
Fast and extensive system-level memory exploration for ATM
applications

Peter Slock, Sven Wuytack, Francky Catthoor, Gjalt de Jongy

IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
yAlcatel Telecom, Francis Wellesplein 1, B-2018 Antwerp, Belgium

Abstract

In this paper, our memory architecture exploration method-
ology and CAD techniques for network protocol applica-
tions are presented. Prototype tools have been implemented,
and applied on part of an industrial ATM application to
show how our novel approach can be used to easily and thor-
oughly explore the memory organization search space at the
system-level. An extended, novel method for signal to mem-
ory assignment is proposed which takes into account mem-
ory access conflict constraints. The number of conflicts is
first optimized by our flow-graph balancing technique. Sig-
nificant power and area savings were obtained by perform-
ing the exploration thoroughly at each of the degrees of free-
dom in the global search space.

1 Introduction

The complexity of modern telecommunication systems is
rapidly increasing. A wide variety of services has to be
transported, and elaborate network management is needed.
Such complex systems require a combination of hardware
and software components in order to deliver the required
functionalities at the desired performance level. For certain
speed critical functionalities, such as packet handling and
congestion control, it is necessary to implement the corre-
sponding components in hardware using custom Applica-
tion Specific Integrated Circuits. These ASICs are usually
at the heart of modern telecommunication systems.

For applications in this domain, the desired behavior
is often characterized by complex algorithms that operate
on large dynamically allocated stored data structures (e.g.
linked list, trees, dynamic FIFOs). This includes especially
the transport layer in ATM networks and LAN/WAN tech-
nology. Ideally, the specification should reflect the “con-
ceptual” partitioning of the problem, which typically cor-
respond to abstract data types along with services provided
on them, and algorithms for the different processing tasks.
As these conceptual entities can be readily specified in an
object-oriented programming model, using data abstraction

and class inheritance features, we use the C++ programming
language for the behavioral algorithmic specification as mo-
tivated in our global MATISSE approach[5].

For this type of applications, typically a (very) large part
of the area cost is due to memory units. Also the power
for data-dominated applications is heavily dominated by the
storage and transfers [8]. Hence, we believe that a domi-
nating factor in the system level design is provided by the
organization of the global communication and data storage.
Therefore we have proposed a design methodology in which
the storage related issues (virtual and physical memory man-
agement) are optimized as a first step [5], before doing the
detailed scheduling, and data-path and controller synthesis.

Two main tasks in our memory management methodol-
ogy are flow graph balancing (FGB) and memory alloca-
tion/assignment. FGB is executed prior to the more con-
ventional memory allocation/assignment tasks [1, 7, 12].
The goal of the task is to minimize the required memory
bandwidth within the given cycle budget, by adding order-
ing constraints to the flow graph. This allows the subse-
quent memory allocation/assignment tasks to come up with
a memory architecture with a small number of memories
and memory ports. The CAD techniques to support these
tasks will be detailed in this paper and their feasibility will
be demonstrated by prototype tools.

The extensive design exploration which is feasible by ap-
plyingour methodology and its heavy impact on storage area
and power will be illustrated based on a representative mod-
ule of an industrial ATM application, provided by Alcatel.

The rest of the paper is organized as follows. Section 2
presents the related work. In Section 3 our physical mem-
ory management methodology and the CAD techniques for
two key tasks are presented. Section 5 illustrates the exten-
sive exploration which can be obtained with the proposed
methodology and the use of our prototype tools on a repre-
sentative ATM example, introduced in Section 4. Section 6
contains the conclusions.

2 Related Work

Although behavioral hardware synthesis has been an ac-
tive field of research for over one decade (see e.g. [2]), and
commercial behavioral synthesis tools are currently emerg-
ing (e.g. Synopsys’ Behavioral Compiler, Mentor Graph-
ics’ DSPStation, and Synthesia’s SYNT system), support for
complex data structures and memory synthesis related prob-
lems is generally limited. An exception to this is the video
and image processing area for which several groups have
proposed memory management support [7, 12] including
also our own work on the ATOMIUM methodology and par-
tial prototype tool support [9, 17]. This is however restricted
to the support of statically declared arrays and records.

The data structures in the communication network proto-
col domain are however different, as indicated above: they
are mostly based on dynamically allocated lists, sets and ta-
bles. For this type of applications, partly different method-
ologies and design tool support are required. This has been
motivated by us in our global methodology proposal on the
MATISSE approach [5]. At that time, we did not provide
any design techniques or tool support yet. Recently, we
have also proposed a more detailed methodology for the
flow graph balancing step [17] but also in that paper no CAD
techniques have been presented yet.

