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Abstract

Integer Linear Programming (ILP) is commonly
used in high level and system level synthesis. It is an
NP-Complete problem (in general cases). There ex-
ists some tools that give an optimal solution for small
ILP formulations. Nevertheless, these tools may not
give solutions for complex formulations. In this pa-
per, we present a solution to overcome the problem of
complexity in ILP formulations. We propose a parti-
tioning methodology based on a constraint graph rep-
resenting all the constraints included in any ILP for-
mulation. To direct the partitioning, the constraint
graph nodes are grouped to represent Data Flow Graph
(DFG) nodes. This reduced constraint graph can be
used to partition any ILP formulation based on DFG.
We illustrate this method on ILP formulation for
scheduling. Results on ILP scheduling formulations
are promising.

1 Introduction
Integer linear programming (ILP) is a widely used

technique in high level and system level synthesis.
Common applications are resolution of NP-complete
problems. For instance, [5] uses ILP for throughput
and latency optimizationwhen algorithm/architecture
matching, retiming and pipelining are considered si-
multaneously. ILP is also used for DSPs code genera-
tion and embedded systems. For instance, [14] gives a
solution to the problem of code compaction with real-
time constraints for processors o�ering instruction-
level parallelism; [21] presents an ILP-based code
placement method for embedded software to maxi-
mize hit ratios of instructions caches. ILP is also
widespread for HW/SW partitioning [2, 11, 17]. In the
�eld of system level synthesis, one can also cite [20, 1],
which deal with the optimization of heterogeneous
multiprocessors systems. Another example is [19],
whose method generates a static task execution sched-
ule along with the structure of the multiprocessor sys-
tem and a mapping of subtasks to processors. A part
of the previous problem, scheduling, is a very com-
mon application of ILP: [10] presents di�erent formu-
lations for di�erent usual scheduling problems; [8], [13]
propose solutions to the more general problem of per-
forming scheduling and resource allocation simultane-
ously; [3] describes a methodology to solve a schedul-
ing problem in a 3-dimensional design space, including

the usual area and schedule length dimensions plus the
clock length dimension, using module libraries.

In [15], we consider the problem of performing
scheduling and operator type selection simultaneously.
Operands can be represented in various number sys-
tems (redundant or non redundant ones). This leads
to architectures with di�erent type of arithmetics
(mixed arithmetics), and the insertion of conversion
nodes between redundant output and non redundant
input of operators is needed. As conversions are
\real" operations (in fact additions with carry prop-
agation), the operator type selection has to be done
while scheduling. A heuristic have been proposed [16],
but the results were not convincing. Thus, we ex-
plored the ILP approach. Our ILP formulation has
been tested using LP SOLVE (see table 1). The re-
sults are optimum, and the computation times remain
small for small examples.

Nevertheless, ILP is a NP-complete problem, and
our ILP solver could not �nd any solution for reason-
able size examples, because of numerical instability.
Complexity is the major drawback of ILP. There are
solutions to overcome this problem by directly modi-
fying the formulation. In the next section, we present
some of these techniques. However, they usually do
not largely decrease the complexity, and are always
speci�c to each problem. Thus, some partitioning
techniques have been proposed in the literature. How-
ever they usually do not take into account all the ILP
constraints (resource constraints and dependency con-
straints) as well as the ILP size. In section 3, we pro-
pose a general solution which partitions the problem
into several small ILP formulations, separately solved
taking all the constraints into account. Section 4 dis-
cusses the results and extensions of this method.

2 Shortening the ILP formulation
In this section, we present solutions that are speci�c

to our resource constraint scheduling problem using
mixed arithmetic. More precisely, all these solutions
have been tested on the 5th order elliptic wave �lter
benchmark.

