
Unrolling Loops With Indeterminate Loop Counts in System Level

Pipelines

Hui Guo Sri Paramewaran

Dept. of Computer Science & Electrical Engineering Dept. of Computer Science & Electrical Engineering
The University of Queensland The University of Queensland

Brisbane, Qld 4072 Brisbane, Qld 4072
e-mail: guo@elec.uq.edu.au e-mail: sridevan@elec.uq.edu.au

Abstract| This paper describes the unrolling of

loops with indeterminate loop counts in system level

pipelines. Two methods are discussed in this paper.

The �rst method is the varied latency method, where

the input is blocked until the pipeline is clear. This

variation in the input arrival time gives rise to the

name. In this method the output will be in the same

order as the input. The second method, called the

�xed latency method, allows for the input arrival time

to remain unchanged. The loops with loop count in

excess of the number of unrolled loops will have to be

stored, until a suitable gap in the system becomes

available. Analysis of the both methods is given,

which shows that the �xed latency method is signi�-

cantly faster but needs reordering of tasks and mem-

ory to store tasks.

I. Introduction

System level pipelines can be used when a group of data
is sent through a pipeline of several stages. If each stage
in a system level pipeline has the same execution time,
the pipeline will exhibit the highest possible performance,
and will use all available resources at all time. The goal
of the designer is to balance the stages of the pipeline
to be equal, in order to improve system performance and
resource utilization.

For a system with no feed{back path (i.e., systems with-
out loops) this goal of increased resource utilization and
improved system performance can be met [7] [5] [9] [6]. In
real world applications, however, several systems do have
feedback paths.

Solutions proposed for loops in pipelines so far have
mainly been on loops with determinate number of itera-
tions [3] [11] [12] [10] [8] [2] [1]. The methods proposed for
pipelines have been to either unroll or replicate the loops.

The Problem which has been explored in this paper can
be expressed as follows: given a pipeline of system level
hardware components, and tasks for the pipeline with in-
determinate loop counts, �nd an e�cient number of times
the loop should be unrolled.

In order to �nd a solution, the system can be pipelined
in two di�erent ways. The �rst method is, where the
output order is the same as the input order and there will
be a blocking system which will stop the input when the
pipeline is full (i.e. the latency will vary). The second
method will never block the input (i.e. the latency will
not vary), but the output will be in a di�erent order to
the input order. The second method also demands a large
amount of memory to hold data whenever the pipeline is
full.
This paper is arranged as follows. In section two, the

two methods to handle varying counts of loops in the
pipeline are explained; the calculations for the execution
time and memory requirement are also addressed; and �-
nally the number of times the loops should be unrolled
is derived. Several veri�cations (via simulations) are pre-
sented in section three. Conclusions are given in the last
section.

II. Unfolding Indeterminate Loops

A. De�nitions

Stage, basic unit in the pipeline.
Stage execution time, the time required for each

stage in the pipeline, denoted by TM .
Pipeline, consisting of stages with each stage expected

to have almost same execution time.
Task, a set of data which is processed by the pipeline.
Latency, arriving interval between two adjacent tasks

given in the number of stages. The minimum latency of
a task is 1, i.e., the next task should be at least one stage
behind its preceding task.
Loop size, the body of a loop, given as the number of

stages in the loop, denoted by m1.
Unfolded loop, the number of times a loop is unfolded

in the pipeline, denoted by l.

B. Varied Latency Pipeline

Let us consider a loop-containing system with folded
loops, i.e., l = 1. The system contains m stages with m1
stages of them forming the body of the loop, as shown



in Figure 1. k, which has probability density function of
f(k), is the number of times the loop is executed for a par-
ticular task. Note hardware to control (hereafter called
the controller and shown in dotted lines) the branching
of the loop can be merged into the last stage of the loop
body.
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Fig. 1. Folded loop system

If the pipeline is to execute the tasks in the same order
as they arrived, and if the pipeline is not unrolled indef-
initely , then the input has to be blocked whenever the
pipeline is full.
When the loop is unrolled l times, the pipeline is made

of m+ (l � 1)�m1 stages, as shown in Figure 2.
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Fig. 2. Unfolded loop system { varied latency method

Tasks with loop count less than or equal to l will
be processed through the pipeline without blocking the
pipeline. Tasks with loop count greater than l, will block
the pipeline during processing.
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Fig. 3. Example 1 (a)unfolded pipeline (b)space-time diagram for

ten tasks

As an example, Figure 3(a) gives a pipeline with the
loop unfolded once. Stages 4 ,5 is an exact copy of stage
2, 3. Stage c1 is used for loop branching. Ten tasks,
with each of loop count: 2, 2, 4, 3, 4, 1, 3, 1, 1 and
1, respectively, are executed in the pipeline as illustrated

in �gure(b). The total execution time is 31. The blank
boxes indicate that the related tasks are queuing up in the
memory for further processing. The maximum memory
requirement is