In this paper, we focus on the new techniques and tools
in both our flow graph balancing and memory alloca-
tion/assignment steps, targeted to the communication net-
work protocol domain. They will be explained in detail in
Section 3.

Several problems in the state-of-the-art literature are re-
lated to these tasks. First, there is the register allocation do-
main which is fairly well understood by now. A nice liter-
ature overview of this domain can be found in [13]. The
techniques used here start from a fully scheduled flow graph
and are scalar-oriented. Many of these techniques construct
a scalar conflict or compatibility graph and solve the prob-
lem using graph coloring or clique partitioning. This con-
flict graph is fully determined by the schedule. This means
that no effort is spent in trying to come up with an optimal
conflict graph.

In the less explored background memory allocation and
assignment domain, the current techniques start from a
given schedule [7], or perform first a bandwidth estimation
step [1] which is a crude ordering that does not optimize the
conflict graph either. These techniques have to operate on
groups of signals instead of on scalars to keep the complex-
ity acceptable, e.g. the stream model of Phideo [7] or the
basic sets in the ATOMIUM approach [1].

In the scheduling domain, the techniques optimizing for
the number of resources given the cycle budget are of inter-
est to us. Also here most techniques operate on the scalar
level, e.g. [10, 15]. The only exceptions currently are the

Phideo stream scheduler [16] and the Notre-Dame rota-
tion scheduler [11]. Many of these techniques try to reduce
the memory related cost by estimating the required number
of registers for a given schedule. Only few of them try to
reduce the required memory bandwidth, which they do by
minimizing the number of simultaneous memory accesses
[15, 16]. They do not take into account which data is be-
ing accessed simultaneously. Also no real effort is spent to
optimize the memory access conflict graphs such that subse-
quent register/memory allocation tasks can do a better job.

The main difference between our flow graph balancing
and the related work discussed here is that we try to min-
imize the required memory bandwidth in advance by opti-
mizing the access conflict graph for groups of scalars within
a given cycle budget. We do this by putting ordering con-
straints on the flow graph, taking into account which mem-
ory accesses are being put in parallel (i.e., will show up as a
conflict in the access conflict graph).

For the memory allocation and signal-to-memory assign-
ment subtasks, our previous approach [1] is based on rela-
tively greedy global optimization approaches which did not
yet take into account memory access conflict constraints. As
a result, the assignment technique could only work when
the bandwidth constraints were not too tight and did not
lead to conflict violations. In this paper, a novel method for
signal-to-memory assignment is proposed which does incor-
porate a way to handle memory access conflict constraints.
To achieve this, the original method had to be modified sig-
nificantly. It also contains several improvements compared
to other existing techniques because it takes into account
the (extended) conflict graphs produced by the FG balancing
step. Compared to other approaches, it also works on groups
of scalars, thereby reducing the complexity significantly.

3 Exploration Environment

In this section our physical memory management script for
network applications is explained. The input is a C or C++
description of the application, which is translated into a flow
graph. The output is an optimized memory architecture. An
overview of our exploration environment is shown in Fig. 1.

Given a flow graph of the application (cfr. upper left cor-
ner in Fig. 1), where for every memory access it is indi-
cated which data is being accessed, an optimized memory
architecture has to be derived during the allocation and as-
signment phase. However, because the memory architec-
ture is derived before detailed scheduling, sufficient memory
bandwidth must be foreseen such that the application can be
scheduled within the given cycle budget afterwards. That is
why the memory architecture is not derived directly from the
flow graph. First a flow graph balancing step is performed,
which tries to minimize the required memory bandwidth.

