A Source-level Dynamic Analysis Methodology and Tool for High-level Synthesis
Chih-Tung Chen and Kayhan Kucukcakar

Unified Design System Laboratory

Motorola, Inc.
{chenkayhan}@adtaz.sps.mot.com

Abstract thesized design is often different from the one exhibited by

This paper presents a novel source-level dynamic analythe simulation of the input description. Furthermore, the
sis methodology and tool for High-Level Synthesis (HLS). ldesigner needs to understand the internal details, not just
not only for the first time enables HLS to offer source-levelthe I/O behavior, of the synthesized design so that he/she
design debugging on the ‘synthesized’ RTL designs, butan change and annotate the subsequent HLS iterations in
also allows the designer to analyze their dynamic charac-order to get the desired results.
teristics, such as resource utilization, power consumption, To accelerate the industrial adoption of HLS, we have
etc., at the algorithmic (source) level. This technology hasdeveloped Matisse, a versatile architectural design tool,
been proven in the industry as the critical element for sucwhich answer many challenges raised in the above studies
cessfully designing a microcontroller with 300+ instruc- and discussions [6]. It is beyond the scope of this paper to
tions with Matisse, an interactive HLS system. Additionally,describe the differences of Matisse from traditional HLS.
we demonstrate the use of this technology for architectural This paper presents a novel source-level dynamic exe-

power optimization. cution analysis methodology incorporated in Matisse
which enables the designers to analyze the dynamic char-
1. Introduction acteristics of HLS-generated designs in the most intuitive

After close to two decades of research, commercialmf"m”er:the origine}l behavioral descriptiorA portion of
High-level Synthesis (HLS) tools have been introduced!is Methodology is analogous to the source-level debug-
recently and have been in some production use. A tutoriadi"d Of & compiled software code, where the programmer
on HLS methodology and past research can be found in [ﬁgbugs the execution of the compiled machine code while

and [10]. As discussed in [8], the question is not whetheI€Wing the original source code. In this analogy, HLS, the
high-level synthesis will be successful or not but how iNPUt description, and the simulation of the synthesized

widely it will be used in the industry. As pointed out by design correspond to the sowaare compiler, Fhe softwgre
Bergamaschi in [1], the discussion in [8] and our own studySource code, .and the e_x_ecut|on of the compiled machine
in Motorola, there are some common problems with tradi-C0J€: respectively. Additionally, our methodology allows

tional HLS systems which still hinder designers from the designers to analyze the design’s dynamic characteris-

embracing HLS. Two specific problems among them aretics from the source-level execution point of view such as

the controllability/predictability and simulation/analysis of CYcle-Dased resource utilization and power consumption.

the synthesized RTL implementations. First of all, design-Thus’ the designer can correlate the synthesis results with

ers demand the controls of the HLS process in order to geril® HLS input description and constraints, and then, if nec-
ssary, adjusts the subsequent HLS iteration to optimize

erate the desired and predictable results. The predictabilit e . o)
is found to be crucial for subsequent design tasks includin§€ design’s dynamic characteristics more effectively.
Note that our source-level analysis methodology is dif-

RTL/logic synthesis, data-path module generation, floor-) o
planning, layout, test, and verification. Secondly, designerderent from the typical HDL (Hardware Description Lan-

need an ‘intuitive’ way to analyze and verify the output of 9U29€) debugging tools which are built on top of the HDL
HLS. For example, the cycle-by-cycle behavior of the Syn_s|mulat0rs. Th_ese t(_)ols allow the de3|gners to debug_thelr
HDL code being simulated by the simulator. Applying