Our ILP formulation for scheduling is based on two
main constraints: resource constraints, and data de-
pendency constraints which are given by a DFG. The
formulation is inspired by Hwang et al. one [10]. The
variables and constants used are the following:



benchmarks Nb equations Nb variables Nb operations Nb cycles CPU

2 way method 53 62 6 5 6.2 s
Fast Fourier Transform 51 78 7 4 3.6 s
Di�erential equation 99 132 11 5 17.6 s

3 way method 248 410 25 ? no sol.
3 way method classic 91 126 25 10 51.1 s

5th order elliptic wave �lter (EWF) 383 991 34 ? no sol.
5th order EWF, k = �1=0 258 586 34 ? no sol.

5th order EWF, k = �1, red. outputs 287 665 41 ? no sol.
5th order EWF classic 119 133 34 16 4 min 44.8 s

Table 1: ILP results using LP SOLV E.

? xi;j = 1 if operation oi is scheduled into cycle j;
otherwise, xi;j = 0.

? T is the �nal number of cycles that we wish to
minimize and Nt is the number of resources of
type t.

? s is an overestimation of T .

? Li (resp., Si) is the latest (resp. earliest) possible
time to schedule operation oi. They are computed
according the classical \As Late As Possible" and
\As Soon As Possible"schedules considering that
we have s cycles.

We have kept the same conventions and extended
them to our speci�c problem: if oi is a classical op-
eration (addition, subtraction, multiplication...), it is
also related to variable xi;j, with j 2 [Si; Li]. Our
model inserts a virtual conversion after each opera-
tion. Therefore we need a new variable, xk;j, repre-
senting the conversion. Our ILP formulation will not
be detailed in this paper.

The complexity of an ILP formulation is the prod-
uct of the number of equations by the number of vari-
ables. Concerning scheduling, these two values depend
on the number of operations, n, and on the initial
bound of the number of cycles, s (in our case, both
grows in O(s � n)). The s value is a large overestima-
tion, and considering the operation frames (di�erence
between Li and Si) is more accurate.

To reduce the ILP formulation, the number of op-
erations could obviously not be decreased. The only
solution is to shorten the operation frames. It de-
creases the number of variables, and also the number
of equations, as some resource constraints may dis-
appear (if some juxtaposed operation frames become
disconnected). Obviously, this does not guarantee op-
timality, as all the possible resulting schedules are not
considered anymore. The problem is to �nd a good
shortened frame (i.e an as small as possible frame con-
taining the optimum schedule with an high probabil-
ity).

A �rst method consists in producing an optimal lin-
ear programming solution using real variables. From

this solution, we prune the ILP formulation by con-
sidering, for the operation possible schedules, the in-
teger values that are close to the real-number solu-
tions. However, a real-number solution is not an ap-
proximation of an integer solution. In some cases, this
reduction can lead to a solution space which does not
contain any integer solution. In opposite cases, the
frame still remains too large to solve the instability
problem.

Thus, we tried another technique: using an heuris-
tic solution (for instance the list scheduling) to bound
the frame of each operation, the frames are rede�ned
as T (i) � k, where T (i) is the scheduled cycle of op-
eration oi, and k is as small as possible. Nevertheless,
the frames were still too large with k = 1, as shown
table in 1. We even tried this method with frames
equal to fT (i) � 1; T (i)g, and we did not obtain any
solution either.

This solution is interesting when the initial opera-
tion frames are large. However, in such a case, reduc-
ing the frames will reduce the solution space, increas-
ing the probability of \loosing" the optimal schedule.
On the opposite, if operations have small mobility, the
optimal schedule has an high probability of staying
in the solution space, but the complexity can not be
largely decreased, as time frames are already short.
Therefore, we have explored another technique, which
is addressed in the following sections, that consists in
partitioning the problem in order to get several smaller
ILP formulations, which are separately solved.

3 Partitioning
3.1 Partitioning methodology

The initial DFG is partitioned. Each partition can
be considered as a separate design, and is scheduled
using a separate ILP formulation. We obtain several
optimal local schedules which are concatenated in or-
der to obtain the �nal global schedule. The main dif-
�culty is to �nd a partitioning algorithm, as there are
two constraints to deal with: all the interdependencies
between partitions and their size.

