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Abstract— This article describes an algorithm for curvilinear
detailed routing. We significantly improved the average time per-
formance of Gao’s algorithm by resolving its bottleneck related
to generation of fan-shaped forbidden regions along a wire. We
also describea method for simultaneous wire-spreading and wire-
fattening, which consists of enlarging forbidden regions gener-
ated by the detailed routing algorithm as long as there remains
any space through which wires can pass. From the experiments
we obtained the result that the average CPU time of the detailed
routing algorithm is almost linear to the length of a wire. Since
the curvilinear detailed routing is efficient in terms of spaceusage,
the proposed algorithm is important especially for densely wired
printed circuit boards such as PGA packages, BGA packages,and
MCMs. We can also expect improvements on the electrical char-
acteristics and the production yield by applying wire-spreading
and wire-fattening to them.

I. I NTRODUCTION

In this article, we describe an algorithm that transforms
given topological wirings into curvilinear physical wirings
while preserving their topology. Because of the growing need
to design wiring patterns in limited routing spaces such as in
PGA packages, BGA packages, and MCMs, we need to make
the best possible use of available routing space. ApparentlyL2

metric (Euclidean metric) is preferable in terms of space usage
to any polygonal wiring rules such as rectilinear wiring and
octilinear wiring. This motivated us to develop a practically
feasible curvilinear detailed routing algorithm.

The curvilinear detailed routing algorithm has not been
deeply studied so far. Only Gao [1] gives anO(n3logn) algo-
rithm. The most time-consuming step of the algorithm consists
of preprocessing for generating fan-shaped forbidden regions
on every feature. We reduced the number of forbidden regions
that need to be generated in order to obtain the same result,
and significantly improved the average time performance of
the algorithm. Another contribution of this article is a method
for simultaneous wire-spreading and wire-fattening, which is
achieved by appropriately enlarging forbidden regions gener-
ated by the detailed routing algorithm.

In the following sections, we first give a brief overview of
detailed routing algorithms. Next, we give an improved al-

gorithm for curvilinear detailed routing, based on constrained
Delaunay triangulation. As an extension of the algorithm, we
then describe a method for simultaneous wire-spreading and
wire-fattening. Finally we discuss results of the experiments
on several benchmarks.

II. D ETAILED ROUTING PROBLEM

Separation of topological routing and physical routing began
with Leiserson and Maley’s pioneering work [2]. We define the
detailed routing problem as follows:

Given a distribution of features (terminals and inhib-
ited regions) and paths of wires between them, the
detailed routing problem is to transform the paths
into physical paths (shortest physical paths in most
cases) of wires meeting the underlying design rules
while preserving the topology of given wires.

We assume that the given wires do not intersect and that they
are disjoint from all the inhibited regions. Leiserson and Ma-
ley introduced the rubber-band equivalent (RBE), a shortest
polygonal path homotopic to a given path, as a canonical form
of topological path representation. They gave an algorithm for
constructing RBEs from given paths of wires and also an algo-
rithm for transforming the RBEs into physical paths of wires
meeting the design rules in theL∞ metric (rectilinear wiring).
The detailed routing is generally achieved in two steps. The al-
gorithm generates forbidden regions on every feature and then,
using these regions as barriers, it constructs a physical wire as
a shortest path between the regions. Since the shape of the for-
bidden regions depends on the underlying wiring rule, details
of the algorithm also differ under different wiring rules.

Maley [3] extended the algorithm to the arbitrary polygonal
wiring rule. Although it can conceptually generate curvilin-
ear wirings in a limiting case, it is not a working curvilinear
detailed routing algorithm. The algorithm generates spokes,
which represent forbidden regions in the polygonal wiring rule,
from all the features, and constructs a shortest polygonal path
between spokes. Maley adopted a plane-sweep method for
generating spokes. On the other hand, Dai’s algorithm [4]
traces each wire and generates spokes only where they are nec-



essary. A plane-sweep method is generally fast, but it some-
times generates a lot of unnecessary spokes, because spokes far
from an RBE rarely contribute to the final shape of the short-
est polygonal path. Therefore, although Maley’s algorithm is
fast in the worst case, Dai’s algorithm sometimes outperforms
Maley’s in practical applications.

