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Abstract| We present a technique for low power

realization of Finite Impulse Response (FIR) �lters

implemented using Distributed Arithmetic. In most

applications, the distribution pro�le of input data val-

ues is known. The proposed technique uses a data

encoding which can be tuned to the speci�c distribu-

tion pro�le so as to reduce toggles in the shift register

chain. We present a generic Nega-Binary coding ap-

proach and show how a speci�c Nega-Binary scheme

can be derived to achieve maximum power reduction.

We also show how the binary to Nega-binary conver-

sion can be performed bit-serially with minimal area

(and hence power dissipation) overhead. The paper �-

nally presents a shift-free implementation which uses

memory array to store data values. We present a tech-

nique based on Gray coded addressing to reduce the

power dissipation in such implementations.

I. Introduction

Finite Impulse Response (FIR) �lters are one of the

most common components of digital signal processing sys-

tems. FIR �ltering involves a convolution of input data

samples with the unit impulse response of the �lter [1].

The output Y[n] of an N-tap FIR �lter is a weighted sum

of the preceding N inputs.

Y [n] =
PN�1

i=0 A[i] �X[n� i]

High speed �ltering generally involves a dedicated hard-

wired implementation of the �lter. Distributed Arith-

metic (DA) provides a multiplier-less implementation of

FIR �lters, with the 
exibility that the �lter coe�cients

are programmable [2]. It uses a bit serial computation

that forms an inner product of a pair of vectors in a sin-

gle step by storing all possible intermediate computations

in a look-up table (LUT). Fig. 1 illustrates a typical DA

based implementation of a 4-tap FIR �lter.

The rightmost bits in the shift registers constitute the

address for the LUT. Data is shifted every clock cycle

and the LUT outputs are shifted and accumulated. This

is done N times where N is the precision of the input data
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Fig. 1. DA based Implementation of a 4-tap FIR Filter

(and hence the length of the shift registers). At the end

of every N clock cycles, the output is tapped at Y. For a

2's complement representation, the Sign Control is always

positive except for the MSB i.e for the N th clock cycle.

Substantial power consumption occurs as a result of

toggles occurring in the shift registers every clock cycle.

In most applications the distribution of data values is

known. In this chapter we propose a data coding scheme

which for a given distribution pro�le of data values, re-

sults in lesser number of toggles in the shift registers. The

main constraint is that we do not want a scheme which

results in toggle reduction with excessive hardware over-

head (implying power dissipation overhead as well). The

second important constraint is that the coding scheme

should be programmable so that the same hardware can

be used for di�erent distribution pro�les of data values.

The Nega-Binary scheme that we propose satis�es these

two constraints and can be directly incorporated into the

structure of the DA based FIR shown in Fig. 1. To the

best of our knowledge, such a Nega-Binary coding scheme

to reduce toggling has not been exploited before.

Instead of shifting the data every cycle and accessing

it from the same bit location, the data can be kept �xed

and the pointer moved every cycle to access data from the

desired bit location. The shift-register chain can then be

replaced by a memory array with an appropriate column

decoder. For such a scheme, we propose a Gray coded ad-

dressing to minimize the power dissipated in the column



decoder. Further, since there are several possible Gray

codes for any given number of bits, we can choose a code

which also minimizes the number of toggles in the data it-

self. We present results to demonstrate the power savings

possible using these schemes.

The rest of the paper is organized as follows. Section

II deals with Nega-Binary coding of data values and illus-

trates some typical data value distributions that are fre-

quently encountered. Section III deals with Gray coded

sequencing in shift-free implementations. In section IV

we present the results of applying the above mentioned

schemes to di�erent types of data distributions. Finally,

section V concludes this chapter with key observations.

II. Toggle reduction in DA based FIR Filters

using Coding

Any coding scheme that seeks to reduce toggling must

meet the following criteria:

1. It should result in minimum hardware overhead.

2. It should represent the entire range of values of the

source data being coded.

