
An Efficient Model for DSP Code Generation:
Performance, Code Size, Estimated Energy

Catherine H. Gebotys
Department of Electrical and Computer Engineering

University of Waterloo, Waterloo, Ontario,Canada N2L 3G1
cgebotys@optimal.vlsi.uwaterloo.edu

Abstract

This paper presents a model for simultaneous instruction
selection, compaction, and register allocation. An arc
mapping model along with logical propositions is used to
create an optimization model. Code is generated in fast
cpu times and is optimized for minimum code size, max-
imum performance or estimated energy dissipation. Code
generated for realistic DSP applications provide perfor-
mance and code size improvements from 1.09 up to 2.18
times for the TMS320C2x processor compared to previous
research and a commercial compiler. In all examples up to
106 instructions are generated in under one cpu minute.
This research is important for industry since DSP code can
be efficiently generated with constraints on code size, per-
formance, energy dissipation.

1.Introduction

High reliability, high performance and low cost are
forcing higher levels of integration for VLSI embedded
systems. As DSP applications are rapidly growing more
complex, some designers are moving from full custom digi-
tal circuitry to programmable processors or in-house cores
to obtain lower risk solutions. The DSP core is a DSP pro-
cessor that can be reused and combined with program/data
memory, dedicated logic, plus ASICs, and incorporated
onto a large silicon chip, providing a cost efficient and flex-
ible solution for many typical embedded applications
requiring low power and high reliability. These systems
demand small code size and high performance. Due to
increasing complexities, high level compilation is a neces-
sity. However the biggest drawback to both DSP processors
or DSP core use is the code generation.

The use of conventional code generation techniques
and even compilers specifically designed for commercial
DSP processors produce very inefficient code [8,4]. There
are many more limitations placed upon code generation for
the DSP processor than for the general purpose processor.
The difficulty arises from non-homogeneous register sets,
small number of very specialized registers, very specialized
functional units, restricted connectivity, limited addressing,
and highly irregular datapaths[8]. For example specialized
functional units such as multiplier-accumulators and
address calculation units are typically found in these archi-
tectures. Instructions take operands and store results of

computations in well defined registers with limited connec-
tivity. Instructions are highly interdependent and involve
the use of modes, for example the mode classes typically
involve product-shift and sign-extension. Some instruc-
tions will function differently depending upon the current
mode setting and extra instructions to reset the mode are
typically required. Limited addressing modes and the use of
address registers are also typical. Code generation for DSP
processors must meet tight timing constraints dictated typi-
cally by DSP throughput, and meet tight resource con-
straints. Given that these DSP processors must meet these
requirements using very small code space (all on chip
ROM), the code generation problem is a very difficult
one[10]. Typically DSP processors are difficult to use and
require long product development times even though the
program being developed may be stored on chip in less
than 1K program ROM. The need for decreasing time to
market, development costs, and maintenance costs,
demands the use of high level language compilation. All of
these factors imply several challenges in writing efficient
code generators for such DSP processors. This is even
more difficult for the design of in-house DSP processor
cores since retargetable compilation is also required.

2. Problem Description and Related Work

The following problem, problem 1 given below, is
an important part of the code optimization problem that
will be studied in this paper. For simplicity let us assume
that an algorithm to implement the application has already
been assigned based upon accuracy required, low energy
implementation, etc.. The algorithm is composed of basic
blocks, which are given as a partially ordered list of code
operations. For the problem definition below we assume
that there is one target DSP processor or core defined with
an instruction set architecture (instruction set architecture).

Problem 1.
Assume we are given a sequence of operations,
represented by an ordered list of operations. The
objective is to select instructions, compact code, and
allocate registers for the target processor. The set of
operations is mapped into a set of instructions,
which is optimized for code size, performance, or
energy dissipation.

Researchers have shown that code requiring a
minimum number of cycles can be generated for expression
trees[1] and an extension for general DAGs was researched
in [2], however both techniques do not consider
instruction-level parallelism. Researchers in [3] use graph
based technique to perform code compaction, whereas in
[4] a branch and bound scheduler and a heuristic search
scheduler for the TMS320C2x processor are used to try to
reduce the accumulator spilling and mode cost. A large
integer linear programming (ILP) model was researched in
[5] that performed simultaneous instruction selection, code
compaction and register allocation. Unfortunately it was
too complex for realistic processor representation.