Copyright 1997 IEEE. Published in the Proceedings of ISSS'97, Septemthese tools in the HLS context, the designer is limited to
ber 17-19, 1997 in Antwerp, Belgium. Personal use of this material is peraneuyZe the simulation of the input behavioral description

mitted. However, permission to reprint/republish this material for d the RTL impl . | dind
advertising or promotional purposes or for creating new collective works@nd the Implementatioseparately and indepen-

for resale or redistribution to servers or lists, or to reuse any copyrightedlently. On the contrary, our methodology bridges over this

component of this work in other works, must be obtained from the IEEE. ap by analyzing the RTL simulation from the cycle-accu-
Contact: Manager, Copyrights and Permissions / IEEE Service Centerg

445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Teld-ate execution point of view of the input behavior descrip-
phone: + Intl. 908-562-3966.

tion. we leverage existing techniques used for software debug-
To our best knowledge, the only related work in the ging and FSM/flowchart analysis?

hardware design technology is the finite-state machine or,

flowchart design/analysis tools, such\asualHDL from

Summit Design Inc.DesignBookirom EscaladeExpress

from i-Logix andspeedCHARTrom Speed. This type of

.1. Feasibility
To understand why it is feasible for HLS to offer the
source-level execution analysis, recall that HLS is a pro-
tools offer visual feedback and controls through state-tran-"€5S (.)f mapping an algorithmic description qf a design
behavior into a Register-Transfer Level (RTL) implemen-

sition diagrams or flow charts while simulating the HDL tation. The HLS tasks includ heduli I
code generated for RTL/logic synthesis. The technique foraton. The asks Include scheduling, resource atloca-

the above FSM/flowchart analysis relies on the fact thattlon and sharing, interconnect creation, and finally

there is a clear correlation between the specification an&ontroller (FSM) generation. Figure 1 shows an example

the generated implementation (HDL code); e.g., state reg-Of the mapping performed by HLS. It can be seen that

isters. However, HLS doesn't offer such straightforward there exists a mapping from the input description to the
correlation for sé)urce-level analysis of HLS designs states or state transitions of the controller (scheduling) and

The remainder of this paper is organized as foIIows.tO RTL components and interconnect (binding). Such map-

Section 2 gives an overview of what it takes to implementp.ing information can be u;ed to correlgtg the RTL simula-
a source-level execution analysis methodology for HLS. In“on results back to the input description (the source).

X) ; . Briefly speaking, if we know the current state of the con-
Section 3, we describe the concept of design annOtatIOQroller (FSM) or the state transition being taken in a partic-

during HLS and the techniques for enabling the source- lar cvele during RTL simulation. the reverse maoping of
level analysis. Section 4 presents the source-level analysi y irng - ' ppIng
e scheduling and binding should tell us at this cycle

environment in Matisse and illustrates various analysisWhich ortion of the inout description is executed and
capabilities offered by this environment. In Section 5, we " . P Pt P -
which components and interconnect are utilized. Thus,

discuss the applications of our methodology including ac cle-based source-level execution and resource utilization
microcontroller design and an architectural power optimi- Y .
become feasible.

zation experiment. Finally, we conclude this paper in Sec-
tion 6. 2.2. Mathematical model

In this section, we first describe the essence of the HLS
design execution, meaning the simulation of the RTL

level i vsi thodol for HLS implementation. Then, we define the reverse mapping of
jall_hsourci; e&/el execrL]J 'Olr:j an? yS||s methodo Ot?]y or b I.'the scheduling and derive the source-level execution from
€ methodology should ot only Serve as e symboliCy,. ahove information. Finally, some extensions of the

debugger for the RTL designs generated by HLS, but aIsomodel will be addressed.

support the analysis of the dynamic characteristics such as) .
o . For the sake of simpler explanation, assume the HLS
cycle-based resource utilization and power consumption., . : ;
0c%e5|gn contains a single FSM as the controller. If the gen-

There were several questions raised at the early stage .
this work. Is the methodology feasible for HLS? Also, can érated controller istate-basede.g., a Moore-type FSM)