R(A)

R(A)

R(C)

R(D)

W(D)

R(B)

W(B)

W(A)

W(C)

R(C)

W(B)

A B C
D

A B
B C
C D
D A
C A
B

Memory Management HL Synthesis

Memory
Allocation &
Assignment

Flow Graph
Balancing

Scheduling

R(A)
W(B)
R(D)
W(D)
W(B)

R(C)

W(A)

R(B)
W(C)
R(A)
R(C)

A B

C D

Conflicts in the CG to be resolved by
assigning conflicting basic groups:
 - to different memories, or
 - to multi-port memories

Conflict Graph (CG)

Figure 1: Physical Memory Management

Remark that due to the dynamic and data-dependent na-
ture of the application domain, a number of steps of our
High Level Memory Management (HLMM) script for Real-
time Multi-dimensional Signal Processing (RMSP) applica-
tions [9] are not as useful in this context. In particular, the
space reserved for dynamically allocated data of a certain
type is assumed to be alive whole the time. This means that
no in-place optimization [3, 4] can be done on it. Other
very useful optimizations to lower the power consumption
of RMSP applications, namely loop transformations to in-
crease the locality of access and the exploitation of Data
Reuse (leading to the introductionof memory hierarchy) [6],
can also not be used in this context because no manifest loop
nests are present and which data will be accessed is data-
dependent and thus cannot be predicted.

In the next subsections, each subtask in our HLMM script
for network applications will be explained.

3.1 Data Flow Analysis

The first task in the script translates the C/C++ description of
the network component application into our flow graph for-
mat. It also performs data flow analysis to extract the paral-
lelism from the sequential input description. For every data
type in the application a virtual memory segment (VMS) is
created. A VMS represents an amount of memory sufficient
to store all objects of the corresponding data type. It also
provides a dynamic memory management scheme to allo-
cate (and deallocate) part of its memory space to data objects
at run-time. For more details on how the dynamic allocated
data is handled we refer to [5].

To increase the accuracy of the data flow analysis and to
increase the freedom of subsequent memory management
tasks, these virtual memory segments are partitioned further
into non-overlapping basic groups. This is done in such a
way that for every memory access, it is known at compile
time which basic group is being accessed. For instance, as-

suming that for every memory access to a record, the field
being accessed is known (a reasonable assumption in the ap-
plication domain considered), all instances of a particular
field (belonging to different objects of the same type) can be
combined into one basic group. As a consequence the record
layout plays an important role in the basic group partition-
ing. Indeed, fields grouped together in a common memory
word, will be part of the same basic group. Currently our
c2fg prototype tool is based on GNU’s C compiler.

The basic groups are characterized by their bitwidth (ex-
tracted form the original specification), their number of
words (extracted from the VMS definition), and the aver-
age number of memory accesses (derived from simulations).
These figures are used for the area and power estimations.

3.2 Flow Graph Balancing for Memory
Bandwidth Reduction

The flow graph balancing (FGB) step orders the memory ac-
cesses within the given cycle budget. In the context of ATM
applications, nested loops almost never occur. The exist-
ing (single) loops are usually data-dependent (WHILE loop)
spanning an entire task in a concurrent specification. In gen-
eral, we can handle the memory management for the concur-
rent tasks separately, though also optimizations are feasible
between tasks. The latter is however a topic of further re-
search. So in this paper, we will assume that FGB has to op-
erate on a single task, possibly generated after combining a
number of initiallyconcurrent tasks so that they are statically
schedulable. Due to the very limited loop oriented charac-
teristics, we can also restrict our current technique and pro-
totype realization to handle a “flat” graph operating on the
body of a single loop where typically complex dynamic data
structures are accessed in a very complicated condition hier-
archy.

Whenever two memory accesses to two basic groups
(BGs) within the data structures occur in the same cycle,
we say there is an access conflict between these two basic
groups. All access conflicts are collected in a conflict graph,
where the nodes represent basic groups, and the edges indi-
cate a related conflict. These conflicts have to be resolved
during the memory allocation and assignment steps. This
can be done by assigning conflicting basic groups either to
different memories or to a multiport memory. When all con-
flicts in the conflict graph are resolved during the memory
assignment step, it is guaranteed that a valid schedule exists
for the obtained memory architecture.

We have defined a cost function for these conflict graphs,
such that more costly conflict graphs are likely to lead to
more costly memory architectures. The cost function in-
cludes three weighted terms: 1) a measure for the minimum
number of memories needed (the chromatic number1 of the

1A c-coloring of a graphG is a partitioning of G’s nodes in c partition

CG), 2) a term related to the number of conflicts in the con-
flict graph (each conflict is weighted with its importance),
and 3) a term to minimize the number of self-conflicts (based
on the notion of forces similar to IFDS [15]). For more de-
tails about the cost function we refer to [17]. The idea of
flow graph balancing is then to come up with a partial or-
dering of the memory accesses that leads to a conflict graph
with minimal cost.

