Fast and extensive system-level memory exploration for ATM
applications

Peter Slock, Sven Wuytack, Francky Catthoor, Gjalt de Jongt

IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
TAlcatel Telecom, Francis Wellesplein 1, B-2018 Antwerp, Belgium

Abstract

In this paper, our memory architecture exploration method-
ology and CAD techniques for network protocol applica-
tionsare presented. Prototypetoolshave beenimplemented,
and applied on part of an industrial ATM application to
show how our novel approach can be used to easily andthor-
oughly explore the memory organi zation search space at the
system-level. An extended, novel method for signal to mem-
ory assignment is proposed which takes into account mem-
ory access conflict constraints. The number of conflictsis
first optimized by our flow-graph balancing technique. Sg-
nificant power and area savings were obtained by perform-
ing the expl oration thoroughly at each of the degrees of free-
domin the global search space.

1 Introduction

The complexity of modern telecommunication systems is
rapidly increasing. A wide variety of services has to be
transported, and elaborate network management is needed.
Such complex systems require a combination of hardware
and software components in order to deliver the required
functionalitiesat the desired performance level. For certain
speed critical functionalities, such as packet handling and
congestion control, it is necessary to implement the corre-
sponding components in hardware using custom Applica
tion Specific Integrated Circuits. These ASICs are usualy
at the heart of modern telecommunication systems.

For applications in this domain, the desired behavior
is often characterized by complex agorithms that operate
on large dynamically alocated stored data structures (e.g.
linked list, trees, dynamic FIFOs). Thisincludes especialy
the transport layer in ATM networks and LAN/WAN tech-
nology. ldedlly, the specification should reflect the “con-
ceptual” partitioning of the problem, which typically cor-
respond to abstract datatypes along with services provided
on them, and algorithms for the different processing tasks.
As these conceptua entities can be readily specified in an
object-oriented programming model, using data abstraction

and classinheritance features, we use the C++ programming
languagefor the behavioral a gorithmic specification as mo-
tivated in our global MATISSE approach[5].

For thistype of applications, typically a (very) large part
of the area cost is due to memory units. Also the power
for data-dominated applicationsis heavily dominated by the
storage and transfers [8]. Hence, we believe that a domi-
nating factor in the system level design is provided by the
organization of the global communication and data storage.
Thereforewe have proposed a design methodol ogy inwhich
thestoragerelated issues (virtual and physica memory man-
agement) are optimized as a first step [5], before doing the
detailed scheduling, and data-path and controller synthesis.

Two main tasks in our memory management methodol-
ogy are flow graph balancing (FGB) and memory aloca
tion/assignment. FGB is executed prior to the more con-
ventional memory allocation/assignment tasks [1, 7, 12].
The goad of the task is to minimize the required memory
bandwidth within the given cycle budget, by adding order-
ing congtraints to the flow graph. This alows the subse-
guent memory allocation/assignment tasks to come up with
a memory architecture with a small number of memories
and memory ports. The CAD techniques to support these
tasks will be detailed in this paper and their feasibility will
be demonstrated by prototypetools.

The extensive design exploration which isfeasible by ap-
plyingour methodol ogy and itsheavy impact on storage area
and power will beillustrated based on arepresentative mod-
uleof anindustrial ATM application, provided by Alcatdl.

The rest of the paper is organized as follows. Section 2
presents the related work. In Section 3 our physical mem-
ory management methodology and the CAD techniques for
two key tasks are presented. Section 5 illustratesthe exten-
sive exploration which can be obtained with the proposed
methodol ogy and the use of our prototypetoolson arepre-
sentative ATM example, introduced in Section 4. Section 6
contains the conclusions.

2 Related Work

Although behaviora hardware synthesis has been an ac-
tive field of research for over one decade (see eg. [2]), and
commercial behavioral synthesistools are currently emerg-
ing (e.g. Synopsys Behaviora Compiler, Mentor Graph-
ics' DSPStation, and Synthesia’'sSY NT system), support for
complex datastructures and memory synthesisrelated prob-
lemsis generally limited. An exception to thisisthe video
and image processing area for which severa groups have
proposed memory management support [7, 12] including
also our ownwork onthe ATOMIUM methodol ogy and par-
tia prototypetool support[9, 17]. Thisishowever restricted
to the support of statically declared arrays and records.