The generic Nega-Binary scheme that we propose meets

the above two requirements. The scheme that we propose

has the added 
exibility of choosing one of the several

possible Nega-Binary schemes that meet the above crite-

ria and also results in maximum toggle reduction.

A. Nega-Binary Coding

Nega-Binary numbers [5] are a more generic case of a 2's

complement representation. Consider an N bit 2's com-

plement number. Only the most signi�cant bit (MSB) has

a negative weight while all others have a positive weight.

An N-bit Nega-Binary number is a weighted sum of �2i.

As a special case consider a weighted (�2)i series where

nbi denotes the ith bit in the Nega-Binary representation

of the number.

Number =
PN�1

i=0 nbi � (�2)
i

In the above case, powers of 2 alternate in signs. While

the 2's complement representation has the range of [

�2N�1 , 2N�1 � 1 ], this Nega-Binary scheme has the

range of [ �(4bN=2c � 1)=3 , (4dN=2e � 1)=3 ]. It can be

noted that in general the Nega-Binary scheme results in a

di�erent range of numbers than the 2's complement rep-

resentation. Thus there can be a number that can have

an N bit 2's complement representation but cannot have

an N bit Nega-binary representation. We address this is-

sue in section II.B. We now present a simple example that

demonstrates how the Nega-binary scheme can result in

reduced number of toggles. Consider the 2's complement

number 01010101B. Using a Nega-Binary scheme with

alternating positive and negative signs (weights �(�2)i

), the corresponding representation will be 11111111NB.

Clearly while the �rst case has maximumpossible toggles

the second one has minimum toggles. If instead the num-

ber was 10101010B, this Nega-binary scheme would result

in a representation with same number of toggles as the 2's

complement. However, a di�erent Nega-Binary scheme

(weights (�2)i ) will have a representation 11111110NB

with just 1 toggle. Thus it can be noted that di�erent

Nega-Binary schemes have di�erent `regions' in their en-

tire range which have fewer toggles and hence depending

on the data distribution we have the 
exibility of choosing

that scheme which minimizes toggling without altering

the basic structure of the DA based FIR.

In existing literature [5], the term Nega-Binary is used

speci�cally for binary representations with radix -2. In

this chapter, we have extended the de�nition of the term

to encompass all possible representations obtained by us-

ing �2i as the weight for the ith bit. Thus for an N-bit

precision there exist 2N di�erent Nega-Binary schemes.

B. 2's Complement vs Nega-Binary Representation

Since the range of values for the two representations

are di�erent we need to increase the bit precision for the

Nega-Binary scheme to N+1 in which case there are 2N+1

cases where the 2's complement range is a subset of the

Nega-Binary range. With N+1 bits of precision, when

all sign bits are negative, the corresponding Nega-Binary

range is [�2N+1+1 , 0 ] and likewise when all the sign bits

are positive, the range is [ 0 , 2N+1�1 ]. All intermediate

sign combinations have a range lying between [ �2N+1+1

, 2N+1 � 1 ] and each combination represents 2N+1 con-

secutive numbers. The N-bit 2's complement range being

[ �2N�1 , 2N�1 � 1 ] overlaps and completely lies within

the N+1 bit Nega-Binary range for exactly 2N + 1 di�er-

ent Nega-Binary representations out of the possible 2N+1

total cases.

The advantage of using such a scheme is that we

can choose a Nega-Binary representation that minimizes

the number of toggles in the data values while covering

the entire range spanned by its 2's complement counter-

part. In most applications, the data distribution pro�le

is known. This fact can be exploited to choose a Nega-

Binary scheme, out of the ones which overlap with the 2's

complement representation, such that it minimizes the

total weighted toggles i.e. the product of the number of

toggles in a data value and the corresponding probability

of its occurrence.

