
A Source-level Dynamic Analysis Methodology and Tool for High-level Synthesis

Abstract
This paper presents a novel source-level dynamic ana

sis methodology and tool for High-Level Synthesis (HLS).
not only for the first time enables HLS to offer source-lev
design debugging on the ‘synthesized’ RTL designs, b
also allows the designer to analyze their dynamic chara
teristics, such as resource utilization, power consumptio
etc., at the algorithmic (source) level. This technology ha
been proven in the industry as the critical element for su
cessfully designing a microcontroller with 300+ instruc
tions with Matisse, an interactive HLS system. Additionall
we demonstrate the use of this technology for architectu
power optimization.

e
r

y

d
m

i

e
o

by
he
just
she
s in

ve
ol,

dies
r to
.
xe-
se
har-
ive

ug-
er
ile

he
ed
are
ine
s
ris-
as
on.
with
ec-
ize

if-
-
L
eir

g
 to

Chih-Tung Chen and Kayhan Küçükçakar

Unified Design System Laboratory
Motorola, Inc.

{chen,kayhan}@adtaz.sps.mot.com

e

1. Introduction
After close to two decades of research, commerc

High-level Synthesis (HLS) tools have been introduc
recently and have been in some production use. A tuto
on HLS methodology and past research can be found in
and [10]. As discussed in [8], the question is not wheth
high-level synthesis will be successful or not but ho
widely it will be used in the industry. As pointed out b
Bergamaschi in [1], the discussion in [8] and our own stu
in Motorola, there are some common problems with tra
tional HLS systems which still hinder designers fro
embracing HLS. Two specific problems among them a
the controllability/predictability and simulation/analysis o
the synthesized RTL implementations. First of all, desig
ers demand the controls of the HLS process in order to g
erate the desired and predictable results. The predictab
is found to be crucial for subsequent design tasks includ
RTL/logic synthesis, data-path module generation, floo
planning, layout, test, and verification. Secondly, design
need an ‘intuitive’ way to analyze and verify the output
HLS. For example, the cycle-by-cycle behavior of the sy

Copyright 1997 IEEE. Published in the Proceedings of ISSS'97, Sept
on

is
u-
p-

ber 17-19, 1997 in Antwerp, Belgium. Personal use of this material is p
mitted. However, permission to reprint/republish this material fo
advertising or promotional purposes or for creating new collective wor
for resale or redistribution to servers or lists, or to reuse any copyrigh
component of this work in other works, must be obtained from the IEE
Contact: Manager, Copyrights and Permissions / IEEE Service Cent
445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Te
phone: + Intl. 908-562-3966.
ly-
 It
el
ut

c-
n,
s

c-
-
y,
ral

ial
d
ial
[7]
er
w

dy
i-

re
f
n-
en-
lity
ing
r-
rs
f

n-

thesized design is often different from the one exhibited
the simulation of the input description. Furthermore, t
designer needs to understand the internal details, not
the I/O behavior, of the synthesized design so that he/
can change and annotate the subsequent HLS iteration
order to get the desired results.

To accelerate the industrial adoption of HLS, we ha
developed Matisse, a versatile architectural design to
which answer many challenges raised in the above stu
and discussions [6]. It is beyond the scope of this pape
describe the differences of Matisse from traditional HLS

This paper presents a novel source-level dynamic e
cution analysis methodology incorporated in Matis
which enables the designers to analyze the dynamic c
acteristics of HLS-generated designs in the most intuit
manner:the original behavioral description. A portion of
this methodology is analogous to the source-level deb
ging of a compiled software code, where the programm
debugs the execution of the compiled machine code wh
viewing the original source code. In this analogy, HLS, t
input description, and the simulation of the synthesiz
design correspond to the software compiler, the softw
source code, and the execution of the compiled mach
code, respectively. Additionally, our methodology allow
the designers to analyze the design’s dynamic characte
tics from the source-level execution point of view such
cycle-based resource utilization and power consumpti
Thus, the designer can correlate the synthesis results
the HLS input description and constraints, and then, if n
essary, adjusts the subsequent HLS iteration to optim
the design’s dynamic characteristics more effectively.