The data structuresin the communication network proto-
col domain are however different, as indicated above: they
are mostly based on dynamically allocated lists, setsand ta
bles. For thistype of applications, partly different method-
ologies and design tool support are required. This has been
motivated by usin our globa methodology proposa on the
MATISSE approach [5]. At that time, we did not provide
any design techniques or tool support yet. Recently, we
have aso proposed a more detailed methodology for the
flow graph balancing step [17] but also in that paper no CAD
techniques have been presented yet.

In this paper, we focus on the new techniques and tools
in both our flow graph baancing and memory alloca
tion/assignment steps, targeted to the communication net-
work protocol domain. They will be explained in detail in
Section 3.

Severa problemsin the state-of-the-art literature are re-
lated to these tasks. First, thereistheregister alocation do-
main which is fairly well understood by now. A nice liter-
ature overview of this domain can be found in [13]. The
techniques used here start from afully schedul ed flow graph
and are scalar-oriented. Many of these techniques construct
ascaar conflict or compatibility graph and solve the prob-
lem using graph coloring or clique partitioning. This con-
flict graph is fully determined by the schedule. This means
that no effort is spent in trying to come up with an optimal
conflict graph.

In the less explored background memory allocation and
assignment domain, the current techniques start from a
given schedule [7], or perform first a bandwidth estimation
step [1] which isacrude ordering that does not optimize the
conflict graph either. These techniques have to operate on
groups of signalsinstead of on scalars to keep the compl ex-
ity acceptable, eg. the stream model of Phideo [7] or the
basic setsin the ATOMIUM approach [1].

In the scheduling domain, the techniques optimizing for
the number of resources given the cycle budget are of inter-
est to us. Also here most techniques operate on the scalar
level, eg. [10, 15]. The only exceptions currently are the

Phideo stream scheduler [16] and the Notre-Dame rota-
tion scheduler [11]. Many of these techniques try to reduce
the memory related cost by estimating the required number
of registers for a given schedule. Only few of them try to
reduce the required memory bandwidth, which they do by
minimizing the number of simultaneous memory accesses
[15, 16]. They do not take into account which data is be-
ing accessed simultaneoudly. Also no redl effort is spent to
optimizethe memory access conflict graphs such that subse-
guent register/memory allocation tasks can do a better job.

The main difference between our flow graph balancing
and the related work discussed here is that we try to min-
imize the required memory bandwidth in advance by opti-
mizing the access conflict graph for groupsof scalars within
a given cycle budget. We do this by putting ordering con-
straints on the flow graph, taking into account which mem-
ory accesses are being put in paralld (i.e., will show upasa
conflict in the access conflict graph).

For the memory allocation and signal-to-memory assign-
ment subtasks, our previous approach [1] is based on rela
tively greedy global optimization approaches which did not
yet takeinto account memory access conflict constraints. As
a result, the assignment technique could only work when
the bandwidth constraints were not too tight and did not
lead to conflict violations. In this paper, a novel method for
signal-to-memory assignment is proposed which doesincor-
porate a way to handle memory access conflict constraints.
To achieve this, the original method had to be modified sig-
nificantly. It also contains severa improvements compared
to other existing techniques because it takes into account
the (extended) conflict graphs produced by the FG balancing
step. Compared to other approaches, it a soworks on groups
of scalars, thereby reducing the complexity significantly.

3 Exploration Environment

In this section our physical memory management script for
network applicationsis explained. Theinputisa C or C++
description of the application, whichistrand ated into aflow
graph. The output isan optimized memory architecture. An
overview of our exploration environmentisshowninFig. 1.
Given aflow graph of the application (cfr. upper |eft cor-
ner in Fig. 1), where for every memory access it is indi-
cated which data is being accessed, an optimized memory
architecture has to be derived during the alocation and as-
signment phase. However, because the memory architec-
tureisderived beforedetail ed scheduling, sufficient memory
bandwidth must be foreseen such that the application can be
scheduled within the given cycle budget afterwards. That is
why thememory architectureisnot derived directly fromthe
flow graph. First aflow graph balancing step is performed,
which tries to minimize the required memory bandwidth.