Fig. 2 illustrates the distribution pro�le of a typical au-

dio data extracted from an audio �le. The non-uniform

nature of the distribution is at once apparent. A Nega-

Binary scheme which has the minimumnumber of toggles

in data values with very high probability of occurrence

will substantially reduce power consumption. Further,

each of the 2N +1 overlap cases have di�erent `regions' of

minimum toggle over the range, which implies that there

exists a Nega-Binary representation which minimizes to-

tal weighted toggles corresponding to a data distribution

peaking at a di�erent `region' in the range. While the rel-

ative data distribution of a typical audio data is similar

to that shown in Fig. 2, its mean can shift depending on
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Fig. 2. Typical audio data distribution for 25000 samples
extracted from an audio �le

factors such as volume control. The 
exibility of select-

ing a coding scheme depending on the `mean' values is

hence very critical for such applications. We show in sec-

tion II.C that the binary to Nega-Binary conversion can

be made programmable so that the desired Nega-Binary

representation can be selected (even at run-time) by sim-

ply programming a register.

It can be noted that the toggle reduction using the

Nega-Binary coding comes at the cost of an extra bit of

precision. The amount of saving hence reduces as the dis-

tribution becomes more and more uniform. This is to be

expected, as any exhaustive N-bit code (i.e one that com-

prises of all possible combinations of 1s and 0s) will neces-

sarily have the same total number of toggles (summed over

all its representations) as any other similar code. There-

fore, as the data distribution becomes more and more

uniform i.e. all possible values tend to occur with equal

probability, toggle reduction decreases.

Fig. 3 illustrates the di�erence in number of toggles

for a 6-bit, 2's complement representation and a 7-bit,

Nega-Binary representation for each data value. Fig. 4

shows a pro�le for 6-bit Gaussian distributed data. As

can be seen the Nega-Binary scheme of Fig. 3 can be used

e�ectively for a distribution like the one shown in Fig. 4,

resulting in 34.6% toggle reduction. Fig. 3 depicts one

out of a total of 65 possibilities. Each of these peaks (i.e.

the corresponding Nega-Binary scheme has fewer toggles

compared to the 2's complement case) di�erently, and so

there will exist a scheme that will perform better than the

2's complement scheme, for a given distribution.

C. Incorporating a Nega-Binary Scheme into the DA

based FIR

Conversion of a 2's complement number to a Nega-

Binary representation can be done bit-serially. We now

present a pseudo-code to do the same; bi's represent

the 2's complement bits, nbi's are the Nega-Binary bits,

signi's are the signs for the particular Nega-Binary rep-

resentation chosen.

c0 = 0;

for( i = 0; i < N; i++ ) f

nbi = bi .XOR. ci;
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Fig. 3. Di�erence in toggles for N=6, 2's complement and
Nega-Binary scheme : - + + - + - +
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Fig. 4. Gaussian distributed data with N=6, mean=-22, SD=6

if( signi == `+' ) ci+1 = bi .AND. ci;

else ci+1 = bi .OR. ci; /* signi == `-' */

g

The above algorithm can be directly implemented in

hardware resulting in a small area overhead. Data values

can be bit serially converted from a 2's complement rep-

resentation to a Nega-Binary representation and loaded

into the shift registers. The sign bits can be directly cou-

pled to the Sign Control of the adder shown in Fig. 1.

Fig. 5 illustrates the complete Nega-Binary DA based

FIR architecture. The `sign' register is a programmable

register which holds the sign combination for the chosen

Nega-Binary scheme. The bit serial Nega-Binary compu-

tation logic requires just 5 gates and has a typical power

dissipation equivalent to 2 
ip-
ops, which is negligible

compared to the number of 
ip-
ops in the shift register

chain.

It is important to note that a simple di�erence of

weighted toggle sums obtained for the 2's complement and

the Nega-Binary representation does not give the actual

toggle reduction occurring in the concatenated registers.

Since the Nega-Binary registers have N+1 bits of pre-

cision, each data value contributes its toggles (N+1)/N

times more than the corresponding 2's complement value.

Therefore, the Nega-Binary weighted toggle sum needs to

be multiplied by a factor equal to (N+1)/N.