2. Source-level execution analysisnethodology
As discussed earlier, the focus of this work is to develop

FSM Loadl ,l A | ‘- ;l B |
cyclel a=... :
Load2 '
cycle2 b=.. o S R
cycle 3 if (c) Selectl] . .
cycle3 out=a+b; 9 Select2 | |-
| else e I [T »| Add/Sub
cycle 3 out=a-Db; Load3 :
cycle 4 strobe = 1; 9 Q """"""""""
(5) |Enebe ...l *

a. Specification b. RTL Implementation

Figure 1: High-level synthesis process

with statesS = {s;, ... , s}, the execution of the HLS be derived asY X(dx), ... ,Y X(dxy)} sinceuy, is equal to
design, therefore, can be characterized by an ordered list of '1(dxh).

statesDX = {dx, ... , dxg} such thatdx, [1 Sand ¢ix,, Although the model described above assumes a single-
dxy+1) is a valid state transition. Note théi, represents FSM controller, it can also be extended to support those
the current state of the controller at thte cycle of the HLS systems which generate multi-FSM controllers such
HLS design execution. as Hercules/Hebe [5] and Matisse [6]. For example,

Let the input description be a list of statemdris{i,, assume the FSMs are all state-based and use the same
...,ic}. The scheduling task of HLS can be represented byclock. Let the FSMs b® = {my, ...,m}. The HLS design
a one-to-many mappink: | — SSsuch thal\(i,) isasub- execution can be characterized by using multiptelists,
set ofSand denotes the states in which statermdstto be one for each FSM as described earlier. The source-level
executed. Thus, the reverse mappin@\dfecomeﬁ'l: S executionSXcan then be derived froki and theDX lists
— 1"whereh™(s) = {ix |5, 0 A(i)}- with sxg asA1(dxg?) O ... 0 AY(dxy').

Formally, the cycle-based source-level execution can be Another extension of our model is to use operations and
represented by an ordered BX= {sx, ... ,SX%} such that values instead of statements for the source-level analysis.
S is a subset of statemerfsvhich executed at theth This extension would allow the user to better analyze intra-
cycle of the HLS design execution. It can be seen easilystatement events. This can be accomplished simply by
now that the source-level executi®@X can be derived replacing the statement listvith a list containing individ-
from DX andA™ as A Y(dxy), ... ,A"{(dxy)} sincesxyis ual operations and values.
equal toAY(dxy).

On the contrary, if the generated controller is state-tran-
sition-based (e.g., a Mealy-type FSM) with state transi-
tionsT = {ty, ... ,tg}, the execution of the HLS design must
be characterized by an ordered list of state transibdis
{dty, ... ,dtg} such thatdt; L1 T and €lt;, dt;,1) is connected
through a valid state. The HLS scheduling, in this situa-
tion, is a one-to-many mappind | — T such thai\(i)

2.3. Analysis flow

As described in Section 2.2, our source-level execution
analysis methodology is enabled by two key ingredients:
the reverse mapping and the state (or state-transition) his-
tory of the underlying controller which captures the
essence of the HLS design execution. In this section, we
will discuss what it takes to incorporate such a methodol-

is a subset of in which statement, is to be executed. ogy into an HLS system and the associated analysis flow.
Additionally, the reverse mappir?g‘l becomedl T o Theoretically, an HLS design can be simulated “as is”
(! where)\'l(ty) = {ix It O AGiy}. Similarly, the source- and its state-based execution history still can be obtained

level executiorSX can be derived fro®T andA\! as n through the simulator by monitor_ir_lg the state regis_ters _of
1(dt D -)\'l(dtD)} sincesxy is equal to\'l(dtd). the controller. However, the transition-based execution his-

