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Abstract— This article describes an algorithm for curvilinear ~ gorithm for curvilinear detailed routing, based on constrained
detailed routing. We significantly improved the averagetime per- Delaunay triangulation. As an extension of the algorithm, we
formance of Gao’s algorithm by resolving its bottleneck related then describe a method for simultaneous wire-spreading and
to generation of fan-shaped forbidden regions along a wire. We wire-fattening. Finally we discuss results of the experiments
also describe a method for simultaneous wire-spreading and wire-  on several benchmarks.
fattening, which consists of enlarging forbidden regions gener-
ated by the detailed routing algorithm as long as there remains
any space through which wires can pass. From the experiments Il. DETAILED ROUTING PROBLEM
we obtained the result that the average CPU time of the detailed
routing algorithm is almost linear to the length of a wire. Since
the curvilinear detailed routing is efficient in terms of space usage,
the proposed algorithm is important especially for densely wired

Separation of topological routing and physical routing began
with Leiserson and Maley’s pioneering work [2]. We define the
detailed routing problem as follows:

printed circuit boards such as PGA packages, BGA packages, and Given a distribution of features (terminals and inhib-
MCMs. We can also expect improvements on the electrical char- ited regions) and paths of wires between them, the
acteristics and the production yield by applying wire-spreading detailed routing problem is to transform the paths
and wire-fattening to them. into physical paths (shortest physical paths in most
cases) of wires meeting the underlying design rules
|. INTRODUCTION while preserving the topology of given wires.

In this article, we describe an algorithm that transformdVe assume that the given wires do not intersect and that they
given topological wirings into curvilinear physical wirings are disjoint from all the inhibited regions. Leiserson and Ma-
while preserving their topology. Because of the growing neetey introduced the rubber-band equivalent (RBE), a shortest
to design wiring patterns in limited routing spaces such as ipolygonal path homotopic to a given path, as a canonical form
PGA packages, BGA packages, and MCMs, we need to ma&etopological path representation. They gave an algorithm for
the best possible use of available routing space. Apparkeptly constructing RBEs from given paths of wires and also an algo-
metric (Euclidean metric) is preferable in terms of space usagi#hm for transforming the RBEs into physical paths of wires
to any polygonal wiring rules such as rectilinear wiring andmeeting the design rules in tthe, metric (rectilinear wiring).
octilinear wiring. This motivated us to develop a practicallyThe detailed routing is generally achieved in two steps. The al-
feasible curvilinear detailed routing algorithm. gorithm generates forbidden regions on every feature and then,

The curvilinear detailed routing algorithm has not beerusing these regions as barriers, it constructs a physical wire as
deeply studied so far. Only Gao [1] gives @n3logn) algo-  a shortest path between the regions. Since the shape of the for-
rithm. The most time-consuming step of the algorithm consistsidden regions depends on the underlying wiring rule, details
of preprocessing for generating fan-shaped forbidden regiows the algorithm also differ under different wiring rules.
on every feature. We reduced the number of forbidden regionsMaley [3] extended the algorithm to the arbitrary polygonal
that need to be generated in order to obtain the same resuwliring rule. Although it can conceptually generate curvilin-
and significantly improved the average time performance a@far wirings in a limiting case, it is not a working curvilinear
the algorithm. Another contribution of this article is a methoddetailed routing algorithm. The algorithm generates spokes,
for simultaneous wire-spreading and wire-fattening, which isvhich represent forbidden regions in the polygonal wiring rule,
achieved by appropriately enlarging forbidden regions genefrom all the features, and constructs a shortest polygonal path
ated by the detailed routing algorithm. between spokes. Maley adopted a plane-sweep method for

In the following sections, we first give a brief overview of generating spokes. On the other hand, Dai's algorithm [4]
detailed routing algorithms. Next, we give an improved altraces each wire and generates spokes only where they are nec-



essary. A plane-sweep method is generally fast, but it someatures on both sides along a wire. Finally, we describe an
times generates a lot of unnecessary spokes, because spokealfgrithm for constructing a curvilinear wire as a shortest path
from an RBE rarely contribute to the final shape of the shortbetween the forbidden regions.
est polygonal path. Therefore, although Maley’s algorithm is
fast in the worst case, Dai’s algorithm sometimes outperformg pata structure
Maley’s in practical applications. , . )