Hence, we have the following estimate for the power

saving.
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saving =

P
i p(i) � togs(i) � (N+1

N
�
P

i p(i) � negatogs(i))P
i p(i) � togs(i)

where p(i) is the probability of occurrence of a data

with value i, N is the 2's complement bit-precision used,

togs(i) and negatogs(i) are the number of toggles in the

representation of i for the 2's complement case and the

Nega-Binary case respectively.

The above saving computation does not account for

`inter-data' toggles that result from two data values be-

ing placed adjacent to each other in the shift register se-

quence. It may be observed that for a T-tap �lter with

N-bit precision registers an architecture similar to Fig.1

would imply a virtual shift register (obtained through con-

catenating all the individual registers) of length TxN.

We performed actual shift simulations sample by sam-

ple for di�erent data pro�les and di�erent number of sam-

ples to �nd out the Nega-Binary scheme that results in

maximum saving. These simulations showed that in all

cases, the Nega-Binary scheme that resulted in the best

saving was the same as the scheme that resulted in max-

imum estimate of power saving. This can be attributed

to the observation (based on our simulations) that the

contribution due to inter-data toggle is almost identical

across various Nega-Binary schemes. We hence can use

the power saving estimate to arrive at the optimumNega-

Binary scheme. There are two advantages of choosing a

Nega-Binary scheme this way. One, it does not require ac-

tual sample by sample data, only an overall distribution

pro�le will su�ce. Two, the run times for computing the

best Nega-Binary scheme are orders of magnitude smaller.

D. A Few Observations

� We observed that for a given type of distribution (e.g.

Gaussian, bimodal etc.) there was a �xed trend in the

best Nega-Binary representation for di�erent precisions

(i.e. N values). In fact, from a knowledge of the best

Nega-Binary representation for lower values on N, the

scheme for higher values could be inductively obtained.

Table I shows the best Nega-Binary schemes for 5 to 10
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Fig. 6. Saving vs SD plot for N=8, Gaussian distributed data with
mean=max/2

bit precision data having a non-zero meanGaussian distri-

bution. The trend in the best Nega-Binary scheme across

bit-precision is at once apparent.

TABLE I
Best Nega-Binary Schemes for Gaussian Data Distribution

(mean = max/2; SD = 0.17 max)

N Best Nega-Binary Scheme saving
precision (N+1 bit precision)

5 + - - - + + 25.41%
6 + - - - + + + 17.87%
7 + - - - + + + + 13.73%
8 + - - - + + + + + 11.16%
9 + - - - + + + + + + 9.42%
10 + - - - + + + + + + + 8.15%

� As we pointed out before, the Nega-Binary scheme per-

forms well only with peaked distributions. For a symmet-

rical, uniform distribution the 2's complement scheme is

better. This is apparent since the Nega-Binary scheme

is implemented with N+1 bits of precision to take care of

the entire range. It is only in a few regions that the toggle

count is lesser compared to its 2's complement counter-

part. A uniform distribution nulli�es this e�ect. Fig.

6 shows a plot of saving versus the Standard Deviation

(SD) expressed as a percentage of the entire span (256 in

this case), for an N=8, Gaussian distributed data with

mean=max/2.

E. An Additional Power Saving in the Nega-Binary Ar-

chitecture

In sections II.A to II.D we have demonstrated toggle

reduction in the shift registers and as a result toggle re-

duction in the address lines driving the LUT. Power sav-

ings by employing a Nega- Binary architecture is not re-

stricted to the shift register only. Our simulations reveal

around 20% additional toggle reduction in the LUT out-

puts. Such a reduction apart from saving power in the

adder also results in substantial power savings in the LUT

itself. Table III shows the number of repeated consecu-

tive addresses (RCAs) to the LUT for the 2's complement

and the Nega-Binary case. It is easy to observe that the

number of repeated consecutive addresses in the shift reg-

ister outputs gives the number of times no toggles occurs



in the LUT outputs (since the same contents are being

read). This toggle reduction is, therefore, independent of

the �lter coe�cients.