While the detailed routing algorithm under polygonal wiring
rules has been studied by several authors [4, 5], Gao’s theoret-
ical paper [1] is the only one in the literature that describes a
curvilinear detailed routing algorithm. Gao formally defined
a detailed routing problem as the continuous homotopic one-
layer routing problem (CHRP), and gave an algorithm for con-
structing curvilinear physical wiring from RBEs inO(n3 � logn)
time. Gao’s algorithm is an extension of a plane sweep method
to a universal cover space of the plane. In detailed routing
under theL2 metric, forbidden regions cannot be represented
simply by spokes from a feature, as in the polygonal wiring
rules. We need to deal with fan-shaped forbidden regions di-
rectly. After generating fan-shaped forbidden regions on all
the features visible from an RBE, Gao’s algorithm sweeps a
line perpendicular to the RBE on the cover space of the rout-
ing region, and constructs a curvilinear shortest path between
the forbidden regions by using the funnel method.

Our curvilinear detailed routing algorithm is an improve-
ment on Gao’s original algorithm. A dominant part of the
original algorithm is the generation of fan-shaped forbidden
regions on all the features. The radius of a fan-shaped region
is determined by the underlying design rules and the number
of wires that pass between a feature and an RBE. The number
of wires also varies depending on the angle in which the fea-
ture is viewed. Therefore the number of forbidden regions the
algorithm generates for each RBE isO(n2). However, we can
observe that, even if we generate fan-shaped forbidden regions
on all the features visible from a RBE, only a small number
of them actually contribute to the final shape of a curvilinear
shortest path. We can thus expect a similar improvement to
the one that Dai made to Maley’s algorithm under polygonal
wiring rules.

We generate fan-shaped forbidden regions as we travel from
features near an RBE to more distant features, and halt the gen-
eration when we come to a feature that is so far from the RBE
that we can ignore a forbidden region on the feature. Although
our algorithm does not improve the computational complexity
of the original algorithm, it significantly improves the average
time performance. In the following section we describe the
algorithm in detail.

III. C URVILINEAR DETAILED ROUTING ALGORITHM

Given a set of topological wires, the algorithm transform
each wire into a physical wire independently. The algorithm
consists of forbidden region generation and curvilinear short-
est path construction between the forbidden regions. In this
section, first, we describe a data structure for representing the
paths of topological wires. Next, we describe an algorithm
for generating only necessary fan-shaped forbidden regions on

features on both sides along a wire. Finally, we describe an
algorithm for constructing a curvilinear wire as a shortest path
between the forbidden regions.

A. Data structure

We assume that the boundaries of a routing region and all
inhibited regions are polygons, and that all the terminals are
circles. We divide routing regions into triangles by constrained
Delaunay triangulation [6, 7], where the boundaries of a rout-
ing region and all inhibited regions are regarded as constrained
edges, and all the terminals are regarded as points. That is, all
the boundaries become edges of triangles and all the terminals
become vertices of triangles. The topological path of a wire is
represented as a sequence of points at which it crosses triangle
edges, as shown in Figure 1. If we avoid detours, this repre-
sentation uniquely defines a path homotopic to a given RBE.

Terminal

Inhibited Region

Wire
Triangulation edge

Fig. 1. Topological path representation

B. Generation of forbidden regions

Given a wire to transform, the algorithm generate forbidden
regions on features on both sides along a wire, traversing tri-
angles from ones which the wire passes. The followings are a
brief outline of forbidden region generation procedure at each
starting triangle.

Forbidden region generation:(triangleABC;wireW)
begin

// we assume wire W crosses edge AB, AC
Generates forbidden regions on vertices A, B, C;
Estimates a range of areas wire W may pass;
// traverse adjacent triangles beyond edge BC
Traverse(triangleBCD)

where
proc Traverse(triangleBCD) �

if GenerationTest(D)
then generate forbidden region on vertex D;fi;

if HaltingTest(BD)
then Traverse(triangleBDE); fi;

if HaltingTest(CD)
then Traverse(triangleCDF); fi; .