Note that our source-level analysis methodology is d
ferent from the typical HDL (Hardware Description Lan
guage) debugging tools which are built on top of the HD
simulators. These tools allow the designers to debug th
HDL code being simulated by the simulator. Applyin
these tools in the HLS context, the designer is limited
analyze the simulation of the input behavioral descripti
and the RTL implementationseparately and indepen-
dently. On the contrary, our methodology bridges over th
gap by analyzing the RTL simulation from the cycle-acc
rate execution point of view of the input behavior descri

m-
er-
r
ks
ted
E.
er /
le-

ug-

e
ro-
gn
n-
ca-
lly
ple
at

he
nd
p-

la-
e).
n-
ic-
of
le
d

us,
ion

LS
L

 of
om
he

LS
en-
tion.
To our best knowledge, the only related work in the

hardware design technology is the finite-state machine or
flowchart design/analysis tools, such asVisualHDL from
Summit Design Inc.,DesignBook from Escalade,Express
from i-Logix andspeedCHART from Speed. This type of
tools offer visual feedback and controls through state-tran-
sition diagrams or flow charts while simulating the HDL
code generated for RTL/logic synthesis. The technique for
the above FSM/flowchart analysis relies on the fact that
there is a clear correlation between the specification and
the generated implementation (HDL code); e.g., state reg-
isters. However, HLS doesn’t offer such straightforward
correlation for source-level analysis of HLS designs.

The remainder of this paper is organized as follows.
Section 2 gives an overview of what it takes to implement
a source-level execution analysis methodology for HLS. In
Section 3, we describe the concept of design annotation
during HLS and the techniques for enabling the source-
level analysis. Section 4 presents the source-level analysis
environment in Matisse and illustrates various analysis
capabilities offered by this environment. In Section 5, we
discuss the applications of our methodology including a
microcontroller design and an architectural power optimi-
zation experiment. Finally, we conclude this paper in Sec-
tion 6.

2. Source-level execution analysis methodology
As discussed earlier, the focus of this work is to develop

a source-level execution analysis methodology for HLS.
The methodology should not only serve as the symbolic
debugger for the RTL designs generated by HLS, but also
support the analysis of the dynamic characteristics such as
cycle-based resource utilization and power consumption.
There were several questions raised at the early stage of
this work. Is the methodology feasible for HLS? Also, can

we leverage existing techniques used for software deb
ging and FSM/flowchart analysis?

2.1. Feasibility
To understand why it is feasible for HLS to offer th

source-level execution analysis, recall that HLS is a p
cess of mapping an algorithmic description of a desi
behavior into a Register-Transfer Level (RTL) impleme
tation. The HLS tasks include scheduling, resource allo
tion and sharing, interconnect creation, and fina
controller (FSM) generation. Figure 1 shows an exam
of the mapping performed by HLS. It can be seen th
there exists a mapping from the input description to t
states or state transitions of the controller (scheduling) a
to RTL components and interconnect (binding). Such ma
ping information can be used to correlate the RTL simu
tion results back to the input description (the sourc
Briefly speaking, if we know the current state of the co
troller (FSM) or the state transition being taken in a part
ular cycle during RTL simulation, the reverse mapping
the scheduling and binding should tell us at this cyc
which portion of the input description is executed an
which components and interconnect are utilized. Th
cycle-based source-level execution and resource utilizat
become feasible.

2.2. Mathematical model
In this section, we first describe the essence of the H

design execution, meaning the simulation of the RT
implementation. Then, we define the reverse mapping
the scheduling and derive the source-level execution fr
the above information. Finally, some extensions of t
model will be addressed.

For the sake of simpler explanation, assume the H
design contains a single FSM as the controller. If the g
erated controller isstate-based (e.g., a Moore-type FSM)

a = ...
b = ...
if (c)

out = a + b;
else

out = a - b;
Add/Sub

out

A B

strobe = 1;

FSM

Enable

Select2

Load2

Load1

cycle 2

cycle 4

a. Specification b. RTL Implementation

cycle 1

strobe

strobe

0 1
Select1

Load3

cycle 3

cycle 3

cycle 3

1

2

3 4

5

Figure 1: High-level synthesis process

gle-
se

ch
le,
ame

vel

nd
sis.
ra-
by

ion
ts:
his-
e
we
ol-
w.
is”
ned
 of
is-
le,

to
n-

the
u-

ta
ed-

he
e

er-
his
ci-
or
with statesS = {s1, ... , sA}, the execution of the HLS
design, therefore, can be characterized by an ordered list of
statesDX = {dx1, ... , dxB} such thatdxb ∈ S and (dxb,
dxb+1) is a valid state transition. Note thatdxb represents
the current state of the controller at thebth cycle of the
HLS design execution.