Memory = (l� 1) �m1 �M (1)

where M is the memory needed for storing one task.
It can be seen that the blocking time can be represented

in terms of the number of stages. We call this number the
blocking time since it determines the arrival time of the
next task to the pipeline and it varies from task to task.
For n tasks, each having a loop count of ki where i = 1

to n, the blocking time, bi, is given by

bi =

n
(ki � l)�m1 ki > l

0 ki � l
(2)

The total execution time for the n tasks is

T = T1st + (n� 1)� TM +

nX
i=2

bi � TM (3)

where TM is the stage execution time and T1st the time
taken for the �rst task through the pipeline. T1st can be
de�ned as follows:

T1st =

n
(m+ (l � 1)�m1)� TM k1 > l

(m+ (ki � 1)�m1)� TM ki � l

From Equation 3,

T = T1st + (n� 1)� TM + (

nX
i=2

bi)� TM

= T1st + (n� 1)� TM + (n � 1)� E(b)� TM (4)

Where E(b) is the expectation value of blocking time b.
When n is large enough, the average execution time of

each task (TM=n) is

t � TM + E(b) � TM : (5)

Assuming that b and k are continuous variables,

E(b) =

Z
+1

�1

bf(b)db (6)

=

Z
+1

l

(k � l) �m1� f(k)dk: (7)

The rate at which the execution time changes with the
unrolled loop can be expressed as dt

dl
, and is given by

dt

dl
= �m1� TM �

Z
1

l

f(k)dk: (8)

From equation 8, it is seen that the execution time de-
creases as we unroll the loop. To reduce the average exe-
cution time to the minimal value, it is required that the
unfolded loop be the maximum value of k.
However, the decrease rate of the execution time is de-

pendent on
R
1

l
f(k)dk. If the variable, k, is in a right

tailed distribution (e.g., Normal distribution), then from
[4]
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Fig. 4. Execution time versus unfolded loop
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1

�1

f(k)dk
< 15% l > E(k) + �

where � is the standard deviation of the distribution.
Therefore, when the unfolded loop is greater than the sum
of expectation and deviation of k, the decrease is consid-
ered too slow, as indicated by � in Figure 4.

Choosing the sum of expectation and variance of k as
the unfolded loop, we can achieve a good balance between
speed and cost.

C. Fixed Latency Pipeline

Bottlenecks in the pipeline not only slow down the exe-
cution but also lead to low utilization of the pipeline. As
illustrated in the varied latency method, when a bottle-
neck occurs, stages outside the loop section are idle up to
b folds of stage execution times.

Tasks with small loop counts will free some stages in
the unrolled loop section, which can be used by other
tasks. If the memory resources are adequate, tasks with
loop count larger than unfolded loop can be bu�ered until
an opportunity arises to share the pipeline with smaller
loop tasks. As a result the latency of each task can be
guaranteed to be always same and small (small latency is
required to obtain a fast pipeline).

With this strategy, tasks in example 1 can be processed
in the pipeline shown in Figure 5(a). Again, stages 4, 5
and stages 2, 3 are two unfolded loops. Stage c1, is used
for branching. The memory in the diagram is used for
holding tasks which are incomplete. Figure 5(b) shows
that the total execution time is reduced to 17 (as opposed
to 31 in the varied latency method). It can be seen that
this time improvement is at the expense of extra memory
(and in need of re-ordering the tasks at the output of the
pipeline if the order of the output is required). The blank
boxes in Figure 5(b) represent the bu�ered state of the
tasks. The total memory consumption is determined by
the maximum number of tasks bu�ered at a time. In this
example we need memory to bu�er only a single task.

Assume the structure of the unrolled pipeline is as
shown in Figure 6. The loop count of a task, k, is dis-
tributed in a range of fkmin, � � �, kmax g, each with a
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probability of, p(kmin), � � �, p(kmax).

C.1 Memory

Assume the memory needed for each task is M . Assume
the unfolded loop is l. For n tasks, the free loops provided
by the tasks of loop count smaller than the unfolded loop
are

lX
k=kmin

np(k)(l � k);

the excess loops produced by the tasks of loop count
greater than the unfolded loop are

kmaxX
k=l

np(k)(k � l):

The loops of the bu�erred tasks are

lbuff =

kmaxX
k=l

np(k)(k � l) �

lX
k=kmin

np(k)(l � k)

=

kmaxX
k=kmin

np(k)k �

kmaxX
k=kmin

np(k)l

= n(E(k)� l): (9)



where E(k) is the expectation value of k.
The tasks needed to be bu�ered is

ntask =
lbuff

E(kb)
: (10)

where kb is the loop count of the bu�ered tasks, E(kb) is
the expectation value of kb and E(kb) � E(k).
Therefore, the memory requirement is

Memory = M � ntask

= M � n�
E(k) � l

E(kb)
: (11)

From the above formula, it can be seen that the memory
requirement is proportional to the number of tasks and
the data size of the tasks. When l = E(k), the memory
requirement is statistically equal to 0.
However, there is the worst case when the loop counts

are distributed so unevenly that the �rst part of tasks are
all those with loop count over unfolded loop. All those
tasks are therefore needed to be bu�ered until the tasks in
the next part begin to release some stages in the unrolled
loop section.
In a word, when the unfolded loop is equal to the ex-

pectation value of the loop count, the maximum of the
memory could be

Memory = M � n

kmaxX
exp(k)

p(k) (12)