Memory Management HL Synthesis

Flow Graph Memory
Balancing \ / Allocation &

Assignment

AB. Q @ Conflict Graph (CG)
gg v Conflicts in the CG to be resolved by
DA :> assigning conflicting basic groups:
,,,,,,,,, ‘ - to different memories, or

gA G @ - to multi-port memories

Figure1: Physica Memory Management

Remark that due to the dynamic and data-dependent na
ture of the application domain, a number of steps of our
High Level Memory Management (HLMM) script for Real-
time Multi-dimensional Signal Processing (RM SP) applica
tions [9] are not as useful in this context. In particular, the
space reserved for dynamically dlocated data of a certain
typeis assumed to be dive wholethetime. This means that
no in-place optimization [3, 4] can be done on it. Other
very useful optimizations to lower the power consumption
of RMSP applications, namely loop transformations to in-
crease the locality of access and the exploitation of Data
Reuse (leading to theintroductionof memory hierarchy) [6],
can a so not be used in thiscontext because no manifest loop
nests are present and which data will be accessed is data-
dependent and thus cannot be predicted.

In the next subsections, each subtask in our HLMM script
for network applicationswill be explained.

3.1 DataFlow Analyss

Thefirst task in the script trand ates the C/C++ description of
the network component application into our flow graph for-
mat. It aso performs dataflow analysisto extract the paral -
[elism from the sequential input description. For every data
type in the application a virtua memory segment (VMS) is
created. A VM Srepresents an amount of memory sufficient
to store dl objects of the corresponding data type. It also
provides a dynamic memory management scheme to allo-
cate (and dedll ocate) part of itsmemory spaceto dataobjects
at run-time. For more details on how the dynamic alocated
dataishandled we refer to [5].

To increase the accuracy of the data flow analysis and to
increase the freedom of subsequent memory management
tasks, these virtual memory segments are partitioned further
into non-overlapping basic groups. Thisis donein such a
way that for every memory access, it is known a compile
time which basic group is being accessed. For instance, as-

suming that for every memory access to a record, the field
being accessed isknown (areasonabl e assumption in the ap-
plication domain considered), al instances of a particular
field (belonging to different objects of the same type) can be
combined into one basi ¢ group. Asaconsequence therecord
layout plays an important role in the basic group partition-
ing. Indeed, fields grouped together in a common memory
word, will be part of the same basic group. Currently our
c2fg prototypetool isbased on GNU’s C compiler.

The basic groups are characterized by their bitwidth (ex-
tracted form the origina specification), their number of
words (extracted from the VMS definition), and the aver-
age number of memory accesses (derived from simulations).
These figures are used for the area and power estimations.

3.2 Flow Graph Balancing for
Bandwidth Reduction

Theflow graph balancing (FGB) step ordersthe memory ac-
cesses withinthe given cycle budget. Inthe context of ATM
applications, nested loops almost never occur. The exist-
ing (single) loopsare usually data-dependent (WHILE loop)
spanning an entiretask in aconcurrent specification. In gen-
eral, we can handlethememory management for the concur-
rent tasks separately, though also optimizationsare feasible
between tasks. The latter is however atopic of further re-
search. Sointhispaper, we will assume that FGB hasto op-
erate on a singletask, possibly generated after combining a
number of initially concurrent tasksso that they are statically
schedulable. Due to the very limited loop oriented charac-
teristics, we can also restrict our current technique and pro-
totype reslization to handle a “flat” graph operating on the
body of asingleloop wheretypically complex dynamic data
structuresare accessed in avery complicated condition hier-
archy.

Whenever two memory accesses to two basic groups
(BGs) within the data structures occur in the same cycle,
we say there is an access conflict between these two basic
groups. All access conflictsare collected in aconflict graph,
where the nodes represent basic groups, and the edges indi-
cate arelated conflict. These conflicts have to be resolved
during the memory alocation and assignment steps. This
can be done by assigning conflicting basic groups either to
different memories or to amultiport memory. When al con-
flictsin the conflict graph are resolved during the memory
assignment step, it isguaranteed that avalid schedule exists
for the obtained memory architecture.

We have defined a cost function for these conflict graphs,
such that more costly conflict graphs are likely to lead to
more costly memory architectures. The cost function in-
cludesthree weighted terms: 1) ameasure for the minimum
number of memories needed (the chromatic number! of the

Memory

1A c-coloring of agraph G' is a partitioning of G’s nodesin ¢ partition

CG), 2) aterm related to the number of conflictsin the con-
flict graph (each conflict is weighted with its importance),
and 3) aterm to minimizethe number of self-conflicts(based
on the notion of forces similar to IFDS [15]). For more de-
tails about the cost function we refer to [17]. The idea of
flow graph balancing is then to come up with a partial or-
dering of the memory accesses that |eadsto a conflict graph
with minimal cost.