Let the input description be a list of statementsI = { i1,
..., iC}. The scheduling task of HLS can be represented by
a one-to-many mappingλ: I → SS such thatλ(ix) is a sub-
set ofSand denotes the states in which statementix is to be
executed. Thus, the reverse mapping ofλ becomesλ-1: S
→ II whereλ-1(sy) = { ix | sy ∈ λ(ix)}.

Formally, the cycle-based source-level execution can be
represented by an ordered listSX = {sx1, ... ,sxD} such that
sxd is a subset of statementsS which executed at thedth
cycle of the HLS design execution. It can be seen easily
now that the source-level executionSX can be derived
from DX andλ-1 as {λ-1(dx1), ... ,λ-1(dxD)} since sxd is
equal toλ-1(dxd).

On the contrary, if the generated controller is state-tran-
sition-based (e.g., a Mealy-type FSM) with state transi-
tionsT = {t1, ... ,tE}, the execution of the HLS design must
be characterized by an ordered list of state transitionsDT =
{ dt1, ... ,dtF} such thatdtf ∈ T and (dtf, dtf+1) is connected
through a valid state. The HLS scheduling, in this situa-
tion, is a one-to-many mappingλ: I → TT such thatλ(ix)
is a subset ofT in which statementix is to be executed.
Additionally, the reverse mappingλ-1 becomesλ-1: T →
II whereλ-1(ty) = { ix | ty ∈ λ(ix)}. Similarly, the source-
level executionSX can be derived fromDT andλ-1 as {λ-

1(dt1), ... ,λ-1(dtD)} sincesxd is equal toλ-1(dtd).
The model above can be easily extended to support the

cycle-based resource utilization. Briefly speaking, the
cycle-based resource utilization is a dynamic analysis of
data-path resource utilization throughout the run (simula-
tion) time of the HLS design. The data-path resource can
be a data-path component or an interconnect. The advan-
tage of analyzing cycle-based resource utilization is that it
can accurately portray the actual resource utilization of
designs with complex conditional resource sharing and
data-dependent loops.

Like source-level execution, the cycle-based resource
utilization can be derived from the HLS design execution
and the reverse mapping of the HLS binding. For example,
assume the HLS design is state-based as described earlier
and comprises of a set of resourcesR = {r1, ..., rG}. The
HLS binding can be transformed to a one-to-many map-
ping γ: R → SS such thatγ(rx) is a subset ofS in which
resourcerx is to be used, and its reverse mapping becomes
γ -1: S→ RR whereγ -1(sy) = {rx | sy ∈ γ(rx)}. Finally, let
the cycle-based resource utilization be an ordered listU =
{ u1, ... ,uH} such thatuh is a subset ofR which are utilized
at thehth cycle of the HLS design execution. Thus,U can

be derived as {γ -1(dx1), ... ,γ -1(dxH)} sinceuh is equal to
γ -1(dxh).

Although the model described above assumes a sin
FSM controller, it can also be extended to support tho
HLS systems which generate multi-FSM controllers su
as Hercules/Hebe [5] and Matisse [6]. For examp
assume the FSMs are all state-based and use the s
clock. Let the FSMs beM = {m1, ...,mI}. The HLS design
execution can be characterized by using multipleDX lists,
one for each FSM as described earlier. The source-le
executionSX can then be derived fromλ-1 and theDX lists
with sxd asλ-1(dxd

1) ∪ ... ∪ λ-1(dxd
I).

Another extension of our model is to use operations a
values instead of statements for the source-level analy
This extension would allow the user to better analyze int
statement events. This can be accomplished simply
replacing the statement listI with a list containing individ-
ual operations and values.

2.3. Analysis flow
As described in Section 2.2, our source-level execut

analysis methodology is enabled by two key ingredien
the reverse mapping and the state (or state-transition)
tory of the underlying controller which captures th
essence of the HLS design execution. In this section,
will discuss what it takes to incorporate such a method
ogy into an HLS system and the associated analysis flo

Theoretically, an HLS design can be simulated “as
and its state-based execution history still can be obtai
through the simulator by monitoring the state registers
the controller. However, the transition-based execution h
tory cannot be captured by such monitoring. For examp
assuming there are two statess1 and s2 with two condi-
tional transitions froms1 to s2 depending on the value of
an inputcond. Knowing that the HLS design is in states2
is not sufficient to tell which transition the design took
reachs2. The problem is further complicated by the pote
tial logic glitches, such as those oncond, which may cause
specious state transitions in the middle of a cycle.