TABLE II
Toggle reduction in LUT (for 10,000 samples; Gaussian

distributed data)

TAPS N Nega-Binary Toggle Reduction
Scheme (% of 2's Comp.)

4 + - - + + 25.32%
8 6 + - - + - - - 18.90%

8 + - - + - - - - - 12.08%
4 + - - + + 26.75%

4 6 + - - + - - - 17.93%
8 + - - + - - - - - 13.14%

A few comments need to be made about these num-

bers.

� 2's complement RCAs were obtained by counting the

number of cases (out of a possible of 10000xN times the

LUT is addressed) where two consecutive addresses were

identical. A similar computation was performed for the

best Nega-Binary scheme (the total number of cases in

this case is obviously 10000x(N+1) ).

� Toggle reduction was computed by �nding the di�erence

between the number of times at least one toggle occurred

at the LUT output for the two schemes.

� For all the three di�erent precisions a Gaussian distri-

bution with mean = max/2 and an SD = 0.2 max was

used.

III. Toggle Reduction in Memory based

Implementations by Gray Sequencing and

Sequence Re-ordering

Techniques have been proposed[7,8] to eliminate shift-

ing in registers to reduce power by storing data as mem-

ory bits and using a column decoder to access bits at the

desired location. In other words, instead of shifting the

data, the pointer is moved. While such a technique re-

duces power dissipation due to data shifting, it results in

additional power dissipation in the column decoder. We

now propose the following techniques for reducing power

in such shift-less DA implementation.

1. Using a Gray sequence in the counter (column decoder)

for selecting subsequent bits - this would reduce the tog-

gling in the counter outputs which drive the muxes to the

theoretical minimum.

2. Using the 
exibility of having several Gray schemes to

choose a data distribution dependent scheme which min-

imizes toggles in the mux outputs.

Gray coded addressing has been shown to result in upto

50% reduction in the address bus power dissipation [6].

Fig. 7 illustrates a DA based FIR with a �xed Gray se-

quencing scheme. This results in theoretically minimum

possible toggles occurring in the counter output. As can

be seen such an implementation requires no additional

hardware in the basic DA structure.

D0D1D3D2X[n]

X[n-1]

COUNTER

as Routing Sequence)
(Gray Sequence - same 

X[n-k]

D0D1D2D3

Routing in Gray
Sequence

Input Data

Sign Control

+/ -

ACC

>>LUT

Y

Fig. 7. Shiftless implementation with �xed Gray Sequencing

Sign Control
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LUT

Y

COUNTER

X[n-k]

X[n-1]

X[n]

Shifter
Barrel

Shift Count

Fig. 8. Shiftless implementation with any Sequencing

An N-bit Gray code can be obtained in N! ways (in a

Gray code any two columns can be swapped and we still

have a Gray code). This freedom can be exploited to ob-

tain a data speci�c Gray code which minimizes the toggle

count as successive bits are selected within the register.

This gives us dual power saving : one, in the counter out-

put lines themselves and two, in the multiplexer output

which drives the LUT (i.e the LUT address bus). There

is an additional overhead of course. Since we are not

scanning the register sequentially, a simple shift and ac-

cumulate cannot be used. Instead, we require a barrel

shifter, as shown in Fig. 8, to shift and accumulate as

per the counter sequence. As with the best Nega-Binary

scheme, we can choose the Gray code which minimizes the

weighted toggle sum using a saving formula very similar

to the one used in section II.C. However, no extra bit of

precision is required.