When multiport memories are alowed in the memory ar-
chitecture, moreinformationis needed than presentinasim-
ple conflict graph. Therefore, we have defined an extended
conflict graph (ECG). In an extended conflict graph, every
conflict is annotated with the maxima number of simulta:
neous read accesses, the maximal number of simultaneous
write accesses, and the maximal number of simultaneous
memory accesses (i.e., read or write) that can occur between
the conflicting basi c groupsduring the execution of theal go-
rithm. Also conflicts between more than two basic groups
have to be taken into account, because severa conflicting
basic groups can be stored in a single multiport memory as
long as the number of simultaneous memory accesses is not
exceeding the access capabilities of the memory. This re-
sultsin theinclusion of hyper edges in the ECG, indicating
the conflicts between more than two basic groups. When
multi port memories are available in the memory library, ba-
sic groups can be allowed to be in conflict with themselves,
leading to self edges in the conflict graph. Obvioudly, such
salf conflictswill be very costly because they forcethe allo-
cation of (expensive) multiport memories. Fig. 2 illustrates
the difference between aconflict graph and an extended con-
flict graph for a given memory access ordering.

@) (b) ©

Figure 2: Extended Conflict Graph: (a) Schedule, (b) Con-
flict Graph, (c) Extended Conflict Graph. The R/W/RW
numbers indicate the maximum number of simultaneous
read operations (R), write operations (W), and read or write
operations (RW) that occur for the given conflict.

Our current flow graph baancing tool uses an iterative
search strategy to order the memory accesses similar to Im-
proved Force Directed Scheduling of [15] but with totally

classesV = X1+ X5+ - -+ X, suchthat every two adjacent nodesbelong
to adifferent partition class. Inthiscase, whenthe membersof partition X;

are colored with color ¢, adjacent nodes will receive different colors. The
chromatic number x (G) is the smallest number ¢ for which there exists a
c-coloring of G

different cost functions. As motivated above, no loops are
supported as yet. That is atopic of current research. The
prototypetool implementsthe principlesintroduced in[17].

3.3 Allocation and Assignment

The memory assignment technique discussed below is sig-
nificantly different compared to existing techniques (includ-
ing our own previous work [1]) because it has to take into
account the (extended) conflict graphs produced by the FG
balancing step. Compared to most other approaches, it also
workson groupsof scalars, thereby reducing the complexity
significantly.

Once the (extended) conflict graph is available, we have
all theinputsrequired to do avalid and cost efficient alloca-
tionand assignment. Thisisdone by minimizingacost func-
tion, containing weighted memory area and power terms,
whiletaking into account all memory access constraints ex-
pressed by the conflict graph. The on-chip area and power
models used in the cost function are proprietary from mem-
ory modulevendors, so only relativefiguresare giveninthis
paper.

During the all ocation phase, the user decides on the num-
ber of one-port memories to be alocated. This should be at
least the chromatic number of the conflict graph. Remark
that thislower bound on the number of memories only holds
for a library with one-port memories, which is always as-
sumed further on in this paper?. The main reason for alo-
cating more than the minimal number of memoriesisto re-
duce the power, as demonstrated further on. The practica
upper bound on this number is the number of basic groups
(cfr. Section 3.1).

During the assignment phase, each basic group is as-
signed as a whole to one of the allocated memories. This
yields an assignment scheme. Usually aBG can only be as-
signed to some of the allocated memories, because of mem-
ory access conflicts with some of the basic groups assigned
aready. Inorder to find aminimum cost assignment scheme,
wemust exploretheentire assignment search space, because
classical globa optimization approaches like (Mixed) Inte-
ger Linear Programming solvers do not work for our non-
linear problem. The assignment search space can be repre-
sented asatree, asshowninFig. 3. Thistreehas MV leaves,
where M denotes the number of memories alocated and N
the number of basic groupsto be assigned, so thereisahuge
amount of assignment possibilities. We use a branch-and-
bound algorithm (called B& B inthe sequel) with an effective
bounding to search the compl ete assignment tree.

In our specific context, we have implemented a very ef-
fective B&B strategy which is different from our origina
approach [1] which did not incorporate the access conflicts.

?We also havea methodol ogy for dealing with multi-port memories, but
that feature is not implemented yet in our prototype software environment.