Some related methods of partitioning have already
been proposed. For instance, Hwang experimented an
approach [9], called \zone scheduling". It partitions
the control steps into zones, and decides which opera-
tion will be scheduled into a zone and which one will



be \delayed" into the next zone. Their model can be
turned into an optimal ILP scheduling, a list schedul-
ing, or one in between. However, their goal is more
to �nd better solutions than those achieved by list
scheduling rather than �nding near optimal solutions
when ILP does not succeeds. Depuydt et al. have a
solution based on clustering techniques [4]. It does not
take into account the resource constraints but variable
time frames to reduce the register cost.

Figure 1: 5th order �lter data ow graph DFG

Therefore, we propose an original and general
approach, based on the ILP formulation, which con-
sists in partitioning the set of operations, each par-
tition violating as few constraints as possible (either
data dependency or resource ones) and being bal-
anced in terms of ILP variables. Considering a simple
DFG would not be satisfactory, as a DFG only re-
ects data dependency constraints (see for instance

the 5thorderfilter' DFG in Fig. 1). Thus, our par-
titioning is based on a reduced constraint graph ex-
tracted from the ILP formulation, whose vertices rep-
resent operations and edges represent constraints be-
tween operations. Performing minimum edge cut par-
titioning creates partitions with low constraint depen-
dencies. As each partition leads to an optimal partial
schedule, the �nal schedule, obtained by the concate-

Figure 2: 5th order �lter reduced constraint graph
RCG

nation of the partial schedules, is a very good approx-
imation of the optimal one.

A k�partition

In order to determine the best value of k, one could
iteratively try several decreasing values until it leads
to an infeasible ILP formulation: starting with an
n�partition, if all the partitioned formulations suc-
ceed to �nd a solution, try with a (n � 1)�partition,
and so on. This solution is realistic, as the computa-
tion times are largely decreased using the partition-
ing method (see below, and particularly the compar-
ison between benchmarks which had a solution with
the whole formulation and their partitioned solution).
Moreover, one usually knows the approximate num-
ber of variables (Nmax) that his solver can handle.
Thus, an e�cient solution is to determine directly, as
a starting value, a number of partition which has a
good chance to be the optimal (for example it would

be

&P
i
Li�Si+1

Nmax

'
with the scheduling problem).

In our speci�c scheduling problem [15], we have to



benchmarks Nb equations Nb variables Nb operations NB cycles CPU time

2 way method partition 1 30 36 4 3 1.1s
2 way method partition 2 24 24 3 2 0.2s

Fast Fourier Transform partition 1 32 50 4 1 0.4s
Fast Fourier Transform partition 2 45 54 6 3 0.5s
Di�erential equation partition 1 63 77 10 3 0.7s
Di�erential equation partition 2 56 76 8 3 1.4s

3-way method partition 1 128 187 15 6 6 hr 34 min
3-way method partition 2 102 118 11 5 12 min 56 s

3-way meth. Classic partition 1 57 68 16 6 5.7s
3-way meth. Classic partition 1 33 33 9 4 0.9s

5thO Elliptic wave �lter partition 1 121 204 15 7 1 hr 46 min
5thO Elliptic wave �lter partition 2 135 195 17 4 2 hrs 58 min
5thO Elliptic wave �lter partition 3 128 175 18 5 2hrs 20 min

5thO EWF Classic partition 1 65 65 17 10 7.9s
5thO EWF Classic partition 2 51 68 17 7 2.0 s

Table 2: ILP results using LP SOLV E after ILP based partitioning.

deal with the number systems used for representing
operands: the ILP formulation aims at �nding the
best (redundant or non redundant) encoding. As the
outputs of a partition become the inputs of the follow-
ing partition, and as the encoding of the primary in-
puts inuence the scheduling, this implies that all the
precedent partitions must have already been sched-
uled. This communication problem is also crucial
when dealing with resource allocation and scheduling:
the way operators share registers in a partition highly
inuences the resource sharing in the following parti-
tions. Thus, these informations have to be brought
to the other partitions. Therefore, it seems more ef-
�cient to make successive bi-partition after each local
schedule rather than an initial global k�partition.