The model above can be easily extended to support th&ery ca_nnot be captured by such monito_ring. For exa_mple,
cycle-based resource utilization. Briefly speaking, the assuming there are two statgsands, with two condi-

cycle-based resource utilization is a dynamic analysis oft'on""I transitions froms, o s, depending on the value of

data-path resource utilization throughout the run (simula-_an inputcond Knowing that the HLS design is in stage

tion) time of the HLS design. The data-path resource can'S not sufficient to tell which transition the design took to
' ‘eachs,. The problem is further complicated by the poten-

be a data-path component or an interconnect. The advar: e)

tage of analyzing cycle-based resource utilization is that ittIaI qulc glitches, su_c_h as _those md which may cause

can accurately portray the actual resource utilization ofSPEcious state trapsmons in the middle of a. cycle.

designs with complex conditional resource sharing and . 1 Nerefore, we introduce the conceptdeisign annota-

data-dependent loops. tion andanalyzable HLS design¥he design annotatlc_)n is
Like source-level execution, the cycle-based resource® p.rocess.of embedding one or more daemons mtq the

utilization can be derived from the HLS design execution design during HLS. The embedded daemons when simu-

and the reverse mapping of the HLS binding. For example,latEd will use specific techniques to collect dynamic data

assume the HLS design is state-based as described earligF interest such as state transitions. Moreover, the embed-
and comprises of a set of resourées {ry, ..., ra}. The ed daemons will not affect the functional behavior of the

- design during simulation. The HLS design with the
HLS binding can be transformed to a one-to-many map-)
pingy: R — S such thay(r,) is a subset o in which embedded daemons is callealirce-level analyzahl&he

resourca, is to be used, and its reverse mapping become§jESign annotation will be further discussed in Section 3.

y-1. S XRR wherey'l(s;,) = {rels, O V(r,)}. Finally, let The second crucial task in our methodology is to gener-
the cycle-based resource utilization be an orderetlist ~ at€ the reverse mapping of scheduling and binding. This
{Uy, ... ,uy} such thaty, is a subset dR which are utilized involves reprocessing the scheduling and binding deci-

at thehth cycle of the HLS design execution. Thusgan sions and storing the information tabularly with states or

HLS System ™
Analyzable E— \
option EXECUTION |

l I ANALYZER

reverse
Mapping
Table

Analyzable
HLS Design Database

Execution

\ Value

RTL Simulator ——» Change

/' Database
J

Testbench

Figure 2: Source-level execution analysis flow

state transitions as the indices. This task, however, is besg. Design annotation
carried out during the HLS controller generation where the Design annotation is a process of embedding one or
complete scheduling and binding information is available more daemons into the design during HLS for collecting
and the states as well as the state-transitions are being geBynamic data of interest using specific techniques. Cur-
erated. rently, we identified two types of design annotation: con-
As shown in Figure 2, a typical source-level execution troller annotation for capturing the state-transition based
analysis flow begins with synthesizing amalyzableHLS execution history and data-path annotation for calculating
design containing embedded daemons and generating ongcle-based power consumption.
or more tables containing the reverse mapping of schedul- Note that the design annotation should be performed
ing and binding. such that the analyzable HLS design doesn’t incur any
Following that, the analyzable HLS design is simulated, overhead in the downstream synthesis tools as compared to
and an execution database is generated by the embeddefe original HLS design. In our case, we hide the embed-
daemons along with a value change database. ded daemons from logic synthesis by enclosing them with
The execution database stores the execution historygirectives that turn logic synthesis off and on.
e.g. a list of 2-tuplet(st) wheret is the simulation time .
andst is an identifier of a particular state transition. The 3.1. antroller gnnota_ﬂon N
value change database contains the value history of one or AS discussed in Section 2.3, the transition-based execu-
more signals in the design. This value change databasiOn history cannot be captured by simply recording the
enables our methodology to offer both behavioral and.controller.’s_ state registers. With potential [qg|c g_I|tches, it
structural signal analysis along with the source-level exe-iS also difficult to derive the actual transition history by
cution analysis. Although the generation of the above datafontinuously monitoring the state-transition logic of the
bases is needed for post-simulation analysis and timecontroller. SinceMatisse our targeted HLS system, is
backward analysis, the real-time source-level analysis isState-transition based, we annotated the_controllerwnh one
also possible by using the simulator’s application program-daemon per FSM. Each daemon comprises of a state-tran-
ming interface (API) to generate and access the records iition identification $T)) logic and arSTlregister, and is
real time. connected with a typical Mealy-type FSM as shown in
The last step in the analysis flow is to invoke a source-Figure 3. Like other Mealy-type output functions, 8iél