While the detailed routing algorithm under polygonal wiring V& assume that the boundaries of a routing region and all

rules has been studied by several authors [4, 5], Gao's theortibited regions are polygons, and that all the terminals are
ical paper [1] is the only one in the literature that describes gircles. We divide routing regions into triangles by constrained

curvilinear detailed routing algorithm. Gao formally defined!:)elal“Inay triangulation [6, 7], where the boundaries of a rout-

a detailed routing problem as the continuous homotopic oné29 region and all inhibited regions are regarded as constrained

layer routing problem (CHRP), and gave an algorithm for contdges, and all the terminals are regarded as points. That is, all

structing curvilinear physical wiring from RBEs ®n3-logn) the boundaries become edges of triangles and all the terminals
time. Gao’s algorithm is an extension of a plane sweep meth come vertices of triangles. Thg topologlgal path of a wire is
to a universal cover space of the plane. In detailed routinr&presented as a sequence of points at which it crosses triangle

under theL, metric, forbidden regions cannot be representeid9€s: as shown in Figure 1. If we avoid detours, this repre-
simply by spokes from a feature, as in the polygonal Wiringsentatlon uniquely defines a path homotopic to a given RBE.

rules. We need to deal with fan-shaped forbidden regions dir—
rectly. After generating fan-shaped forbidden regions on all -
the features visible from an RBE, Gao’s algorithm sweeps a

line perpendicular to the RBE on the cover space of the rout-
ing region, and constructs a curvilinear shortest path between
the forbidden regions by using the funnel method.

Our curvilinear detailed routing algorithm is an improve- |/ /" e} O Temina
mgqt on Gao_’s or!glnal algorlthm. A dominant part of the | / & e N “. | ] mhibited Region
original algorithm is the generation of fan-shaped forbidden| / -~ .~ Tl N | wire
regions on all the features. The radius of a fan-shaped regioa=—" e Triangulation edge

is determined by the underlying design rules and the number

of wires that pass between a feature and an RBE. The numi& 1 Topological path representation

of wires also varies depending on the angle in which the fea-

ture is viewed. Therefore the number of forbidden regions the

algorithm generates for each RBEQ$n?). However, we can

observe that, even if we generate fan-shaped forbidden regions . . .

on all the features visible from a RBE, only a small numbep' Generation of forbidden regions

of them actually contribute to the final shape of a curvilinear Given a wire to transform, the algorithm generate forbidden

shortest path. We can thus expect a similar improvement tegions on features on both sides along a wire, traversing tri-

the one that Dai made to Maley’s algorithm under polygonadngles from ones which the wire passes. The followings are a

wiring rules. brief outline of forbidden region generation procedure at each
We generate fan-shaped forbidden regions as we travel fragtarting triangle.

features near an RBE to more distant features, and halt the gen-

eration when we come to a feature that is so far from the RB

that we can ignore a forbidden region on the feature. Althoug

our algorithm does not improve the computational complexit

of the original algorithm, it significantly improves the average

time performance. In the following section we describe the

algorithm in detail.

orbidden region generation:triangle ABC, wire W)
bedin
/I we assume wire W crosses edge AB, AC
Generates forbidden regions on vertices A, B, C;
Estimates a range of areas wire W may pass;
/ traverse adjacent triangles beyond edge BC
TraversétriangleBCD)

[1l. CURVILINEAR DETAILED ROUTING ALGORITHM where
proc TraversétriangleBCD =
Given a set of topological wires, the algorithm transform if GenerationTe$D)

each wire into a physical wire independently. The algorithm  then generate forbidden region on vertex B;
consists of forbidden region generation and curvilinear short- if HaltingTestBD)
est path construction between the forbidden regions. In this then TraversétriangleBDE); fi;
section, first, we describe a data structure for representing theif HaltingTestCD)
paths of topological wires. Next, we describe an algorithm  then Traversétriangle CDR; fi; .
for generating only necessary fan-shaped forbidden regions end