When multiport memories are allowed in the memory ar-
chitecture, more information is needed than present in a sim-
ple conflict graph. Therefore, we have defined an extended
conflict graph (ECG). In an extended conflict graph, every
conflict is annotated with the maximal number of simulta-
neous read accesses, the maximal number of simultaneous
write accesses, and the maximal number of simultaneous
memory accesses (i.e., read or write) that can occur between
the conflicting basic groups during the execution of the algo-
rithm. Also conflicts between more than two basic groups
have to be taken into account, because several conflicting
basic groups can be stored in a single multiport memory as
long as the number of simultaneous memory accesses is not
exceeding the access capabilities of the memory. This re-
sults in the inclusion of hyper edges in the ECG, indicating
the conflicts between more than two basic groups. When
multiport memories are available in the memory library, ba-
sic groups can be allowed to be in conflict with themselves,
leading to self edges in the conflict graph. Obviously, such
self conflicts will be very costly because they force the allo-
cation of (expensive) multiport memories. Fig. 2 illustrates
the difference between a conflict graph and an extended con-
flict graph for a given memory access ordering.

R(A)
R(B)
W(C)
W(A)

R(B)
W(C)
W(A)
W(D) R(B)

A B

C D

A B

C D

2/1/2

1/1/2

1/1/22/2/2

1/2/2

2/2/3

(a) (b) (c)

2/1/2

R(A) R(A)

Figure 2: Extended Conflict Graph: (a) Schedule, (b) Con-
flict Graph, (c) Extended Conflict Graph. The R/W/RW
numbers indicate the maximum number of simultaneous
read operations (R), write operations (W), and read or write
operations (RW) that occur for the given conflict.

Our current flow graph balancing tool uses an iterative
search strategy to order the memory accesses similar to Im-
proved Force Directed Scheduling of [15] but with totally

classesV = X1+X2+� � �+Xc such that every two adjacentnodesbelong
to a different partition class. In this case, when the members of partitionXi

are colored with color i, adjacent nodes will receive different colors. The
chromatic number �(G) is the smallest number c for which there exists a
c-coloring of G.

different cost functions. As motivated above, no loops are
supported as yet. That is a topic of current research. The
prototype tool implements the principles introduced in [17].

3.3 Allocation and Assignment

The memory assignment technique discussed below is sig-
nificantly different compared to existing techniques (includ-
ing our own previous work [1]) because it has to take into
account the (extended) conflict graphs produced by the FG
balancing step. Compared to most other approaches, it also
works on groups of scalars, thereby reducing the complexity
significantly.

Once the (extended) conflict graph is available, we have
all the inputs required to do a valid and cost efficient alloca-
tionand assignment. This is done by minimizing a cost func-
tion, containing weighted memory area and power terms,
while taking into account all memory access constraints ex-
pressed by the conflict graph. The on-chip area and power
models used in the cost function are proprietary from mem-
ory module vendors, so only relative figures are given in this
paper.

During the allocation phase, the user decides on the num-
ber of one-port memories to be allocated. This should be at
least the chromatic number of the conflict graph. Remark
that this lower bound on the number of memories only holds
for a library with one-port memories, which is always as-
sumed further on in this paper2. The main reason for allo-
cating more than the minimal number of memories is to re-
duce the power, as demonstrated further on. The practical
upper bound on this number is the number of basic groups
(cfr. Section 3.1).

During the assignment phase, each basic group is as-
signed as a whole to one of the allocated memories. This
yields an assignment scheme. Usually a BG can only be as-
signed to some of the allocated memories, because of mem-
ory access conflicts with some of the basic groups assigned
already. In order to find a minimum cost assignment scheme,
we must explore the entire assignment search space, because
classical global optimization approaches like (Mixed) Inte-
ger Linear Programming solvers do not work for our non-
linear problem. The assignment search space can be repre-
sented as a tree, as shown in Fig. 3. This tree hasMN leaves,
whereM denotes the number of memories allocated and N
the number of basic groups to be assigned, so there is a huge
amount of assignment possibilities. We use a branch-and-
bound algorithm(called B&B in the sequel) with an effective
bounding to search the complete assignment tree.

In our specific context, we have implemented a very ef-
fective B&B strategy which is different from our original
approach [1] which did not incorporate the access conflicts.

