 140 0.06 0.08 3.9 5.2
5 404 0.10 0.10 5.9 6.0
6 1156 0.15 0.15 7.4 8.0
7 3256 0.27 0.23 9.3 9.3
8 9258 0.59 0.55 10.4 11.9
9 26,217 2.02 1.72 17.4 15.3
10 74,456 6.96 5.87 26.3 24.8
11 212,088 26.97 19.70 37.1 33.2
12 605,883 108.63 70.57 70.2 54.9
13 1,733,156 403.15 288.47 162.6 134.6
14 4,955,083 1483.66 996.63 438.0 320.5
15 14,181,971 5529.94 3378.62 1277.2 974.7
16 40,563,945 22175.23 12257.76 3803.7 2795.6

Fig. 12. Results for multiplier circuits. Note that since a 64-bit machine is
used for this study, the memory usage is roughly twice as big as results on a
32-bit machine.

have poor memory behavior. Note that this hybrid is similar
to the mixed depth-first and breadth-first approach that prunes
unnecessary recursion branches for the quantification and rela-
tional product operations [18].

SMV [13]’s BDD package uses mark-and-sweep garbage
collector without memory compaction. In [15, 1, 17], memory
compaction is used to avoid memory fragmentation. These
three approaches are all based on reference counting. In [15],
the compaction algorithm isstable(i.e., linear ordering of the
nodes is maintained) and does not require additional memory.
Our approach is quite similar to this. In [1], the garbage collec-
tion uses a free-list and when memory fragmentation becomes
high, a separate memory compaction algorithm based on copy-
ing is used. In [17], garbage collection phase is also free-list
based and memory compaction is performed after garbage col-
lection only when memory fragmentation becomes high. This
compaction is performed by moving the newest set of live nodes
to fill the holes left behind by the oldest set of dead nodes; thus,
no additional memory is required. This algorithm has the ad-
vantage of moving minimum number of nodes necessary but
it does not maintain the linear ordering of the live nodes. The
performance impact of this tradeoff deserves further study. Our
approach combines many attributes of the approaches above by
integrating a mark-and-sweep garbage collector with a stable
memory compaction without any additional memory overhead.

VII. SUMMARY AND CONCLUSIONS

This paper has introduced three techniques to control the
working set size by limiting memory overhead and improving
both temporal and spatial locality. First, we have introduced
a novel BDD construction algorithm based on partial breadth-
first expansion. This approach has the good memory locality

■
■

■ ■ ■ ■ ■ ■
■

■ ■
■

■
■

■

■

● ●
●

● ● ● ● ● ●
● ●

●
●

●

●

●

❍

❍

❍

❍

❍

❍

❍
❍

❍

❍

❍

❍

❍

❍

❍

❍

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

M
em

or
y

(M
B

yt
es

)

Number of Bits

■ C6288

● MCRA

❍ BDD

Fig. 13. Maximum memory usage for both C6288 and MCRA compared
with memory usage of output BDDs (labeled as BDD).

of the breadth-first BDD construction while maintaining the
low memory overhead of the depth-first approach. Second,
we have described how memory management on a per-variable
basis can improve spatial locality of BDD construction at all
levels, including expansion, reduction, and rehashing. Finally,
we have introduced a memory compacting garbage collection
algorithm to avoid memory fragmentation due to unreachable
BDD nodes. These algorithms work together in controlling
the working set size to gain better memory access locality with
little memory overhead. As these techniques exploit inherent
properties of BDD construction, graph reduction techniques
(like *BMD, POBDD, and variable reordering) can be incor-
porated into our algorithms to further expand the usefulness of
these algorithms.

Experimental results show that by controlling the evaluation
threshold, the partial-breadth approach can reduce the memory
usage by 60% in comparison to our pure breadth-first case (1

evaluation threshold). In the performance comparison study,
the results show that when the applications fit in physical mem-
ory, our approach is consistently faster for larger cases (> 2
seconds) with speedups of up to 1.6 in comparison to the leading
depth-first (CUDD) and breadth-first (CAL) packages. When
the applications do not fit into physical memory, our approach
outperforms both CUDD and CAL by up to an order of mag-
nitude. Furthermore, to demonstrate how our techniques can
efficiently build very large graphs, we constructed the output
BDDs for the C6288 multiplication circuit from the ISCAS85
benchmark and showed that the memory overhead of our ap-
proach is 2.2%. These results show that our techniques have
successfully achieved better memory locality while reducing
the memory overhead.

Beyond the sequential world, another advantage of the par-
tial breadth-first algorithm is that it can be parallelized by using
each processor’s context stack as a distributed work queue [22].
This approach achieves speedups of up to four on eight proces-
sors of a shared memory system.

ACKNOWLEDGEMENT

We thank Claudson F. Bornstein and Henry R. Rowley for
numerous discussions on efficient BDD implementations. We
also thank Rajeev K. Ranjan for his help in setting up our per-
formance study with CAL package. This work utilized Silicon
Graphics Power Challenge shared memory machines on both
the Pittsburgh Supercomputing Center and the National Center
for Supercomputing Applications at Urbana-Champaign. We
are very grateful to the wonderful support staff in both super-
computing centers.