Therefore, we introduce the concept ofdesign annota-
tion andanalyzable HLS designs. The design annotation is
a process of embedding one or more daemons into
design during HLS. The embedded daemons when sim
lated will use specific techniques to collect dynamic da
of interest such as state transitions. Moreover, the emb
ded daemons will not affect the functional behavior of t
design during simulation. The HLS design with th
embedded daemons is calledsource-level analyzable. The
design annotation will be further discussed in Section 3.

The second crucial task in our methodology is to gen
ate the reverse mapping of scheduling and binding. T
involves reprocessing the scheduling and binding de
sions and storing the information tabularly with states

 or
ng
ur-
n-
ed
ing

ed
ny
d to

ed-
ith

cu-
he
 it
y
e

one
ran-

in

on
is-

l.
state transitions as the indices. This task, however, is best
carried out during the HLS controller generation where the
complete scheduling and binding information is available
and the states as well as the state-transitions are being gen-
erated.

As shown in Figure 2, a typical source-level execution
analysis flow begins with synthesizing ananalyzableHLS
design containing embedded daemons and generating one
or more tables containing the reverse mapping of schedul-
ing and binding.

Following that, the analyzable HLS design is simulated,
and an execution database is generated by the embedded
daemons along with a value change database.

The execution database stores the execution history;
e.g. a list of 2-tuple (t, st) wheret is the simulation time
andst is an identifier of a particular state transition. The
value change database contains the value history of one or
more signals in the design. This value change database
enables our methodology to offer both behavioral and
structural signal analysis along with the source-level exe-
cution analysis. Although the generation of the above data-
bases is needed for post-simulation analysis and time-
backward analysis, the real-time source-level analysis is
also possible by using the simulator’s application program-
ming interface (API) to generate and access the records in
real time.

The last step in the analysis flow is to invoke a source-
level execution analysis tool similar to a software symbolic
debugger for the actual analysis work. The details of such
source-level execution analysis tool will be described in
Section 4.

3. Design annotation
Design annotation is a process of embedding one

more daemons into the design during HLS for collecti
dynamic data of interest using specific techniques. C
rently, we identified two types of design annotation: co
troller annotation for capturing the state-transition bas
execution history and data-path annotation for calculat
cycle-based power consumption.

Note that the design annotation should be perform
such that the analyzable HLS design doesn’t incur a
overhead in the downstream synthesis tools as compare
the original HLS design. In our case, we hide the emb
ded daemons from logic synthesis by enclosing them w
directives that turn logic synthesis off and on.

3.1. Controller annotation
As discussed in Section 2.3, the transition-based exe

tion history cannot be captured by simply recording t
controller’s state registers. With potential logic glitches,
is also difficult to derive the actual transition history b
continuously monitoring the state-transition logic of th
controller. SinceMatisse, our targeted HLS system, is
state-transition based, we annotated the controller with
daemon per FSM. Each daemon comprises of a state-t
sition identification (STI) logic and anSTI register, and is
connected with a typical Mealy-type FSM as shown
Figure 3. Like other Mealy-type output functions, theSTI
logic is a function of FSM’s current stateCS and the input
I, and computes the next state-transition identificati
NSTI. TheSTI register is analogous to the FSM state reg
ter. Functionally speaking, theSTI register represents
edge-triggered flip-flops driven by the FSM clock signa

Figure 2: Source-level execution analysis flow

HLS Synthesis

Analyzable
HLS Design

RTL Simulator

reverse

Table
Execution
Database

EXECUTION
ANALYZER

Value

Analyzable

Testbench

HLS System

Mapping

Change
Database

option

-
ng
s,
the
ter-
m

ent
ed
is,
fil-
e-
cal
a-

s of

a-
w,
he
 as

on

ck
e
ic
nt
the
 the
 for

n-
to-

e

Also shown in Figure 3 is an arc connecting theSTI regis-
ter output to the execution database. It points out the real
role of theSTI register, which is to store the identifier of
the actual state transition committed by the FSM into the
execution database along with the simulation time at the
end of every clock cycle. Thus, the cycle-based state-tran-
sition history can be faithfully recorded under the presence
of logic glitches.

We found that it is more efficient to generate the reverse
mapping tables of scheduling and binding during the con-
troller annotation. Recall that these reverse mapping tables
for the state-transition based HLS designs correlate each
state transition with a set of input statements being exe-
cuted or a set of resource being utilized. By using the state
transition identifiers generated during the controller anno-
tation as the key field for the reverse mapping tables, the
reverse mapping for source-level execution and cycle-
based utilization can be done in linear time.