C.2 Execution Time

Normally, the execution time taken by each task, except
for the �rst task, is equal to one stage execution time,
TM . If the tasks need bu�ered, extra execution time is
required. There are

n�
E(k) � l

E(kb)

tasks demanding bu�er. Therefore, the execution time for
n tasks is

T = T1st + (n� 1)� TM + n �
(E(k)� l)

E(kb)
� TM (13)

Where T1st is the time taken by the �rst task through the
pipeline and is given by Formula B. If unfolded number is
equal to the expectation value, E(k), the execution time
can be reduced to the minimum value, nTM .
From the above analyses, it can be seen that the optimal

unfolded loop is the expectation value of the distribution
of the loop count.

III. Results

A. Varied Latency Method

In order to illustrate the reduction in execution time
with unfolded loop, we chose three di�erent distributions
of k. These were uniform, normal and lognormal distri-
butions.
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Fig. 7. Uniform distribution under di�erent number of tasks
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Fig. 8. Normal distribution under di�erent number of tasks

The results are shown in Fig 7, Fig 8 and Fig 9.

where n is the number of tasks performed. � indicates
the expectation value (denoted by e) of the distribution
and o, the expectation value + standard deviation (de-
noted by e+ �) of the distribution.

The �gures show that when the unfolded loop is greater
than the expectation + deviation of the distribution, the
execution time becomes very small. In the cases of the
normal and lognormal distributions, the slope of the re-
duction becomes very low, almost at. The plot for the
uniform distribution shows constant reduction.

B. Fixed Latency Method

In this section, the simulation results are presented. Ex-
ecution time versus unfolded loop is shown and compared
to Method I for all three types of distributions (Figures 10
a, c, e). Memory cost versus unfolded loop is given in Fig-
ures 10 b, d, and f. We have also observed the e�ect of the
di�ering expectation and plotted it against the unfolded
loop.
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Fig. 9. Lognormal distribution under di�erent number of tasks



B.1 Comparison of Varied Latency Method and

Fixed Latency Method

Figures 10 ((a), (c) and (e)) show the execution time
taken for 5000 tasks versus the unfolded loop with di�er-
ent distributions under varied latency method (shown in
dashed lines) and �xed latency method (shown in solid
lines). The plots illustrate that speed improvement in
the �xed latency method is substantial when the unfolded
loop is small (less than E(k)). If the number of tasks at
any time is limited, this method is signi�cantly faster than
the varied latency method. However, this improvement is
at the expense of the memory cost, as shown in the Figure
10(b)(d)(f).
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Fig. 10. Execution time and memory requirements with di�erent

distributions

B.2 Memory requirement

The memory requirement were simulated under di�ering
number of tasks (shown in Figures 11, 13 and 15). Fig-
ures 12, 14 and 16 are the plots of memory cost versus
the number of tasks. It can be seen that the memory
requirement linearly increases as the number of tasks is
increased.
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B.3 Execution Time

Figures 17, 19 and 21 are the simulation results of execu-
tion time under di�erent number of tasks (� again denotes
the expectation value of loop count). The the changes of
time versus the number of tasks are plotted in the Fig-
ures 18, 20 and 22.

B.4 E�ect of Expectation

Figure 23 shows the execution time with di�ering expec-
tations of loop counts, as marked by asterisks. It can be
seen that the e�cient number of unrolled loop count will
change with the expectation of the indeterminate loop
count.

IV. Conclusion

Two methods for solving loop-containing pipelining are
proposed in this paper. In the �rst method the tasks are
completed in the same order as they arrive. For a certain
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number of loops unrolled in the pipeline, tasks with loops
greater than the unrolled number will take more time than
the tasks with small number of loops. That is, with this
method, the arriving interval of each task is dynamically
changed according to the availability of the pipeline. The
method is therefore called varied latency method. Another
method, called �xed latency method, has varying memory
requirements. In this method, the arriving interval be-
tween two adjacent tasks is �xed. Tasks with loops larger
than the unfolded number will be stored until an oppor-
tunity to share the pipeline with tasks of smaller loop
count.

Pipelines were simulated with the two methods un-
der di�erent kinds of distributions (Uniform, Normal and

Logmormal) of indeterminate loop counts. Based on the
mathematical analysis and simulations, we derived an ef-
�cient unrolled loop count so that a high speed and a

low cost pipeline can be obtained. With a random count
of loops speci�cally distributed in a range of numbers,
the varied latency method works e�ciently when the
unrolled loop count is expectation value + standard devi-

ation of the distribution of loop count, while the �xed
latency method suggests the unrolled number be sim-
ply the expectation value of the loop count. Also, simu-
lations show greater speed improvement with the �xed
latency method when small unrolled loops are consid-
ered. However, this improvement is at the expense of the
extra memory cost and a more complex controller for loop
branching. The memory cost can be greatly reduced when
suitable number of loops are unrolled.
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