REFERENCES

[1] R. Ashar and M. Cheong. Efficient breadth-first manipulation
of binary decision diagrams. InProceedings of the Interna-
tional Conference on Computer-Aided Design, pages 622–627,
November 1994.

[2] K. Brace, R. Rudell, and R. E. Bryant. Efficient implementation
of a BDD package. InProceedings of the 27th ACM/IEEE Design
Automation Conference, pages 40–45, June 1990.

[3] F. Brglez and H. Fujiwara. A neutral netlist of 10 combinational
benchmark circuits and a target translator in Fortran. In1985
International Symposium on Circuits And Systems, June 1985.
Partially described in F. Brglez, P. Pownall, R. Hum. Accelearted
ATPG and Fault Grading via Testability Analysis. In1985 In-
ternational Symposium on circuits and Systems, pages 695-698,
June 1985.

[4] R. E. Bryant. Graph-based algorithms for Boolean function
manipulation.IEEE Transactions on Computers, C-35(8):677–
691, August 1986.

[5] R. E. Bryant. On the complexity of VLSI implementations
and graph representations of Boolean functions with application
to integer multiplication. IEEE Transactions on Computers,
40(2):205–213, Feburary 1991.

[6] R. E. Bryant and Y.-A. Chen. Verification of arithmetic cir-
cuits with binary moment diagrams. InProceedings of the
32nd ACM/IEEE Design Automation Conference, pages 535–
541, June 1995.

[7] Y.-A. Chen and R. E. Bryant. ACV: An arithmetic circuit verifier.
In Proceedings of the International Conference on Computer-
Aided Design, pages 361–365, November 1996.

[8] Y.-A. Chen, B. Yang, and R. E. Bryant. Breadth-first with depth-
first BDD construction: A hybrid approach. Technical Report
CMU-CS-97-120, School of Computer Science, Carnegie Mel-
lon University, 1997.

[9] R. Drechsler, A. Sarabi, M. Theobald, B. Becker, and M. A.
Perkowski. Efficient representation and manipulation of switch-
ing functions based on ordered kronecker functional decision
diagrams. InProceedings of the 31st ACM/IEEE Design Au-
tomation Conference, pages 415–419, June 1994.

[10] A. Hett, R. Frechsler, and B. Becker. MORE: Alternative im-
plementation of BDD-packages by multi-operand synthesis. In
Proceedings of the European Design Automation Conference,
pages 16–20, September 1996.

[11] J. Jain, J. Bitner, J. A. Abraham, and D. S. Fussell. Functional
partitioning for verification and related problems. InProceed-
ings of the Brown/MIT VLSI Conference, pages 210–226, March
1992.

[12] S. Jha, Y. Lu, M. Minea, and E. M. Clarke. Equivalence check-
ing using abstract BDDs. In1997 IEEE Proceedings of the
International Conference on Computer Design, pages 332–337,
October 1997.

[13] K. L. McMillan. Symbolic Model Checking. Kluwer Academic
Publishers, 1993.

[14] H. Ochi, N. Ishiura, and S. Yajima. Breadth-first manipulation
of SBDD of Boolean functions for vector processing. InPro-
ceedings of the 28th ACM/IEEE Design Automation Conference,
pages 413–416, June 1991.

[15] H. Ochi, K. Yasuoka, and S. Yajima. Breadth-first manipulation
of very large binary-decision diagrams. InProceedings of the
International Conference on Computer-Aided Design, pages 48–
55, November 1993.

[16] R. K. Ranjan, W. Gosti, R. K. Brayton, and A. Sangiovanni-
Vincentelli. Dynamic reordering in a breadth-first manipulation
based BDD package: Challenges and solutions. In1997 IEEE
Proceedings of the International Conference on Computer De-
sign, pages 344–357, October 1997.

[17] R. K. Ranjan and J. Sanghavi. CAL-2.0: Breadth-
first Manipulation Based BDD Library. Public soft-
ware. University of California, Berkeley, CA, June 1997.
http://www-cad.eecs.berkeley.edu/Research/calbdd/.

[18] R. K. Ranjan, J. V. Sanghavi, R. K. Brayton, and A. Sangiovanni-
Vincentelli. High performance BDD package based on exploit-
ing memory hierarchy. InProceedings of the 33rd ACM/IEEE
Design Automation Conference, pages 635–640, June 1996.

[19] R. Rudell. Dynamic variable ordering for ordered binary decision
diagrams. InProceedings of the International Conference on
Computer-Aided Design, pages 139–144, November 1993.

[20] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Mur-
gai, A. Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton, and
A. L. Sangiovanni-Vincentelli. SIS: A system for sequential cir-
cuit synthesis. Technical Report UCB/ERL M92/41, Electronics
Research Lab, University of California, May 1992.

[21] F. Somenzi. CUDD-2.1.2: CU Decision Diagram Package,
April 1997. ftp://vlsi.colorado.edu/pub/cudd-2.1.2.tar.gz.

[22] B. Yang and D. R. O’Hallaron. Parallel breadth-first BDD con-
struction. InNinth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 145–156, June 1997.

	CD-ROM Home Page
	ASP-DAC98
	Front Matter
	Table of Contents
	Session Index
	Author Index