2We also have a methodologyfor dealing with multi-port memories, but
that feature is not implemented yet in our prototype software environment.

find ’best’ solution
(globally optimal)

Branch & Bound

2 4

6 37 5

2 4

89 7 9

find ’good’ solution
(locally optimal)

Initial Constructive

2 4

6 37 5

2 4

89 7 9

Figure 3: Different assignment algorithms for traversing the
search tree: each tree level corresponds to the assignment of
one basic group, each branch from a node corresponds to one
memory.

Large parts of the tree can be cut away (’bound’, i.e., pruning
of subtrees) because of reasons, evaluated in this order:

1. paths which give rise to assignment schemes which are
fully symmetric with already generated schemes can be
discarded.

2. access conflicts between basic groups can be effec-
tively checked due to the explicit ECG information,
which allows to remove the corresponding sub trees

3. paths which have too high a cost from a certain basic
group on can be pruned from that node. Currently we
propose a simple but safe estimate of the minimum re-
maining cost which assumes storage in a common 1-
port memory unit with minimum bitwidth for area and
storage in separate 1-port memory units for power, and
this for all remaining BGs.

Moreover, in order to have a low cost threshold (for prun-
ing) at an early stage in the B&B process, we first perform an
initial constructive assignment algorithm. This finds a local
optimum in the search tree by iteratively assigning at each
level in the search tree the corresponding basic group to the
locally cheapest memory.

The order in which the basic groups are assigned also
has an enormous effect on the run-time of the B&B algo-
rithm. Experiments have shown that in most cases, ordering
based on cost (i.e., assigning Basic Groups in the order from
costly to cheap in terms of area/power consumption) leads
to shorter run-times than ordering based on constraints (i.e.,
assigning BGs in the order from difficult-to-assign to easy-
to-assign).

All the pruning criteria mentioned above have been im-
plemented in our prototype tool. As a result, for the not very
complex but still realistic example in Section 5, the CPU
times can all be reduced below 1 minute on an HP 9000/715-
50 workstation. Also for larger examples, experiments have
confirmed that the run times remain very acceptable. Other

performance improving measures have been developed by
us and will be implemented in the future, such as splittingof
the conflict graph into (near-)independent clusters, and ad-
ditional cost pruning by looking ahead in the search tree.

4 Test Vehicle: STORM

As a test vehicle for our exploration experiments, we have
selected part of the functional specification of an ASIC spec-
ified by Alcatel. The application is called STORM, which
stands for STM1-level to Transputer-netwOrk Relayer with
Multiple protocol handling. It deals with protocol conver-
sion between an ATM transportation layer and a transputer
network (cfr. Fig. 4).

Transport
Termination

ATM Physical
Layer

ATM Layer

T-link Transputer
network

Cell Filter

STORM

Figure 4: Position of STORM in ATM context

In this paper, we only focus on part of the STORM ap-
plication, namely the cell filter. This part is representative,
because, like the other subsystems, it is rather heavily IO-
dominated: many background memory accesses have to be
performed real-time within a limited number of cycles. It
relates incoming ATM cells to allocated internal streams, by
means of two search algorithms (cfr. Fig. 5), which can be
combined in a pipelined way, i.e., they can be executed in
parallel but acting on subsequent ATM cells.

Lookup table

MID table

VCI table

VPI table

3-Phase IndirectionBinary Search

VPI-VCI-MID
VPI-VCI-MID

Found

StreamPtrStreamPtr

Found

MID

VPITableBaseAddress

VCITablPageAddress

VCI

VPI

Figure 5: Cell filter

Both search algorithms, binary search and 3-phase indi-
rection, are looking for the same information but in a differ-
ent way. The first algorithm uses the combination of some
information fields of an ATM cell as one key into one big

sorted table, stored in a LookupRAM. If the stream is not
found in this table, the second algorithm looks for the stream
in 3 steps. At each step, one of the subkeys (V PI, V CI, and
MID extracted from the incoming ATM cell) is used as an
index in the corresponding table, to find a pointer to the next
table. The last table contains a pointer to the related stream.

5 Design Space Exploration: Results

In this section we show the results of our design space ex-
ploration experiments for the cell filter of the STORM ap-
plication, by varying some of the design parameters. A sim-
ilar exploration has also been done for the Segment Protocol
Processor application from Alcatel [14], but due to space re-
quirements these results are not presented in this paper.

5.1 Effect of Modified Record Layout

In network type applications, much of the data is stored in
records. A record is a data structure that groups a num-
ber of related data items. These different data items are
called the fields of the record. These fields can have different
bitwidths. Several fields can be packed intoa common word.
How the different fields are packed into words is called the
record layout.