end



Estimation of a range of areas the wire may pass is neces-
sary forGenerationTest()andHaltingTest(). We estimate the
range without any assumption on the distribution of features
and wires outside the triangle. In Figure 2, let a black wire
be transformed. The lower limit of the range is apparently the
boundary of the forbidden region on the lowest vertex A. How-
ever, the upper limit of the range is not so simple, because for-
bidden regions on a feature beyond edge AB and AC (P for
example) and wires around the feature may push up the wire.
Recalling that the triangle is constructed by constrained De-
launay triangulation, we know that there are no other features,
which is visible from the triangle, in the circumcircle of the tri-
angle. The figure shows two cases in which the wire is pushed
up most. Feature P lies on the circumcircle of the triangle ABC
and all the wires between A and B flows between P and B. In
(a) cut AP and BP are full of wires, and in (b) cut BP and CP
are full of wires. The position of such feature P and the flow
of wires around P can be computed easily. Then upper-limit
in this case is also computed. Considering the counterpart of
the feature P beyond edge AC, the upper-limit of the range is
defined as a union of the upper limits pushed up by a feature
from beyond edge AB and AC.
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Fig. 2. Two types of upper limits of the route of a wire

The algorithm now travels from the upper adjacent triangle
(BCD in Figure 3) to more distant triangles in order to gener-
ate the necessary forbidden regions in the recursive procedure
Traverse().
GenerationTest()
The algorithm checks whether a forbidden region should be
generated on the most distant vertex (D) of the triangle. In
the recursive call of the Traverse(), the algorithm accumulates
the number of wires that flow between the underlying wire and
the vertex D. The radius of the forbidden region is determined
by the number of wires and clearances between wires. If the
forbidden region overlap with the range of the wire defined
above, the forbidden region is generated.
HaltingTest()
The algorithm then decides whether it should go farther to the

adjacent triangle beyond the edge of the triangle. First of all, if
the edge is invisible from the starting edge or it is a boundary
of the routing region, this test fails. Then it checks the possi-
bility that beyond the edge there is a feature whose forbidden
region reaches the upper limit of the range of the wire. Figure
3 shows the positions of a feature (Q) beyond edge BD whose
forbidden region most possibly reaches the upper limit. In (a)
all the wire between B and D flows between B and Q, and in
(b) flows between D and Q. In both cases feature Q lies on the
circumcircle of triangle BCD, and cut BQ and DQ or cut BQ
and CQ are full of wires. Thus the position of Q and the flow
of wires around Q can be computed. Then the radius of the
forbidden region on feature Q is determined. If none of the
forbidden regions in the four cases overlap with the range of
the wire defined above, this test fails.

In the procedure Traverse(), the algorithm collects generated
forbidden regions in a list. Hence the generated forbidden re-
gions are naturally sorted in the list from right to left.

(a)  All the wires between BD flow between QB

(b)  All the wires between BD flow between QD 
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Fig. 3. Feature positions used for halting test

C. Construction of a curvilinear path

The procedure explained above is iterated along a sequence
of triangles through which a wire passes. We now have two se-
quences of forbidden regions; sequences of forbidden regions
on the right and left side of the wire. The final shape of the
wire is given by the curvilinear shortest path between the two
sequences of forbidden regions. We construct a curvilinear
shortest path incrementally by tracing the two sequences, in-
stead of using a plane-sweep method as in Gao’s algorithm.

Our algorithm for constructing a curvilinear path is a mod-
ified version of Maley’s Algorithm W [3], which is an al-
gorithm for constructing the shortest polygonal path (rubber-



band) through a corridor consisting of a sequence of line seg-
ments (broken line segments in Figure 4 (a)). As it is tracing
the line segments, Algorithm W maintains two sequences of
points that represent the shortest paths from the starting point
to both ends of the current line segment. When Algorithm W
reaches the destination point, the two sequences of points co-
incide and give the shortest path along the corridor. Our algo-
rithm constructs the curvilinear shortest path by maintaining
two sequences of forbidden regions in a similar manner to Al-
gorithm W as shown in Figure 4 (b).

(a) Maley’s Algorithm W (b) Curvilinear path construction

Fig. 4. Path construction algorithm

We need to modify Algorithm W to cope with the following
differences between a corridor and two sequences of forbidden
regions:

� While an end point of a line segment is a single point, a
forbidden region is a part of a circle.

� While an end point of a line segment has a corresponding
opposite end point, a forbidden region on one side does
not always have a corresponding forbidden region on the
other side.