Initial Constructive Branch & Bound

9 8 7 9 9 8 7 9

find 'best’ solution
(globally optimal)

find ‘good’ solution
(locally optimal)

Figure3: Different assignment algorithmsfor traversing the
search tree: each treelevel correspondsto the assignment of
one basi c group, each branch fromanode correspondsto one
memory.

Large partsof thetree can be cut away ('bound’, i.e., pruning
of subtrees) because of reasons, evauated in thisorder:

1. pathswhich giveriseto assignment schemes which are
fully symmetric with already generated schemes can be
discarded.

2. access conflicts between basic groups can be effec-
tively checked due to the explicit ECG information,
which allows to remove the corresponding sub trees

3. paths which have too high a cost from a certain basic
group on can be pruned from that node. Currently we
propose a simple but safe estimate of the minimum re-
maining cost which assumes storage in a common 1-
port memory unit with minimum bitwidth for area and
storagein separate 1-port memory unitsfor power, and
thisfor al remaining BGs.

Moreover, in order to have alow cost threshold (for prun-
ing) at an early stageintheB& B process, wefirst performan
initial constructive assignment algorithm. Thisfindsaloca
optimum in the search tree by iteratively assigning at each
level in the search tree the corresponding basic group to the
locally cheapest memory.

The order in which the basic groups are assigned also
has an enormous effect on the run-time of the B&B ago-
rithm. Experiments have shown that in most cases, ordering
based on cost (i.e., assigning Basic Groupsin theorder from
costly to cheap in terms of area/power consumption) leads
to shorter run-times than ordering based on constraints (i.e.,
assigning BGs in the order from difficult-to-assign to easy-
to-assign).

All the pruning criteria mentioned above have been im-
plemented in our prototypetool. Asaresult, for thenot very
complex but till realistic example in Section 5, the CPU
timescan all bereduced below 1 minute on an HP 9000/715-
50 workstation. Also for larger examples, experiments have
confirmed that the run times remain very acceptable. Other

performance improving measures have been devel oped by
usand will beimplemented in the future, such as splitting of
the conflict graph into (near-)independent clusters, and ad-
ditiona cost pruning by looking ahead in the search tree.

4 Test Vehicle: STORM

As atest vehicle for our exploration experiments, we have
selected part of the functional specification of an ASIC spec-
ified by Alcatel. The application is called STORM, which
stands for STM1-level to Transputer-netwOrk Relayer with
Multiple protocol handling. It deals with protocol conver-
sion between an ATM transportation layer and a transputer
network (cfr. Fig. 4).

Transport
Termination

Transputer
network

ATM Physical

ATM Layer
Layer

Figure 4: Position of STORM in ATM context

In this paper, we only focus on part of the STORM ap-
plication, namely the cell filter. This part is representative,
because, like the other subsystems, it is rather heavily 10-
dominated: many background memory accesses haveto be
performed real-time within a limited number of cycles. It
relatesincoming ATM cellsto allocated internal streams, by
means of two search agorithms (cfr. Fig. 5), which can be
combined in a pipelined way, i.e., they can be executed in
paralel but acting on subsequent ATM cells.

3-Phase Indirection

Binary Search

VPI-VCI-MID

StreamPtr

Found

StreamPtr

Found

BaseAddress

VPI

—

1 VClITablPageAddress

VCl

VPI table

Lookup table — 1

JMD

VCl table

MID table

Figure5: Cdl filter

Both search algorithms, binary search and 3-phase indi-
rection, are looking for the same information but in adiffer-
ent way. The first algorithm uses the combination of some
information fields of an ATM cell as one key into one big

sorted table, stored in a LookupRAM. If the stream is not
foundinthistable, the second a gorithmlooksfor the stream
in3steps. At each step, oneof thesubkeys(V P1, V', and
M ID extracted from theincoming ATM cell) isused as an
index inthe corresponding tabl e, to find apointer to the next
table. Thelast table contains a pointer to the related stream.

5 Design Space Exploration: Results

In this section we show the results of our design space ex-
ploration experiments for the cell filter of the STORM ap-
plication, by varying some of the design parameters. A sim-
ilar exploration has also been donefor the Segment Protocol
Processor application from Alcatel [14], but dueto space re-
quirements these results are not presented in this paper.