3.2. Data-path annotation
The data-path annotation for cycle-based power analy-

sis is a process to embed a daemon (SD) to an individual
data-path component or net for gathering signal switching
statistics periodically. As shown in Figure 4,SD is driven

by a system or component-specific clockCLK. Similar to

theSTI daemon,SD stores the peripheral switching statis
tics of the component into the switching database alo
with the simulation time at the end of every cycle. Thu
cycle-based power consumption can be computed by
switching statistics in each cycle and the power charac
ization models of individual components available fro
RTL power analysis tools such as [11] and [9].

4. Source-level analysis environment
Figure 5 shows the source-level analysis environm

developed in Matisse using the methodology describ
earlier. Currently, it offers source-level execution analys
dynamic resource utilization analysis and dynamic pro
ing. We would like to remind that although our sourc
level analysis environment seemingly resembles a typi
HDL debugging tool, the underlying techniques are fund
mentally different. More importantly, traditional HDL
debugging tools cannot be used for source-level analysi
synthesized designs.

4.1. Source-level execution analysis
As shown in Figure 5, the source-level execution an

lyzer (EA) consists of a control panel, a source windo
and a data display window. The control panel allows t
designer to perform typical debugging operations such
start, stop at, next, continue anddata display. Due to the
fact that the execution history is available in the executi
database,EA also offers backward stepping (prev) and
backward continuation to move the simulation time ba
to a prior clock cycle. The source window is for listing th
source code of the HLS design (currently an algorithm
subset of Verilog HDL) and highlighting those stateme
being executed at the current cycle. It also gives
designer the access to individual statements for setting
stop points and the access to variables and operations
displaying values. Finally, the data display window co
tains a list of data display entries which are updated au
matically whenever the simulation time changes.

The basic core ofEA can be described in pseudo cod
as following.
1. import(execution_database, reverse_mapping_tables);
2. while (not quit) begin
3. request_or_compute(next_cycle);
4. query_execution_database(next_cycle, assoc_stis);
5. exec_stmts = ∅; used_rsrcs = ∅;
6. foreach sti in assoc_stis begin
7. exec_stmts |= schedule_reverse_mapping(sti);
8. used_rsrcs |= binding_reverse_mapping(sti);
9 . end
10. display_time(next_cycle);
11. source_window_highlight(exec_stmts);
12. structure_window_highlight(used_rsrcs);
13. end

FF

FF

CLK

next statecur. state

STI Reg

State Reg

STI logic

Inputs Outputs

orig. logic

Execution
Database

next state-transition id

Figure 3: STI annotation

(CS)

(NSTI)

(I)

SD

CLK

Inputs Outputsdata-path

Switching
Database

Figure 4: Data-path annotation

(I) component (O)

e

er
lay
ted

fil-
he
ut
al
LS

m-
ed
 the
 is

al-
dus-
ns
e,
Note thatsti stands for state-transition identifier and
‘|=’ is a union-assign operation.

4.2. Dynamic resource utilization analysis
Also shown in Figure 5 is a structure window for cycle-

based resource utilization analysis. The structure window
of EA displays the data-path schematics and highlights the
active (utilized) resources at the current cycle in a similar
fashion toSEE-SAW [2]. The designer can also select a
particular net or component through the structure window
for value display.

By using the dynamic resource utilization analysis, the
designer can visualize ‘where’ and ‘when’ a portion of the
data path is idle under the actual operational environment.
Then the schedule and/or bindings can be adjusted to
improve the overall dynamic utilization, or power saving
techniques such as signal gating can be applied to reduce
the power consumption.

4.3. Cycle-based power analysis
The cycle-based power analysis can be performed by

integrating the component-level power models provided by
[9] with the data-path annotation technique described in

Section 3.2. The intuitive functionality is to provide th
designer so-calledpower display similar to the existing
data display with the same granularity such as per net, p
component or even per operation basis. The power disp
entries are to be shown in the display window and upda
whenever the simulation time change.

4.4. Dynamic profiling analysis
Another related analysis available is the dynamic pro

ing analysis. The dynamic profiling analysis reports t
execution frequency of individual statements in the inp
description and the usage frequency of individu
resources in the data path under a scenario of the H
design simulation. The profiling data is computed in a si
ilar way as described in Section 2.2 for cycle-bas
source-level analysis using the execution database and
reverse mapping tables except that the computation
accumulated over the entire execution history.