The record layout heavily influences the optimal memory
architecture, as it effects the number of memory accesses
and the basic group partitioning. Here we present two ex-
treme cases of record layout. In the first one, each field is
stored in a separate memory word. The results are shown
in Fig. 6. The access flow graph shows many memory ac-
cesses, because every field access requires its own memory
access. There are many basic groups as can be seen in the
conflict graph. The chromatic number of the conflict graph
for a cycle budget of 6 cycles is 4. This means that in an
architecture with only single port memories, at least 4 mem-
ory modules are needed to provide sufficient memory band-
width.

A second case of record layout we have examined, is one
where all fields of a given record are stored in a common
memory word. The results for this are shown in Fig. 7. Now
there are far less memory accesses, as can be seen in the ac-
cess flow graph. Also the conflict graph is much simpler. In
fact, in this case, there are no conflicts left in the graph which
means that 1 memory is sufficient to meet the bandwidth re-
quirements for a cycle budget of 6 cycles.

In between these two extreme cases, many other record
layouts are possible. E.g., grouping the fields of a record
such that they fit as good as possible into 32 bit words. This
corresponds to the row labeled 32 bit in Table 1.

The table entries contain relative area and power numbers
for the total memory architecture resulting from allocation
and assignment. The orders of magnitude are tens of mm2

VPI

VCI

LI

AALtype

CLPactive

MID

SP

16 bit

LUR

SP

AllocMIDwidth

VCI table

VCITablePageAddr

AllocVCIwidth

VPI table

28 bit

28 bit

VPI

VCI

LI

AALtype

CLPactive

MID

CLP

PTI

ATM cell "header"

16 bit

Conflict Graph (cycle budget = 6)

Memory Architecture

Flow Graph

Record Layout

Cell_W3

Cell_W1

Cell_W6

Cell_W2

Cell_W0 Cell_W7

VPITable_W0

VPITable_W1

ActiveLUR_W6

Cell_W5

Cell_W4

VCITable_W0

VCITable_W1

28 bit 4 bit 16 bit 10 bit

Figure 6: Record layout: 1 field per word

48 bitLUR

VCI table 32 bit

ATM cell "header" 42 bit

VCIVPI MID SP

SP

VPI table 32 bitSP

VPI VCI MID

Cell_W0 ActiveLUR_W0 VPITable_W0 VCITable_W0

48 bit

Record Layout

Flow Graph

Conflict Graph (cycle budget = 6)

Memory Architecture

Figure 7: Record layout: 1 word per record

for area and a hundredmW for power. The area numbers are
relative to the maximum area number of the table, whereas
the power numbers are relative to the maximum power num-
ber.

1 mem 2 mem 3 mem 4 mem
1 field 1 word N/A N/A N/A A: 1.00

P: 1.00
32 bit N/A A: 0.87 A: 0.90 A: 0.91

P: 0.96 P: 0.60 P: 0.50
1 word A: 0.84 A: 0.81 A: 0.83 A: 0.84

P: 0.92 P: 0.64 P: 0.39 P: 0.34

Table 1: Optimal memory architecture for different record
layouts and cycle budget = 6.

From this table we can conclude that, for this example, the
area and power decrease when the records are packed into
less words. Also fewer memories need to be allocated in
case the records are packed into fewer words (the N/A entries
denote that no valid assignment is possible for the corre-
sponding number of allocated memories). Note also that the
power decreases when more memories are allocated, while
the area exhibits a minimum between the two extremes.

As indicated in subsection 3.1, it is also important to per-
form a partitioning of the original VMS data structures into
basic groups. In this particular test-vehicle, this preprocess-
ing results e.g. in a decrease of the number of self-conflicts
(and hence minimal number of memory ports) from 4 to 2
for a cycle budget of 3 and the original record layout with 1
field stored per word.

5.2 Effect of the Cycle Budget

To see the effect of the cycle budget on the resulting mem-
ory architecture, we have varied the cycle budget from the
critical path length (3 in the case of one field per word) to
the number of memory accesses in the flow graph of the ap-
plication (18 in this case). Assuming that every memory ac-
cess requires exactly one cycle3, the minimal bandwidth is
reached (i.e., 1 memory port) for this amount of cycles. Al-
locating more cycles will have no further effect on the mem-
ory architecture. The resulting chromatic number is shown
for each cycle budget in Fig. 8. Remark that in general this
value decreases as more cycles are available. However, this
is not always the case (e.g., cycle budget = 11) because dur-
ing flow graph balancing also other cost terms than the chro-
matic number are taken into account (e.g., the number of
conflicts, each weighed with their cost). Ideally the total cost
should be decreasing monotonically (as is the case in Fig. 8).