Estimation of a range of areas the wire may pass is necesdjacent triangle beyond the edge of the triangle. First of all, if
sary forGenerationTest(@andHaltingTest() We estimate the the edge is invisible from the starting edge or it is a boundary
range without any assumption on the distribution of featuresf the routing region, this test fails. Then it checks the possi-
and wires outside the triangle. In Figure 2, let a black wirdility that beyond the edge there is a feature whose forbidden
be transformed. The lower limit of the range is apparently theegion reaches the upper limit of the range of the wire. Figure
boundary of the forbidden region on the lowest vertex A. How3 shows the positions of a feature (Q) beyond edge BD whose
ever, the upper limit of the range is not so simple, because fdierbidden region most possibly reaches the upper limit. In (a)
bidden regions on a feature beyond edge AB and AC (P fall the wire between B and D flows between B and Q, and in
example) and wires around the feature may push up the wirgh) flows between D and Q. In both cases feature Q lies on the
Recalling that the triangle is constructed by constrained Desircumcircle of triangle BCD, and cut BQ and DQ or cut BQ
launay triangulation, we know that there are no other featureand CQ are full of wires. Thus the position of Q and the flow
which is visible from the triangle, in the circumcircle of the tri- of wires around Q can be computed. Then the radius of the
angle. The figure shows two cases in which the wire is pushédrbidden region on feature Q is determined. If none of the
up most. Feature P lies on the circumcircle of the triangle AB@rbidden regions in the four cases overlap with the range of
and all the wires between A and B flows between P and B. lthe wire defined above, this test fails.

(a) cut AP and BP are full of wires, and in (b) cut BP and CP In the procedure Traverse(), the algorithm collects generated
are full of wires. The position of such feature P and the floworbidden regions in a list. Hence the generated forbidden re-
of wires around P can be computed easily. Then upper-limifions are naturally sorted in the list from right to left.

in this case is also computed. Considering the counterpart of
the feature P beyond edge AC, the upper-limit of the range is
defined as a union of the upper limits pushed up by a feature
from beyond edge AB and AC.

Lower limit

Minimum clearance
/ Upper limit

(b) All the wires between BD flow between QD

Fig. 2. Two types of upper limits of the route of a wire

Fig. 3. Feature positions used for halting test

The algorithm now travels from the upper adjacent triangle
(BCD in Figure 3) to more distant triangles in order to gener-
ate the necessary forbidden regions in the recursive proced%e
Traverse() ’
GenerationTest() The procedure explained above is iterated along a sequence
The algorithm checks whether a forbidden region should bef triangles through which a wire passes. We now have two se-
generated on the most distant vertex (D) of the triangle. Iguences of forbidden regions; sequences of forbidden regions
the recursive call of the Traverse(), the algorithm accumulatem the right and left side of the wire. The final shape of the
the number of wires that flow between the underlying wire andiire is given by the curvilinear shortest path between the two
the vertex D. The radius of the forbidden region is determinedequences of forbidden regions. We construct a curvilinear
by the number of wires and clearances between wires. If tiehortest path incrementally by tracing the two sequences, in-
forbidden region overlap with the range of the wire definedstead of using a plane-sweep method as in Gao’s algorithm.
above, the forbidden region is generated. Our algorithm for constructing a curvilinear path is a mod-
HaltingTest() ified version of Maley's Algorithm W [3], which is an al-
The algorithm then decides whether it should go farther to thgorithm for constructing the shortest polygonal path (rubber-

Construction of a curvilinear path



band) through a corridor consisting of a sequence of line seg- e g e P e fen
ments (broken line segments in Figure 4 (a)). As itis tracing
the line segments, Algorithm W maintains two sequences of
points that represent the shortest paths from the starting point
to both ends of the current line segment. When Algorithm W
reaches the destination point, the two sequences of points co-
incide and give the shortest path along the corridor. Our algo-
rithm constructs the curvilinear shortest path by maintaining
two sequences of forbidden regions in a similar manner to Al-
gorithm W as shown in Figure 4 (b).