level execution analysis tool similar to a software symbolic 109iC is @ function of FSM's current ste@Sand the input

debugger for the actual analysis work. The details of such: @nd computes the next state-transition identification
source-level execution analysis tool will be described in NSTL TheSTlregister is analogous to the FSM state regis-
Section 4. ter. Functionally speaking, th&TI register represents

edge-triggered flip-flops driven by the FSM clock signal.

the STIdaemonSD stores the peripheral switching statis-
ST logic tics of the component into the switching database along
with the simulation time at the end of every cycle. Thus,
cycle-based power consumption can be computed by the
switching statistics in each cycle and the power character-
_‘ ization models of individual components available from
cur. state next state

Inputs ———p| P Output
0 orig. logic

(CS) RTL power analysis tools such as [11] and [9].

State Reg 4. Source-level analysis environment

Figure 5 shows the source-level analysis environment

next state-transition id developed in Matisse using the methodology described

Execution (NSTH earlier. Currently, it offers source-level execution analysis,
dynamic resource utilization analysis and dynamic profil-
ing. We would like to remind that although our source-

level analysis environment seemingly resembles a typical
HDL debugging tool, the underlying techniques are funda-
Also shown in Figure 3 is an arc connecting $iéregis- mentally different. More importantly, traditional HDL
ter output to the execution database. It points out the reatlebugging tools cannot be used for source-level analysis of
role of theSTI register, which is to store the identifier of synthesized designs.

the actual state transition committed by the FSM into the4 1 Source-level execution analvsis

execution database along with the simulation time at the "™ o y)

end of every clock cycle. Thus, the cycle-based state-tran- S Shown in Figure 5, the source-level execution ana-

sition history can be faithfully recorded under the presencelY28" EA) consists of a control panel, a source window,
of logic glitches. and a data display window. The control panel allows the

We found that it is more efficient to generate the reverseoIeSIgner to perform typical debugging operations such as

mapping tables of scheduling and binding during the con-Start StoP a next continueand data ‘?l"sg’l'ay oue fo the
troller annotation. Recall that these reverse mapping tableé""C at tne execution history 1S avaiiable In the execution

for the state-transition based HLS designs correlate eacﬁlatabaseEA also offers backward steppingréy) and

state transition with a set of input statements being exePackward continuation to move the simulation time back

cuted or a set of resource being utilized. By using the statd® & prior (E:OCka%CIeHIgedSOL_'rce wmdovtvl Is for I:stln_?hth_e
transition identifiers generated during the controller anno->0Urce code ot the esign (currently an algorithmic

tation as the key field for the reverse mapping tables, th ubset of Verilog HDL) and highlighting those statement

reverse mapping for source-level execution and cycle- delng ex?r(]:uted at tthe_ ggr_rgnts;gcie. It talsfo gl\/t?_s t?he
based utilization can be done in linear time. esigner the access (o individual statements for setling the

stop points and the access to variables and operations for
3.2. Data-path annotation displaying values. Finally, the data display window con-
The data-path annotation for cycle-based power analy-tains a list of data display entries which are updated auto-
sis is a process to embed a daent) to an individual matically whenever the simulation time changes.
data-path component or net for gathering signal switching The basic core dEA can be described in pseudo code
statistics periodically. As shown in FigureSD is driven as following.
1. import(execution_database, reverse_mapping_tables);

Figure 3: STI annotation

Inputs —— | data-path B Outputs 2. while (not quit) begin
10) component (0) 3. request_or_compute(next_cycle);