Algorithm W traces a sequence of line segments, finds each
end point of a line segment, and updates a corresponding se-
quence of points that it maintains. Since Algorithm W updates
two sequences in turn, a new shortest path never intersects the
shortest path on the other side of the wire. However, that is not
the case with our problem. A new forbidden region may in-
tersect a curvilinear shortest path on the other side of the wire.
Unfortunately we cannot know the right order in advance with-
out using a line-sweep method. Instead our algorithm undoes
the construction of the shortest path on the other side until the
new forbidden region does not intersect the shortest path. Then
it tries the new forbidden region first and reconstructs the short-
est path on the other side. In the worst case, our algorithm con-
structs a curvilinear shortest path inO(n2) time forn forbidden
regions.

Figure 5 is a snap shot of the shortest path construction.
Fan-shaped forbidden regions are generated on both near sides
along a wire. Since we reduced the number of the forbidden
regions by generating only necessary ones, the worst case com-
plexity O(n2) is not a serious problem in terms of the overall
performance of the curvilinear detailed routing algorithm.

Fig. 5. Shortest path between forbidden regions

IV. SIMULTANEOUS WIRE-SPREADING AND

WIRE-FATTENING

The curvilinear detailed router generates the shortest wires
that meets the underlying design rules while preserving the
topology of the original wires. Although it precisely keeps the
minimum clearance between wires, that alone is not ideal in
terms of productivity. Because the minimum clearance is usu-
ally defined in accordance with the limits of the current fab-
rication technology, and it does not always mean sufficiently
wide clearance. Therefore wire-spreading and wire-fattening
are important technologies for improving a yield of the pro-
duction.

Our idea is very simple. We have already established a de-
tailed routing algorithm for generating curvilinear wiring by
constructing a shortest path between fan-shaped forbidden re-
gions. If there remains more room for wires between features,
we can enlarge the forbidden regions a little for each wire. The
result of the detailed routing will then be curvilinear wiring
with more clearance. As for wire-fattening, we regard a wire
as a thin region surrounded by right- and left-side boundaries
and transform each boundary independently into a curvilinear
path with enlarged forbidden regions .

To obtain a curvilinear wire by using the algorithm de-
scribed in section C, we have to satisfy the following condi-
tions on enlarged forbidden regions:

� Forbidden regions on either side of a wire never intersect
(Figure 6 a).

� Forbidden regions overlap with neither the starting point
nor the ending point of a wire (Figure 6 b).



� Either corner of forbidden regions must not stick out of
another forbidden region on the same side of a wire (Fig-
ure 6 c).

The first two conditions must be satisfied to ensure that there
exists a path from the starting point to the ending point between
forbidden regions. The last condition is imposed so as to avoid
exception-handling in the algorithm, and to obtain a smooth
wire. It should be noted that none of the undesirable situations
described above occur provided that forbidden regions are not
enlarged and the routability of the given wires is ensured.

(a) (b) (c)

Fig. 6. Undesirable situations

We introduce two constantsDc and Dw (Dc + Dw = 1),
which define the distribution of spare space between the clear-
ance and the wire width.Dc = 1 (Dw = 0) means simple wire-
spreading andDc = 0 (Dw = 1) means simple wire-fattening.
By adjusting the values, we can achieve wire-spreading and
wire-fattening simultaneously. We also define two variables
αiandβi for each vertexi; αi gives the ratio by which the clear-
ance is enlarged andβi gives a ratio by which the wire width is
enlarged when we generate a forbidden region on the vertexi.

The first two conditions on forbidden regions can be sat-
isfied by appropriately adjusting the values ofα i andβi (i =
1; : : :;n). Each critical cut from vertexi gives upper bounds for
αi andβi. Let’s say there is a critical cutCCi j between vertex
i and vertexj, the length ofCCi j is length(CCi j ), the radii of
the features at vertexi and vertexj areRi andRj , the sum of
the widths of wires crossingCi j isWi j , and the sum of the min-
imum clearances isCi j . The spare spaceSSi j needed to satisfy
the first condition is given by

SSi j = length(CCi j )�Ri �Rj �Wi j �Ci j :

We can distribute the spare spacesSSi j to clearances and wires
so as to enlarge them. Therefore the upper bounds ofαi andβi

are given by

αi � (Dc �SSi j +Ci j )=Ci j ;

βi � (Dw �SSi j +Wi j )=Wi j :

If a wire start from vertexj and its width isw j , similarly the
spare spaceSS0i j for satisfying the second condition is given by

SS0

i j = length(CCi j )�Ri �wj=2�Wi j �Ci j :

The upper bounds ofαi andβi are given by

αi � (Dc �SS0

i j +Ci j )=Ci j ;

βi � (Dw �SS0

i j +Wi j +wj=2)=(Wi j +wj=2):

Since all the critical cuts from vertexi can be accessed by
sweeping around a ray from vertexi, we can appropriately set
all the values ofαi andβi (n= 1: : :n) by iterating the same
process from every vertex.