(a) Maley’s Algorithm W (b) Curvilinear path construction &

Fig. 4. Path construction algorithm Fig. 5. Shortest path between forbidden regions

We need to modify Algorithm W to cope with the following

differences between a corridor and two sequences of forbidden IV. SIMULTANEOUS WIRE-SPREADING AND
regions: WIRE-FATTENING

« While an end point of a line segment is a single point, a The curvilinear detailed router generates the shortest wires
forbidden region is a part of a circle. that meets the underlying design rules while preserving the
topology of the original wires. Although it precisely keeps the

+ While an end point of a line segment has a correspondinginimum clearance between wires, that alone is not ideal in

opposite end point, a forbidden region on one side doagrms of productivity. Because the minimum clearance is usu-
not always have a corresponding forbidden region on thglly defined in accordance with the limits of the current fab-
other side. rication technology, and it does not always mean sufficiently

gﬁde clearance. Therefore wire-spreading and wire-fattening

Algorithm W traces a sequence of line segments, finds ea . . ; . )
. . .~ ~are important technologies for improving a yield of the pro-
end point of a line segment, and updates a corresponding SRiction

guence of points that it maintains. Since Algorithm W updates Our idea is very simple. We have already established a de-

two sequences in turn, a new shortest path never intersects Eh«? . ; : - o
Ifed routing algorithm for generating curvilinear wiring by

shortest path on the other side of the wire. However, that is nat

the case with our problem. A new forbidden region may in_constructlng a shortest path between fan-shaped forbidden re-

tersect a curvilinear shortest path on the other side of the wirdons: If there remains more room for wires between features,

Unfortunately we cannot know the right order in advance with c 2" enlarge the forbidden regions a little for each wire. The

out using a line-sweep method. Instead our algorithm undoégsu“ of the detailed routing will then be curvilinear wiring

the construction of the shortest path on the other side until thvé/Ith more clearance. As for wire-fattening, we regard a wire

new forbidden region does not intersect the shortest path. ThéR & thin region surrounded by right- and left-side boundaries

it tries the new forbidden region first and reconstructs the shor"f‘—nd trqnsform each bogndary m_dependently into a curvilinear
. : Hath with enlarged forbidden regions .

est path on the other side. In the worst case, our algorithm co "To obtain a curvilinear wire by using the algorithm de-

structs a curvilinear shortest path@gn?) time for n forbidden . ) . y using gor .

regions. scribed in section C, we have to satisfy the following condi-

Figure 5 is a snap shot of the shortest path constructioH‘?nS on enlarged forbidden regions:
Fan-shaped forbidden regions are generated on both near side§ Forbidden regions on either side of a wire never intersect
along a wire. Since we reduced the number of the forbidden  (rigure 6 a).
regions by generating only necessary ones, the worst case com-
plexity O(n?) is not a serious problem in terms of the overall e Forbidden regions overlap with neither the starting point
performance of the curvilinear detailed routing algorithm. nor the ending point of a wire (Figure 6 b).



o Either corner of forbidden regions must not stick out ofSince all the critical cuts from vertexcan be accessed by
another forbidden region on the same side of a wire (Figsweeping around a ray from vertexwe can appropriately set
ure 6 c). all the values of; andB; (n= 1...n) by iterating the same

The first two conditions must be satisfied to ensure that thefE°C€SS from every vertex.

exists a path from the starting point to the ending point between Although the third condition is aiso satisfied by makrmg.
forbidden regions. The last condition is imposed so as to avoﬁ!nd Bi smaller, we QO not \_Nant to forego a better result just
exception-handling in the algorithm, and to obtain a smootifpr '.[he sake _Of m.akmg awire smqoth. Insteao!, we regjuce the
wire. It should be noted that none of the undesirable s:ituatior@d'us of a V|olat.|ng forbidden region so that e|th§r ofits cor-
described above occur provided that forbidden regions are nigg"S does not stick out of an arc of another forbidden region.

enlarged and the routability of the given wires is ensured. ,It Is clear that even if we shrink a wagtlng forbidden region
independently, we can ensure the minimum clearance defined

in the design rules. Because the clearances between wires are
always dominated by at least one of the enlarged forbidden re-
gions, and never fall below the minimum clearance.

@) (b) ©

Fig. 6. Undesirable situations
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We introduce two constant®. and Dy, (D¢ + Dy = 1), T S e
which define the distribution of spare space between the clear-" =S =
ance and the wire widttD. = 1 (Dy, = 0) means simple wire-
spreading an®. = 0 (Dy = 1) means simple wire-fattening. (a) Original wiring (b) Spreaded wiring