4. query_execution_database(next_cycle, assoc_stis);
5 exec_stmts = [0; used_rsrcs = [;

6. foreach stiin assoc_stis begin
7

8

9

exec_stmts |= schedule_reverse_mapping(sti);
used_rsrcs |= binding_reverse_mapping(sti);
end

Switching

Database CLK ’)]
10. display_time(next_cycle);
11. source_window_highlight(exec_stmts);
Figure 4: Data-path annotation 12. structure_window_highlight(used_rsrcs);

13. end
by a system or component-specific cl&gkK. Similar to

mubivue marlsse
behwsazral Editar AFT_sqel, - IR a0 ni
il _ i m (DFF_OF_SB=NIFF_DF 515
Esnign Edit LEolitiss Vi Tesding Sdaising Hisco
File Edit Wilitiew Nirdirga Cles fitplay Shiving
P P Commart
[
w & irpdd]t
SR ~
fax# * H Tdgsi
Wl =
Ol = 5] -yl o Hoam
e |
|| wer Sele
: Trekc
Hesdez Bshowsiorsl View Bditing
o Fotaks
- fleer
mualivae
: rruksan finalee ||1r-|l-ll|r|dw Fa
[36s Put [Roue_fst] = 16°p AoKXKROEN Y] [e e
iy maltp Dedbe_[npd] = bh (CO0OMOOOOIEL | :
SE: malip [rudbs, [rpd] s 2575 (XOOGRE0G T Ta -+ o
o melip Isddes Bupl = 5570 (O] 106L
SEY makitp Dmilte ClkD = 17 1 Tivw £ 50 ¢ Corcak
wark it | s Coratand
prav mact | —
| I =
% £ | [
disp B fiw 5E |
-
Hos | It Bin | riop # e lain
ok Rl o0 ke wuli 5E J Pk § Sractursl Vied Foibisg
e = - Binck Beo wilt_p Jomilip

Figure 5: Source-level analysis environment

Note thatsti stands for state-transition identifier and Section 3.2. The intuitive functionality is to provide the
‘|=’ is a union-assign operation. designer so-callegpower displaysimilar to the existing
data displaywith the same granularity such as per net, per
component or even per operation basis. The power display

4.2.|Dyn:m|c.res'ource gtlllzatlon anal)./s'S f | entries are to be shown in the display window and updated
Also shown in Figure 5 is a structure window for cycle- | 1 onaver the simulation time change.

based resource utilization analysis. The structure window
of EAdisplays the data-path schematics and highlights the4.4. Dynamic profiling analysis
active (utilized) resources at the current cycle in a similar Another related analysis available is the dynamic profil-
fashion toSEE-SAW?2]. The designer can also select a ing analysis. The dynamic profiling analysis reports the
particular net or component through the structure windowexecution frequency of individual statements in the input
for value display. description and the usage frequency of individual
By using the dynamic resource utilization analysis, the resources in the data path under a scenario of the HLS
designer can visualize ‘where’ and ‘when’ a portion of the design simulation. The profiling data is computed in a sim-
data path is idle under the actual operational environmentilar way as described in Section 2.2 for cycle-based
Then the schedule and/or bindings can be adjusted tsource-level analysis using the execution database and the
improve the overall dynamic utilization, or power saving reverse mapping tables except that the computation is
techniques such as signal gating can be applied to reducaccumulated over the entire execution history.

the power consumption. L .
P P 5. Applications of source-level analysis

4.3. Cycle-based power analysis Matisse equipped with the source-level execution anal-
The cycle-based power analysis can be performed byysis presented in this paper has been used in several indus-

integrating the component-level power models provided bytrial designs for evaluation or production. The designs