3This is usually the case for SRAM memories. If different types of
RAMs are used, appropriate IO profiles (with larger latency values for in-
stance) have to be used.

This is not guaranteed, however, with our FGB tool as it is a
heuristic that does not necessarily find the global optimum.
The CPU times for these experiments are all below 20 sec-
onds on an HP 9000/715-50 workstation.

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1

2

3

4

5

6

7

8

9

10

Cycle Budget

χ Cost

2000

1000

1800

1600

1400

1200

800

600

400

200

00

Figure 8: Chromatic number and FGB cost function for dif-
ferent cycle budgets.

5.3 Effect of Allocation/Assignment

To see the effect of the number of allocated memory mod-
ules, we have varied that number for a cycle budget equal to
6 and a record layout with 1 field per word. The results are
shown in Table 2.

The minimal required number of 1 port memories is 4
(i.e., the chromatic number of the conflict graph for this cy-
cle budget). The maximal number of memories equals the
number of basic groups, because basic groups are assigned
as a whole to a single memory. The values in the table were
optimized both for area and power with equal weight factors.
As can be seen in the table, the area decreases with increas-
ing number of memories, up to a certain number of memo-
ries. The reason for this is that, because of the possibly dif-
ferent bit widths of the allocated memories, less bits have to
be wasted when more memories are available in the memory
architecture. Therefore basic groupswith different bitwidths
have a larger chance to be assigned to different memories,
which will then have a bitwidth adapted to them.

However, from a certain number of memories on, the area
starts increasing again with increasing number of memo-
ries, because more memories involves more overhead. The
power keeps decreasing when more memories are allocated.
Remark also that the optimal solution (w.r.t. weighted
area/power cost) for these cost parameters is an architec-
ture with 11 memories. Therefore, even when more than 11
memories are allocated, only 11 of them will be effectively
used. Note, that the cost of interconnect is not yet taken into
account in our cost functions. When this is done, the optimal

values will probably occur for a smaller number of memo-
ries.

#Mem Area (rel) Power (rel) Weighted Cost
4 1.00 1.00 1.00
5 0.93 0.76 0.87
6 0.92 0.70 0.85
7 0.92 0.63 0.82
8 0.94 0.54 0.80
9 0.94 0.50 0.79

10 0.95 0.48 0.79
11 0.95 0.47 0.78
12 0.95 0.47 0.78
13 0.95 0.47 0.78

Table 2: Optimal cost results for different 1-port memory al-
locations for a cycle budget of 6.

The resulting basic group to memory assignment depends
upon the exploration of the assignment search space, i.e.,
on the assignment algorithm used. We mainly used the ini-
tial constructive and the branch-and-bound assignment al-
gorithms, as shown in Fig. 3. Experiments with both alter-
natives revealed for instance that, for the parameters men-
tioned above and 5 memories allocated, area and power for
initial constructive are 10% resp. 30% higher than the area
and power obtained with B&B. This shows that performing
an extensive assignment search space exploration, as is done
by the B&B algorithm, can reduce the area to some extent,
and can have a significant effect on the power consumption
of the final solution.

6 Conclusions

We have shown that significant better results than conven-
tional design approaches can be obtained for the memory
organization of network protocol applications when the full
search space is well explored. The methodology and proto-
type tools presented in this paper allow for the first time to do
this in a fast and thorough way starting from a high abstrac-
tion level. The run-times of our tools are all below 1 minute
on an HP 9000/715-50 workstation for the application pre-
sented. In this way the system design time for these applica-
tions is significantly reduced while the final power and area
cost are improved at the same time. This is of crucial im-
portance for cost effective designs in the telecom network
protocol industry.

Acknowledgments: We gratefully acknowledge the
discussions with our colleagues at IMEC and Alcatel and
especially the contributions of M.Miranda, M.Genoe,
M.Eyckmans, and P.Six.

References
[1] F.Balasa, F.Catthoor, H.De Man, “Background memory area es-

timation for multi-dimensional signal processing systems”, IEEE
Trans. on VLSI Systems, vol. 3, no. 2, pp. 157-172, June 1995.