By adjusting the values, we can achieve wire-spreading amg} 7. Result of wire-spreading
wire-fattening simultaneously. We also define two variables
ajandf; for each vertex; a; gives the ratio by which the clear-
ance is enlarged arfii gives a ratio by which the wire width is
enlarged when we generate a forbidden region on the viertex Figure 7 shows a result of applying the wire-spreading tech-
The first two conditions on forbidden regions can be satdique to the detailed routing of a PGA package. The right fig-
isfied by appropriately adjusting the valuescofand; (i= ure is a result of the detailed routing under the original de-
1,...,n). Each critical cut from vertekgives upper bounds for sign rule. Wires turn around a pin with minimum clearance.
a; andp;. Let's say there is a critical c@G; between vertex The left figure is a result of the detailed routing with wire-
i and vertexj, the length ofCC;j; is lengtHCG;j), the radii of spreading. Wires are spreaded depending on the local conges-
the features at verteixand vertexj areR; andR;, the sum of tion of wires around a pin.
the widths of wires crossing;j is W, and the sum of the min-
imum clearances i§j;. The spare spacd$ needed to satisfy
the first condition is given by
SS; = lengtHCCij)— R —Rj—W; —Ci. . We have.implgment.ed the curviliner?\r detailed.routing a}lgo—
rithm described in section Il and the wire-spreading algorithm
We can distribute the spare spa&s; to clearances and wires (in the caseD. = 1 andD,, = 0) in C++ on AIX 4.1. We eval-
so as to enlarge them. Therefore the upper boundsahdBi  uated the performance of the algorithm, using several bench-
are given by mark PCBs and PGA packages.
o < (Dc-SSj+Gij)/Cij, The performance of the glgorithm_is dominated by the gen-
eration of fan-shaped forbidden regions. We have measured
Bi < (Dw S +Wj)/W. how many outer vertices the algorithm visits from each trian-
If a wire start from vertex and its width iswj, similarly the gle during the forbidden region generation. Figure 8 shows
spare spac8$; for satisfying the second condition is given by histograms of the number of visited vertices and the number
of actually generated forbidden regions for routing an inner
S$ = lengthCCij)) — R —w;j/2—-W; —C;j. layer of a 3D graphics board with more than 7000 terminals as
The upper bounds af; andp; are given by a benchmark. We have also obtained histograms of a similar
shape from other benchmark boards. For each triangle, the av-
ai < (Do S%+Cij)/Ci, erage number of the visited vertices was 3.79, and the average
B < (DW~S$J- +Wj +w;/2)/ (W +w;j/2). number of generated forbidden regions was 0.23. In more than

V. EVALUATION



90% of the cases, the number of the visited vertices is less than
7. Thus, considering the benchmark board has more than 7000
terminals, we can conclude the depth of the traverse of outer
triangles is empirically independent of the number of terminals
in an ordinary printed circuit board. On the other hand, the for-
bidden region generation in Gao’s algorithm depends on the
number of terminals. Therefore a great performance improve-
ment will be expected in a printed circuit board with a large
number of terminals.
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Fig. 9. Average CPU time for transforming wires

V1. SUMMARY

We have described an algorithm for curvilinear detailed
routing. We proposed a method for generating only those for-
bidden regions that are necessary to transform a wire correctly.
The method improved the performance of generating forbid-
den regions by visiting only features near a wire, instead of
sweeping all the features. The algorithm thus resolved the bot-
tleneck of Gao’s algorithm, and significantly improved the av-
erage time performance in an ordinary printed circuit board.

We also described an algorithm for simultaneous wire-
spreading and wire-fattening, which consists of enlarging for-
bidden regions as long as there remains spaces for wires. We
gave three conditions on the size of forbidden regions in order
for the same detailed routing algorithm to be applied to en-
larged forbidden regions. However, the performance problem
still remains.

0 5 10 15 20
Forbidden Region Generation

Fig. 8 Results of experiments 1]

[2

We also found only few forbidden regions were generated
outside triangles through which a wire passes, which improves
performance of the curvilinear shortest path construction. Fig?!
ure 9 shows the average CPU time of the curvilinear detailed
routing for each wire against its length measured by the nunff!
ber of triangles. Even though there is a little deviation, the
average CPU time is almost linear to the length of a wire as E]
expected from the shapes of the histograms.

On the other hand, the wire-spreading algorithm has a bo)
tleneck in adjusting factors to enlarge forbidden regions on all
the features. Since the algorithm inherently needs to check
the critical cuts to obtain appropriate enlarging factors, even
the average complexity ®(n%logn) for a printed circuit board
with n features.
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