[9] with the data-path annotation technique described inincluded hardwired DSP, encryption/decryption engine,

bus interface, control-dominated peripheral, and a micro-7. References

controller. The source-level execution analysis was proveny
to be an invaluable tool to the designers especially for the
designs involving considerably interactive and/or incre-
mental design. In this section, we will summarize two
notable applications of the source-level analysis. [2]

5.1. Design of an industrial microcontroller

Matisse has been used to redesign a commercial 8-bit
microcontroller with 300+ instructions. During this rede- [3]
sign project, it became inevitable that the designers had to
schedule the majority of the micro-instructions and map-
ping them onto a well-defined data-path architecture inter-
actively in order to ensure the compatibility and the [4]
efficiency. Thus, they devised an incremental design flow
comprising of adding new instructions, interactive micro-
instruction scheduling, mapping onto the existing data
path, generating the RTL implementation, simulating and 5
debugging. Without using the source-level execution ana-
lyzer presented in this paper, the designers will be forcedIG]
to verify the newly added instructions by analyzing the 7
RTL simulation directly, which was shown to be an over-
whelmingly time-consuming task. The designers estimated
that our source-level execution analyzer provided 3-4X[g)
reduction in debugging time than traditional RTL analysis.

5.2. Architectural power optimization (3]

We performed an experiment of a G.721 ADPCM pre- [10]
dictor [3]. We explored low-power architecture in an itera-
tive design flow including architectural design using
Matisse, hot point analysis using an RTL power estimator
[9], cycle-based resource utilization analysis and profiling
as presented in this paper. By identifying the hot points
and their utilization patterns, we were able to obtained
4.4X power saving in one person week through power
reduction techniques like signal gating, pipelined multipli-
ers, register files, and pipelined scheduling. The results
were then verified by an accurate gate-level power estima-
tor [4].

[11]

6. Conclusion

As mentioned in Section 1, HLS needs to improve the
controllability/predictability and simulation/analysis of the
synthesized RTL implementations in order to increase its
adoption in the industry. We have presented a unique
source-level analysis methodology and tool for HLS to
address these problems. It not only for the first time
enables HLS to offer an intuitive design debugging capa-
bility, but also allows the designer to perform dynamic
analysis of resource utilization, power consumption, etc. at
the source level. This technology has been shown to be the
critical element for effectively applying the HLS method-
ology on the industrial designs.

R.A. Bergamaschi, “Productivity Issues in High-level
Design: Are Tools Solving the Real Problemd®’ Pro-
ceedings of the Design Automation Conferermages
674-677, June 1995.

R. Blackburn, D.E. Thomas and P. Koenig, “CORAL Il
Linking Behavior and Structure in an IC Design System”,
In Proceedings of Design Automation Conferenmages
529-535, June 1988.

C.-T. Chen and K. Kucukcakar, “An Architectural Power
Optimization Case Study using High-level Synthesis”, To
appear inProceedings of International Conference on
Computer DesignOctober, 1997.

B. George, G. Yeap, M.G. Wloka, S.C. Tyler and D. Gos-
sain, “Power Analysis for Semi-Custom Desighi’,Pro-
ceedings of Custom Integrated Circuits Conferehday
1994, pp. 249--252.

D. Ku and G. De MicheliHigh-Level Synthesis of ASICs
under Timing and Synchronization Constrajnkduwer
Academic Publishers, 1992.

Matisse User Manualotorola, Inc., 1995.

M.C. McFarland, A.C. Parker and R. Camposano, “The
High-Level Synthesis of Digital Systemsi, Proceedings

of the IEEE 78(2):301-318, February 1990.

Panel: Real Requirements of High-level Synthesiter-
national Symposium on System Synthé$i86.

Taos User ManualMotorola, Inc.,1996.

R.A. Walker and R. CamposanA,Survey of High-Level
Synthesis System€§luwer Academic Publishers, 1991.
WattWatcher/ArchitecSente, Inc., 1996.

	CD-ROM Home Page
	ISSS97
	Front Matter
	Table of Contents
	Session Index
	Author Index