Although the third condition is also satisfied by makingα i

and βi smaller, we do not want to forego a better result just
for the sake of making a wire smooth. Instead, we reduce the
radius of a violating forbidden region so that either of its cor-
ners does not stick out of an arc of another forbidden region.
It is clear that even if we shrink a violating forbidden region
independently, we can ensure the minimum clearance defined
in the design rules. Because the clearances between wires are
always dominated by at least one of the enlarged forbidden re-
gions, and never fall below the minimum clearance.

(a) Original wiring (b) Spreaded wiring

Fig. 7. Result of wire-spreading

Figure 7 shows a result of applying the wire-spreading tech-
nique to the detailed routing of a PGA package. The right fig-
ure is a result of the detailed routing under the original de-
sign rule. Wires turn around a pin with minimum clearance.
The left figure is a result of the detailed routing with wire-
spreading. Wires are spreaded depending on the local conges-
tion of wires around a pin.

V. EVALUATION

We have implemented the curvilinear detailed routing algo-
rithm described in section III and the wire-spreading algorithm
(in the caseDc = 1 andDw = 0) in C++ on AIX 4.1. We eval-
uated the performance of the algorithm, using several bench-
mark PCBs and PGA packages.

The performance of the algorithm is dominated by the gen-
eration of fan-shaped forbidden regions. We have measured
how many outer vertices the algorithm visits from each trian-
gle during the forbidden region generation. Figure 8 shows
histograms of the number of visited vertices and the number
of actually generated forbidden regions for routing an inner
layer of a 3D graphics board with more than 7000 terminals as
a benchmark. We have also obtained histograms of a similar
shape from other benchmark boards. For each triangle, the av-
erage number of the visited vertices was 3.79, and the average
number of generated forbidden regions was 0.23. In more than



90% of the cases, the number of the visited vertices is less than
7. Thus, considering the benchmark board has more than 7000
terminals, we can conclude the depth of the traverse of outer
triangles is empirically independent of the number of terminals
in an ordinary printed circuit board. On the other hand, the for-
bidden region generation in Gao’s algorithm depends on the
number of terminals. Therefore a great performance improve-
ment will be expected in a printed circuit board with a large
number of terminals.
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Histgram of Forbidden Region Generation
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Fig. 8. Results of experiments

We also found only few forbidden regions were generated
outside triangles through which a wire passes, which improves
performance of the curvilinear shortest path construction. Fig-
ure 9 shows the average CPU time of the curvilinear detailed
routing for each wire against its length measured by the num-
ber of triangles. Even though there is a little deviation, the
average CPU time is almost linear to the length of a wire as is
expected from the shapes of the histograms.

On the other hand, the wire-spreading algorithm has a bot-
tleneck in adjusting factors to enlarge forbidden regions on all
the features. Since the algorithm inherently needs to check all
the critical cuts to obtain appropriate enlarging factors, even
the average complexity isO(n2logn) for a printed circuit board
with n features.
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Fig. 9. Average CPU time for transforming wires

VI. SUMMARY

We have described an algorithm for curvilinear detailed
routing. We proposed a method for generating only those for-
bidden regions that are necessary to transform a wire correctly.
The method improved the performance of generating forbid-
den regions by visiting only features near a wire, instead of
sweeping all the features. The algorithm thus resolved the bot-
tleneck of Gao’s algorithm, and significantly improved the av-
erage time performance in an ordinary printed circuit board.

We also described an algorithm for simultaneous wire-
spreading and wire-fattening, which consists of enlarging for-
bidden regions as long as there remains spaces for wires. We
gave three conditions on the size of forbidden regions in order
for the same detailed routing algorithm to be applied to en-
larged forbidden regions. However, the performance problem
still remains.
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