[2] R.Camposano, W.Wolf (eds.), “Trends in high-level synthesis”,
Kluwer Academic Publishers, Boston, 1991.

[3] E.De Greef, F.Catthoor, H.De Man, “Memory Size Reduction
through Storage Order Optimization for Embedded Parallel Mul-
timedia Applications”, Intnl. Parallel Proc. Symp.(IPPS) in Proc.
Wsh on “Parallel Processing and Multimedia”, Geneva, Switzer-
land, April 1997.

[4] E.De Greef, F.Catthoor, H.De Man, “Array Placement for Storage
Size Reduction in Embedded Multimedia Systems”, Intnl. Conf.
on Applic.-Spec. Array Processors (ASAP), Zurich, Switzerland,
July 1997.

[5] G.de Jong, B.Lin, C.Verdonck, S.Wuytack, F.Catthoor, “Back-
ground memory management for dynamic data structure intensive
processing systems”, Proc. IEEE Int. Conf. Comp. Aided Design,
San Jose CA, pp.515-520, Nov. 1995.

[6] J.P.Diguet, S.Wuytack, F.Catthoor, H.De Man, ”Formalized
Methodology for Data Reuse Exploration in Hierarchical Mem-
ory Mappings”, accepted for Proceedings of IEEE International
Symposium on Low Power Electronics and Design, Monterey
CA, Aug. 1997.

[7] P.Lippens, J.van Meerbergen, W.Verhaegh, A.van der Werf, “Al-
location of Multiport Memories for Hierarchical Data Streams”,
Proc. IEEE Int. Conf. Comp.-Aided Design, pp. 728-735, Santa
Clara, Nov. 1993.

[8] T.Meng, B.Gordon, E.Tsern, A.Hung, “Portable video-on-demand
in wireless communication”,special issue on “Low power design”
of the Proc. of the IEEE, Vol. 83, No. 4, pp. 659-680, Apr. 1995.

[9] L.Nachtergaele, F.Catthoor, F.Balasa, F.Franssen, E.De Greef,
H.Samsom, H.De Man, “Optimization of memory organization
and partitioning for decreased size and power in video and image
processing systems”, IEEE Int’l Workshop on Memory Technol-
ogy, Design and Testing, pp. 82-87, San Jose CA, Aug. 1995.

[10] P.Paulin, J.Knight, “Force-directed scheduling for the behavioral
synthesis of ASIC’s”, IEEE Trans. on CAD, Vol. 8, No. 6, pp. 661-
679, June 1989.

[11] N.Passos, E.Sha, “Push-up scheduling: optimal polynomial-time
resource constrained scheduling for multi-dimensional applica-
tions”, Proc. IEEE Int. Conf. Comp. Aided Design, San Jose CA,
pp.588-591, Nov. 1995.

[12] L.Ramachandran, D.Gajski, V.Chaiyakul, “An algorithm for array
variable clustering”, Proc. European Design and Test Conf., pp.
262-266, Paris, Mar. 1994.

[13] L.Stok, “Data path synthesis”, INTEGRATION, the VLSI journal,
Vol 18, pp . 1-71, June 1994.

[14] Y.Therasse, G.H.Petit, M.Delvaux, “VLSI architecture of a
SMDS/ATM router”, Annales des Télécommunications, 48, no
3-4, pp.166-180, 1993.

[15] W.Verhaegh, P.Lippens, E.Aarts, J.Korst, J.van Meerbergen,
A.van der Werf, “Improved Force-Directed Scheduling in High-
Throughput Digital Signal Processing”, IEEE Transactions on
CAD and Systems, Vol. 14, no 8, Aug. 1995.

[16] W.Verhaegh, P.Lippens, E.Aarts, J.van Meerbergen, A.van der
Werf, “Multi-dimensional periodic scheduling: model and com-
plexity”, Proc. EuroPar Conference, Lyon, France, August 1996.
“Lecture notes in computer science” series, Springer Verlag,
pp.226-235, 1996.

[17] S.Wuytack, F.Catthoor, G.de Jong, B.Lin, H.De Man, “Flow
Graph Balancing for Minimizing the Required Memory Band-
width”, Proc. 9th ACM/IEEE Intnl. Symp. on System-Level Syn-
thesis, La Jolla CA, pp.127-132, Nov. 1996.

	CD-ROM Home Page
	ISSS97
	Front Matter
	Table of Contents
	Session Index
	Author Index