TABLE III
Toggle reduction for different Gray sequences

No. Gray Sequence Used % Saving
1. 0 1 3 2 6 7 5 4 9.17%
2. 0 2 3 1 5 7 6 4 3.54%
3. 0 1 5 4 6 7 3 2 6.08%
4. 0 2 6 4 5 7 3 1 4.14%
5. 0 4 5 1 3 7 6 2 9.51%
6. 0 4 6 2 3 7 5 1 2.22%



Table III shows toggle reduction for di�erent 3-bit Gray

sequences of an N=8 Gaussian distributed data with mean

= -max/2 and SD = 0.16 max. As can be seen, the

best case toggle reduction is 9.51%. The toggle reduc-

tion varies depending on the type of distribution. One

important observation is that we get savings for symmet-

ric Gaussian as well as symmetric bimodal data, where

the Nega-Binary performance deteriorates substantially.

IV. Results

Tables I, II and III highlight the e�ectiveness of the

proposed techniques in reducing power dissipation in the

DA based implementation of FIR �lter. We now present

some more results on power savings obtained for di�erent

number of bits of data precision and di�erent distribution

pro�les of data values. Table IV shows the percentage

reduction in the number of toggles for two di�erent Gaus-

sian distributions. TR1 is the weighted toggle reduction

as computed using the saving formula; TR2 is the per-

centage toggle reduction obtained by using 25000 actual

samples (i.e. it accounts for the `inter-data' toggles) in a

8-tap �lter. The predictable trend in the best case Nega-

Binary scheme for di�erent precisions is at once apparent.

TABLE IV
Toggle Reduction as a percentage of 2's complement case

for two different Gaussian distributions

Best Nega-Binary Scheme N TR1 (%) TR2 (%)
+ - - + + 4 49.75 % 41.96 %

+ - - + + + 5 35.63 % 28.95 %
1 + - - + + + - 6 28.34 % 24.04 %

+ - - + + + + - - 8 20.88 % 16.94 %
+ - - + + + + - - - - 10 16.59 % 12.80 %

+ - - + + + + - - - - - - 12 13.52 % 7.17 %
- + + - - 4 42.41 % 32.51 %

- + + - - + 5 34.07 % 26.74 %
2 - + + - - + + 6 27.71 % 22.06 %

- + + - - + + + + 8 19.85 % 16.12 %
- + + - - + + + + + + 10 15.39 % 12.63 %

- + + - - + + + + + + + + 12 12.55 % 8.68 %

V. Conclusion

In this paper we have presented a technique based on

data encoding for low power realization of FIR �lters im-

plemented using Distributed Arithmetic. For many appli-

cations, the distribution pro�le of the input data values is

known. We have shown how this knowledge can be used to

arrive at a Nega-Binary coding scheme which minimizes

the number of toggles that occur in the shift registers.

We have presented results to show that using this tech-

nique, the power dissipation in the shift registers can be

reduced by upto 40% for di�erent data distribution pro-

�les, di�erent number of �lter taps and di�erent number

of bits of data precision. We have further demonstrated

upto 25% toggle reduction in the LUT outputs, indepen-

dent of its contents. The choice of a Nega-Binary scheme

is e�ective for two main reasons. Firstly, with one extra

bit of precision, we can get 2N + 1 di�erent Nega-Binary

schemes that cover the entire range of the 2's complement

representation while having di�erent regions of minimum

toggle. Hence, for distributions peaking at di�erent re-

gions, there always will be a Nega-Binary scheme that

will out-perform the 2's complement coding. Secondly,

the conversion from binary to Nega-Binary representa-

tion can be achieved with minimal hardware overhead.

We have presented a hardware e�cient bit-serial imple-

mentation of binary to Nega-Binary conversion, which re-

sults in a minimal power dissipation overhead. The imple-

mentation also achieves the important constraint of pro-

grammability. The same design can be used for di�erent

Nega-Binary scheme by programming the `sign' register

appropriately.

For shift-free memory based implementations, we have

shown that Gray sequencing can be used to reduce power

consumption by upto 50% in the column decoder. We

have presented a bit-reordering technique which with neg-

ligible area overhead, enables sequential access of register

bits using graycoded column decoding. We have demon-

strated that a further reduction (upto 9.5toggles in the

LUT address bus is possible by choosing the best Gray

code (out of the N! di�erent combinations available for

an N-bit Gray code).
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