5.1 Effect of Modified Record L ayout

In network type applications, much of the datais stored in
records. A record is a data structure that groups a num-
ber of related data items. These different data items are
called thefieldsof therecord. Thesefieldscan havedifferent
bitwidths. Severd fieldscan be packed intoacommon word.
How the different fields are packed into words is called the
record layout.

The record layout heavily influences the optimal memory
architecture, as it effects the number of memory accesses
and the basic group partitioning. Here we present two ex-
treme cases of record layout. In the first one, each field is
stored in a separate memory word. The results are shown
in Fig. 6. The access flow graph shows many memory ac-
cesses, because every field access requires its own memory
access. There are many basic groups as can be seen in the
conflict graph. The chromatic number of the conflict graph
for a cycle budget of 6 cyclesis 4. This means that in an
architecturewith only single port memories, at least 4 mem-
ory modul es are needed to provide sufficient memory band-
width.

A second case of record layout we have examined, is one
where al fields of a given record are stored in a common
memory word. Theresultsfor thisare showninFig. 7. Now
there are far less memory accesses, as can be seen intheac-
cess flow graph. Also the conflict graph is much simpler. In
fact, inthiscase, thereareno conflictsleft inthegraphwhich
means that 1 memory is sufficient to meet the bandwidth re-
quirements for a cycle budget of 6 cycles.

In between these two extreme cases, many other record
layouts are possible. E.g., grouping the fields of a record
such that they fit as good as possibleinto 32 bit words. This
corresponds to the row labeled 32 bit in Table 1.

Thetableentriescontain relative areaand power numbers
for the total memory architecture resulting from allocation
and assignment. The orders of magnitude are tens of mm?

LUR VCl table ATM cell "header"

VPI | AllocMIDwidth VPI
VCI SP VCI
LI 28 bit PTI
AALtype CLP
CLPactive VPI table AALtype
MID AllocVClwidth CLPactive
SP VClITablePageAddr LI
16 bit 28 bit MID

16 bit

Record Layout

O@ OO

Flow Graph

Conflict Graph (cycle budget = 6)

28 bit 4 bit 16 bit 10 bit

! ! ! !

Memory Architecture

Figure 6: Record layout: 1 field per word

LUR IVPII VCI “ “ MID I SP l 48 bit

ATM cell "header"l VPI I VCI l “ I“ MID l 42 bit
Record Layout
Flow Graph
Conflict Graph (cycle budget = 6)
48 bit

Memory Architecture

Figure 7: Record layout: 1 word per record

for areaand ahundred mW for power. Theareanumbersare
relative to the maximum area number of the table, whereas
the power numbersare relativeto the maximum power num-
ber.

Imem | 2mem | 3mem | 4mem

1field 1 word N/A N/A N/A | A:1.00
P: 1.00

32 hit N/A | A:0.87 | A:0.90 | A: 091
P:096 | P.0.60 | P:0.50

1 word A:084 | A:081 | A:0.83 | A:0.84
P.092 | P.064 | P:039 | P.0.34

Table 1: Optimal memory architecture for different record
layouts and cycle budget = 6.

Fromthistablewe can concludethat, for thisexample, the
area and power decrease when the records are packed into
less words. Also fewer memories need to be allocated in
casetherecords are packed into fewer words (the N/Aentries
denote that no valid assignment is possible for the corre-
sponding number of allocated memories). Notealso that the
power decreases when more memories are allocated, while
the area exhibits a minimum between the two extremes.

Asindicated in subsection 3.1, it isa so important to per-
form apartitioning of the original VM S data structuresinto
basic groups. Inthis particular test-vehicle, thispreprocess-
ing resultse.g. in a decrease of the number of self-conflicts
(and hence minimal number of memory ports) from 4 to 2
for acycle budget of 3 and the original record layout with 1
field stored per word.

5.2 Effect of the Cycle Budget

To see the effect of the cycle budget on the resulting mem-
ory architecture, we have varied the cycle budget from the
critical path length (3 in the case of one field per word) to
the number of memory accesses in the flow graph of the ap-
plication (18in thiscase). Assuming that every memory ac-
cess requires exactly one cycle?, the minimal bandwidthis
reached (i.e., 1 memory port) for thisamount of cycles. Al-
locating more cycleswill have no further effect on the mem-
ory architecture. The resulting chromatic number is shown
for each cycle budget in Fig. 8. Remark that in genera this
value decreases as more cycles are available. However, this
is not dways the case (e.g., cycle budget = 11) because dur-
ing flow graph balancing al so other cost termsthan the chro-
matic number are taken into account (e.g., the number of
conflicts, each weighed withtheir cost). Idedlly thetotal cost
should be decreasing monotonicaly (asisthecaseinFig. 8).