Considering the data ow graph DFG = (V;E)
such that the ILP formulation related to DFG could
not be solved, The k�partition of DFG = (V;E) ,
with k as small as possible, de�nes k data ow graphs
DFGi = (Vi; Ei), such that V = V1 [V2 [ :::[Vk and
Vi \ Vj = ; if i 6= j.

We are dealing with partition i
DFG1 to DFGi�1 have been scheduled.
A reduced constraint graph, RCGi is built:

RCGi = (RCVi; RCEi;Wi), where
RCVi = V n fV1 [ V2 [ :::[ Vi�1g.
RCEi andWi are de�ned in the next section.
Wi aims at representing the \ILP size".

RCGi is bipartitioned according to the ILP sizes:
S(RCGi) refers to the \ILP size" of graph RCGi.
Thus, S(RCGi) =

P
vj2RCVi

w(vj),

where w(vj) is the weight of vj in RCGi

We create a bi-partition of RCGi with minimum
edge cut, of respective size,
S(RCGi)

k�i
and

(k�i�1):S(RCGi)

k�i
.

Partitioning with minimum cut is known to be a
NP-complete problem [7], but there are some e�cient

heuristics [6, 12]. Our method has been implemented
using the Fiduccia and Mattheyses heuristic, which
is an improvement of Kernighan and Lin Min-Cut
heuristic.

As edges represent constraints, the idea behind
min-cut partitioning is to minimize the constraint vi-
olations. Thus, this algorithm is e�cient if RCG is
a good representation of the di�erent constraints. We
will now address the problem of the reduced constraint
graph de�nition.

3.2 Reduced constraint graph
The previous method is not speci�c to any partic-

ular problem. It has been tested with our scheduling
problem, but it could also be used to any other ILP
based problem. Therefore, the de�nition of the re-
duced constraint graph, RCG, should not depend on
any particular problem. Nevertheless, there are a few
observations that the graph should match.

� The input of the ILP formulation is a DFG. Thus,
the graph vertices represent operations of the
DFG.

� Our goal is to create partitions whose ILP for-
mulations would take comparable computation
times. As every operation does not have the same
inuence over the ILP computation time, the ver-
tices must have a weight w(ej) reecting their in-
uence over this computation time.

� Edges must represent any constraint. In fact, this
solution should not even be related to a schedul-
ing problem, but, more generally, to the problem
of resolving large ILP formulations.

We based our solution on a graph used by Pan,
Dong and Liu [18] to solve a problem of constraint
reduction in symbolic layout compaction: from a set,
S, of linear programming constraints of the form xi�
xj � b (we will say that x 2 cn if variable x appears
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Figure 3: Result of the 5th order �lter scheduling after a 3-partition (partitions are P1, P2 and P3 with a constraint
graph partition, and P'1, P'2 and P'3 with a DFG partition).

in constraint cn), they create a directed graph, G =
(V;E), such that each variable xi which appears in
S is related to a vertex vi 2 V , and such that each
constraint cn : xi � xj � b; cn 2 S is related to an
edge e : vi 7! vj; e 2 E, of weight b. From this graph,
they solve a problem of subgraph reduction (i.e �nding
an equivalent graph with less edges).

We have extended this representation to ILP: from
a constraint

P
i;j ai;j:xi;j � b, where xi;j represents

a variable related to operation oi, we construct a
complete graph CG = (CV;CE), where a vertex
vi;j 2 V is related to the ILP variables xi;j. It makes
a constraint graph of variables. From this graph,
we perform a coarsening phase which creates clus-
ters Ci = fxp;qjp = ig (Ci contains all the variables
related to operation oi), in order to get a graph of
operations. This de�nes a reduced constraint graph
RCG = (RCV;RCE;W ) as follows:

From a set, ILP , of ILP constraints,

� 8i, if 9cn 2 ILP; j 2 N jxi;j 2 cn, we con-
struct a vertex vi 2 RCV , weighted by w(vi) =
Cardj(xi;j).