5. Applications of source-level analysis
Matisse equipped with the source-level execution an

ysis presented in this paper has been used in several in
trial designs for evaluation or production. The desig
included hardwired DSP, encryption/decryption engin

Figure 5: Source-level analysis environment

l

:
”,

r
o

n

s-

e

bus interface, control-dominated peripheral, and a micro-
controller. The source-level execution analysis was proven
to be an invaluable tool to the designers especially for the
designs involving considerably interactive and/or incre-
mental design. In this section, we will summarize two
notable applications of the source-level analysis.

5.1. Design of an industrial microcontroller
Matisse has been used to redesign a commercial 8-bit

microcontroller with 300+ instructions. During this rede-
sign project, it became inevitable that the designers had to
schedule the majority of the micro-instructions and map-
ping them onto a well-defined data-path architecture inter-
actively in order to ensure the compatibility and the
efficiency. Thus, they devised an incremental design flow
comprising of adding new instructions, interactive micro-
instruction scheduling, mapping onto the existing data
path, generating the RTL implementation, simulating and
debugging. Without using the source-level execution ana-
lyzer presented in this paper, the designers will be forced
to verify the newly added instructions by analyzing the
RTL simulation directly, which was shown to be an over-
whelmingly time-consuming task. The designers estimated
that our source-level execution analyzer provided 3-4X
reduction in debugging time than traditional RTL analysis.

5.2. Architectural power optimization
We performed an experiment of a G.721 ADPCM pre-

dictor [3]. We explored low-power architecture in an itera-
tive design flow including architectural design using
Matisse, hot point analysis using an RTL power estimator
[9], cycle-based resource utilization analysis and profiling
as presented in this paper. By identifying the hot points
and their utilization patterns, we were able to obtained
4.4X power saving in one person week through power
reduction techniques like signal gating, pipelined multipli-
ers, register files, and pipelined scheduling. The results
were then verified by an accurate gate-level power estima-
tor [4].

6. Conclusion
As mentioned in Section 1, HLS needs to improve the

controllability/predictability and simulation/analysis of the
synthesized RTL implementations in order to increase its
adoption in the industry. We have presented a unique
source-level analysis methodology and tool for HLS to
address these problems. It not only for the first time
enables HLS to offer an intuitive design debugging capa-
bility, but also allows the designer to perform dynamic
analysis of resource utilization, power consumption, etc. at
the source level. This technology has been shown to be the
critical element for effectively applying the HLS method-
ology on the industrial designs.

7. References
[1] R.A. Bergamaschi, “Productivity Issues in High-leve

Design: Are Tools Solving the Real Problems?”,In Pro-
ceedings of the Design Automation Conference, pages
674-677, June 1995.

[2] R. Blackburn, D.E. Thomas and P. Koenig, “CORAL II
Linking Behavior and Structure in an IC Design System
In Proceedings of Design Automation Conference, pages
529-535, June 1988.

[3] C.-T. Chen and K. Kucukcakar, “An Architectural Powe
Optimization Case Study using High-level Synthesis”, T
appear inProceedings of International Conference o
Computer Design, October, 1997.

[4] B. George, G. Yeap, M.G. Wloka, S.C. Tyler and D. Go
sain, “Power Analysis for Semi-Custom Design”,In Pro-
ceedings of Custom Integrated Circuits Conference, May
1994, pp. 249--252.

[5] D. Ku and G. De Micheli,High-Level Synthesis of ASICs
under Timing and Synchronization Constraints, Kluwer
Academic Publishers, 1992.

[6] Matisse User Manual, Motorola, Inc., 1995.
[7] M.C. McFarland, A.C. Parker and R. Camposano, “Th

High-Level Synthesis of Digital Systems”,In Proceedings
of the IEEE, 78(2):301-318, February 1990.

[8] Panel: Real Requirements of High-level Synthesis,Inter-
national Symposium on System Synthesis, 1996.

[9] Taos User Manual, Motorola, Inc.,1996.
[10] R.A. Walker and R. Camposano,A Survey of High-Level

Synthesis Systems, Kluwer Academic Publishers, 1991.
[11] WattWatcher/Architect, Sente, Inc., 1996.

	CD-ROM Home Page
	ISSS97
	Front Matter
	Table of Contents
	Session Index
	Author Index