3This is usually the case for SRAM memories. If different types of
RAMs are used, appropriate |O profiles (with larger latency values for in-
stance) haveto be used.

Thisisnot guaranteed, however, with our FGB tool asitisa
heuristic that does not necessarily find the global optimum.
The CPU times for these experiments are al below 20 sec-
onds on an HP 9000/715-50 workstation.

X B [] 4 Cost
101+ m 2000
91 1800
8 1600
71 = 1400
6 1200
51 1000
47 [800
37 r 600

E t 200
; LY, |-

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Cycle Budget

Figure 8: Chromatic number and FGB cost function for dif-
ferent cycle budgets.

5.3 Effect of Allocation/Assignment

To see the effect of the number of allocated memory mod-
ules, we have varied that number for acycle budget equal to
6 and a record layout with 1 field per word. The resultsare
shownin Table 2.

The minima required number of 1 port memories is 4
(i.e., the chromatic number of the conflict graph for thiscy-
cle budget). The maxima number of memories equals the
number of basic groups, because basic groups are assigned
asawholeto asinglememory. Thevauesin the table were
optimized both for areaand power with equal weight factors.
As can be seen in the table, the area decreases with increas-
ing number of memories, up to a certain number of memo-
ries. The reason for thisis that, because of the possibly dif-
ferent bit widths of the allocated memories, less bitshave to
be wasted when more memories are availablein the memory
architecture. Thereforebasi c groupswith different bitwidths
have a larger chance to be assigned to different memories,
which will then have a bitwidth adapted to them.

However, from acertain number of memorieson, thearea
starts increasing again with increasing number of memo-
ries, because more memories involves more overhead. The
power keeps decreasing when more memories are allocated.
Remark aso that the optimal solution (w.rt. weighted
area/power cost) for these cost parameters is an architec-
turewith 11 memories. Therefore, even when more than 11
memories are alocated, only 11 of them will be effectively
used. Note, that the cost of interconnect is not yet taken into
account inour cost functions. Whenthisisdone, theoptimal

values will probably occur for a smaller number of memo-
ries.

#Mem | Area(re) | Power (rel) | Weighted Cost
4 1.00 1.00 1.00
5 0.93 0.76 0.87
6 0.92 0.70 0.85
7 0.92 0.63 0.82
8 0.94 0.54 0.80
9 0.94 0.50 0.79

10 0.95 0.48 0.79
11 0.95 0.47 0.78
12 0.95 0.47 0.78
13 0.95 0.47 0.78

Table 2: Optimal cost resultsfor different 1-port memory al-
locations for a cycle budget of 6.

The resulting basi ¢ group to memory assignment depends
upon the exploration of the assignment search space, i.e.,
on the assignment algorithm used. We mainly used the ini-
tial constructive and the branch-and-bound assignment al-
gorithms, as shown in Fig. 3. Experiments with both alter-
natives revealed for instance that, for the parameters men-
tioned above and 5 memories allocated, area and power for
initial constructive are 10% resp. 30% higher than the area
and power obtained with B&B. This shows that performing
an extensive assignment search space exploration, asisdone
by the B&B agorithm, can reduce the area to some extent,
and can have a significant effect on the power consumption
of thefina solution.

6 Conclusions

We have shown that significant better results than conven-
tional design approaches can be obtained for the memory
organization of network protocol applicationswhen the full
search space iswell explored. The methodology and proto-
typetool spresented in thispaper allow for thefirst timetodo
thisin afast and thorough way starting from a high abstrac-
tionlevel. Therun-timesof our toolsare dl below 1 minute
on an HP 9000/715-50 workstation for the application pre-
sented. Inthisway the system design timefor these applica
tionsis significantly reduced while the final power and area
cost are improved at the same time. Thisis of crucid im-
portance for cost effective designs in the telecom network
protocol industry.

Acknowledgments: We gratefully acknowledge the
discussions with our colleagues at IMEC and Alcatd and
especiadly the contributions of M.Miranda, M.Genoe,
M.Eyckmans, and PSix.