� If 9cn 2 ILP; i1; i2; j1; j2 2 N ji1 6= i2; xi1;j1 2
cn; xi2;j2 2 cn, we construct an edge e1;2 2 RCE
between vi1 and vi2 .

This de�nition �ts the previous observations, as
RCG is an operation graph, whose vertices are
weighted by the number of ILP variables linked to an
operation, which has a great inuence over the ILP
computation time. Furthermore, the edges are con-
structed by each ILP constraint, explicitly and equally
treated. This method could even be used for other
problems than scheduling ones. Fig. 2 shows the re-
duced constraint graph for the 5th order �lter design.

4 Results
We have tried this solution with the 5th order ellip-

tic wave �lter, using a 3-partition, for our scheduling



and operator type selection problem. The 5th order
�lter 3-partition of Fig 3 has been obtained. It de�nes
partitions P1, P2 and P3 and the resulting schedule
is optimal for our speci�c problem. Compared to our
partitions, the partitions P'1, P'2 and P'3 were ob-
tained with a 3-partition based upon the DFG. The
DFG based partition could not be exploited, as the
partition is not \horizontal". This shows that, even if
our method does not introduce any information spe-
ci�c to a scheduling method, it gives exploitable solu-
tions.

Examples that did not need partitioning have also
been tested, in order to get an idea of the degrada-
tion compared to the optimal. Only two examples had
more cycles than the optimal: the di�erential equation
design and the 5thorderfilter EWF one, in its clas-
sical version, without redundant operators and oper-
ator type selection (3+3 instead of 5 and 10+7 in-
stead of 16). However, in each case, the extra cycle is
due to the junction between the two partitions, and a
method closed to one presented in section 2 manages
to �nd the optimal schedule. This solution consists in
making a formulation of the whole design where the
frames of the second partition operations are reduced
to fT (i)�1; T (i)g (where T (i) is the schedule obtained
by the partitioning solution), whereas �rst partition
operations are �xed to the partitioning solution sched-
ule. This solution allows to use the available resources
of the last cycle of partition 1, and can be considered
as a \smart" concatenation. All the others examples
managed to �nd the optimal schedule. Besides, on ev-
ery benchmark, the CPU time is largely decreased (see
table 2 compared to table 1). This is particularly im-
pressing with large examples (10 and 28 times faster

for the 3-way method and the 5thorderfilter).
We have experimented this method with other ex-

amples, and a problem occurred when the operation
time frames are too large. In such a case, the resource
constraints become too numerous compared to data
dependency ones, and the partitions obtained can not
be exploited (for example, additions and multiplica-
tions are separated without regards of the precedence).
This problem disappears if we manage to reduce the
initial operation frames. A better solution would be to
have a balanced inuence of the di�erent kinds of con-
straints. Therefore we plan to introduce a weight on
the constraint graph edges. We are currently experi-
menting weighting functions which would balanced the
inuence of resource and data dependency constraints,
even with large operation frames. Of course, this so-
lution is not general anymore, and becomes speci�c to
a scheduling problem.

5 Conclusion
To overcome the problem of ILP complexity, we

have de�ned a partitioning methodology which con-
structs a reduced constraint graph RCG = (V;E;W )
to successively bi-partition an ILP formulation. V rep-
resents the DFG nodes. E is built according to all the
ILP constraints. W represents the ILP size.Therefore,
this graph can be used to partition any ILP formula-
tion based on a DFG, which are common in high level
and system level synthesis. This method have been

tested for the scheduling problem. It seems that a bet-
ter partition can be obtained by weighing the edges of
RCG according to the type of constraints (resource
sharing or data dependency). We are currently work-
ing on this weight de�nition.
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