References

(1

(2
(3l

(4

(5]

(6]

(8

(9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

F.Balasa, F.Catthoor, H.De Man, “Background memory area es-
timation for multi-dimensional signal processing systems’, |EEE
Trans. on VLS Systems, vol. 3, no. 2, pp. 157-172, June 1995.
R.Camposano, WWolf (eds.), “Trends in high-level synthesis’,
Kluwer Academic Publishers, Boston, 1991.

E.De Greef, F.Catthoor, H.De Man, “Memory Size Reduction
through Storage Order Optimization for Embedded Parallel Mul-
timedia Applications’, Intnl. Parallel Proc. Symp.(IPPS) in Proc.
Wsh on “ Parallel Processing and Multimedia” , Geneva, Switzer-
land, April 1997.

E.De Greef, F.Catthoor, H.De Man, “ Array Placement for Storage
Size Reduction in Embedded Multimedia Systems’, Intnl. Conf.
on Applic.-Spec. Array Processors (ASAP), Zurich, Switzerland,
July 1997.

G.de Jong, B.Lin, C.Verdonck, SWuytack, F.Catthoor, “Back-
ground memory management for dynamic data structureintensive
processing systems’, Proc. |EEE Int. Conf. Comp. Aided Design,
San Jose CA, pp.515-520, Nov. 1995.

JPDiguet, SWuytack, F.Catthoor, H.De Man, "Formalized
Methodology for Data Reuse Exploration in Hierarchical Mem-
ory Mappings”, accepted for Proceedings of |EEE International
Symposium on Low Power Electronics and Design, Monterey
CA, Aug. 1997.

PLippens, Jvan Meerbergen, W.Verhaegh, A.van der Werf, “Al-
location of Multiport Memories for Hierarchical Data Streams”,
Proc. |IEEE Int. Conf. Comp.-Aided Design, pp. 728-735, Santa
Clara, Nov. 1993.

T.Meng, B.Gordon, E.Tsern, A.Hung, “ Portabl e video-on-demand
in wirelesscommunication”, special issueon“Low power design”
of the Proc. of the IEEE, Vol. 83, No. 4, pp. 659-680, Apr. 1995.
L.Nachtergaele, F.Catthoor, FBalasa, FFranssen, E.De Greef,
H.Samsom, H.De Man, “Optimization of memory organization
and partitioning for decreased size and power in video and image
processing systems’, |EEE Int'| Workshop on Memory Technol-
ogy, Design and Testing, pp. 82-87, San Jose CA, Aug. 1995.
PPaulin, J.Knight, “Force-directed scheduling for the behavioral
synthesisof ASIC's’, |EEE Trans. on CAD, Vol. 8, No. 6, pp. 661-
679, June 1989.

N.Passos, E.Sha, “Push-up scheduling: optimal polynomial-time
resource constrained scheduling for multi-dimensional applica-
tions’, Proc. IEEE Int. Conf. Comp. Aided Design, San Jose CA,
pp.588-591, Nov. 1995.

L.Ramachandran, D.Gajski, V.Chaiyakul, “ An algorithmfor array
variable clustering”, Proc. European Design and Test Conf., pp.
262-266, Paris, Mar. 1994.

L.Stok, “Data path synthesis’, INTEGRATION, the VLS journal,
Vol 18, pp . 1-71, June 1994.

Y.Therasse, G.H.Petit, M.Delvaux, “VLSl architecture of a
SMDSATM router”, Annales des Télécommunications, 48, no
3-4, pp.166-180, 1993.

W.Verhaegh, PLippens, E.Aarts, JKorst, Jvan Meerbergen,
A.van der Werf, “Improved Force-Directed Scheduling in High-
Throughput Digital Signal Processing”, |EEE Transactions on
CAD and Systems, Vol. 14, no 8, Aug. 1995.

W.Verhaegh, PLippens, E.Aarts, Jvan Meerbergen, A.van der
Werf, “Multi-dimensional periodic scheduling: model and com-
plexity”, Proc. EuroPar Conference, Lyon, France, August 1996.
“Lecture notes in computer science” series, Springer Verlag,
pp.226-235, 1996.

S\Wuytack, F.Catthoor, G.de Jong, B.Lin, H.De Man, “Flow
Graph Balancing for Minimizing the Required Memory Band-
width”, Proc. 9th ACM/IEEE Intnl. Symp. on System-Level Syn-
thesis, La Jolla CA, pp.127-132, Nov. 1996.

	CD-ROM Home Page
	ISSS97
	Front Matter
	Table of Contents
	Session Index
	Author Index