Recent research in integer optimization has found
that large subclasses of logical inference problems can be
solved as a relaxed linear programming problem (LP) [6].
In particular if the system is composed of horn clauses[7]
the optimal integer solution can be obtained from the
relaxed linear programming problem solution (where
binary variables are replaced by continuous positive vari-
ables with upper bounds equal to one). In the solution to
the linear programming problem, any variable which does
not have an integer value can be rounded up or down to the
nearest integer value. It has been proven that this final
integer solution is always optimal[7]. Researchers have
also found that by rewriting constraints as horn clauses the
computational time for solving the problem can be greatly
reduced. Experience has shown that many logical inference
problems can be solved as relaxed LP problems even if
they are not horn clauses[7].

In this manuscript a new approach is presented to
solve problem 1, DSP code generation. Unlike previous
research, the target DSP processor is defined using arc
mappings and propositional logic which is then automati-
cally translated into mathematical programming constraints
to form the optimization model. The basic block com-
ponents of the application are transformed into a sequence
of operations, which is input to the model. The model gen-
erates code for the target processor. This process supports
retargetable compilation for processors whose instruction
set architecture can be described using propositional logic.
The next section will outline the assumptions and terminol-
ogy to be used in the rest of the paper.

3.Assumptions and Notation

The following terminology will be used in this
paper:
o is an operation in the basic block of an application.
o1→o2 is an arc where data produced by operation o1 is

used as input for operation o2.
s is an integer valued parameter representing the set of
instructions that an operation o may be mapped into.
T(o) is the time that the operation o is scheduled at.
Po ,s is a proposition representing the mapping of operation

o into the set of instructions s .

xo ,s is a binary variable representing the proposition Po ,s ,

when the proposition is true, the binary variable equals 1
otherwise it equals 0.
Po is a proposition when true means that there is some

parallel instruction that can be obtained by merging an
instruction in the set of instructions for operation o with
another instruction in the set of instructions for the next
operation, o1, where T(o)=T(o1)−1.
po is the binary variable representing the parallelism pro-

position Po .

End(o ,s) is the end resource being used to store the data
output from this operation, o . For example the output data
may be stored in a register or in memory (and accessed as a
memory operand by another operation).
E(o) is a parameter that identifies the type of arc for opera-

tion o . For example if o→o2, where o is a multiplication
and o2 is an addition then the type of arc for o , E(o), is a
multiply-add arc.
cycles(o ,s) is the number of cycles required to execute the
set of instructions s for operation o .
savings(o) is the number of cycles saved due to imple-

menting a parallel instruction for o and o2, where
T(o)=T(o2)−1.
memaccesses(o ,s) is the number of memory accesses per-

formed for the set of instructions s for operation o (includ-
ing memory operand accesses and the instruction accesses
).
msavings(o) is the number of memory accesses not

required anymore due to implementing a parallel instruc-
tion for o and o2, where T(o)=T(o2)−1.
codesize(o ,s) is the number of instructions in the set of
instructions s for operation o .
csavings(o) is the number of instructions not required
anymore due to implementing a parallel instruction for o
and o2, where T(o)=T(o2)−1.

The rest of the paper will illustrate the model, con-
straints, and generated code results using the TMS320C2x
processor[15]. The partial instruction set architecture for
this processor is shown in table 1 (where || Instr refers to
parallel instructions). This popular DSP processor has been
described as having a very restrictive type of instruction
level parallelism, making compaction a nontrivial task[8].
The optimization-based techniques presented in this paper
provide a fast approach to generating optimized code. It is
a retargetable model that can be used for modeling other
DSP processors as well. The next section will provide an
introduction to propositional logic and how it can be used
to describe instruction set architecture constraints and
mapped automatically into constraints of an ILP. The fol-
lowing sections, illustrate how arc mappings and ILP con-
straints are defined. Examples will be used to illustrate
how optimization for code size is performed. Finally
examples will be presented to show that new energy optim-
ized solutions are produced unlike approaches using previ-
ous research or existing commercial compilers.

Table 1. Partial ISA TMS320C2x

Instr Definition || Definition
Instr

ADD m a ← a + m LTA m LT m, APAC
APAC a ← a + p LTP m LT m, PAC
SUB m a ← a - m LTS m LT m, SPAC
SPAC a ← a - p MPYA m APAC, MPY m
MPY m p ← t * m MPYS m SPAC, MPY m
LAC m a ← m
LT m t ← m
PAC a ← p
SPL m m ← p
SACL m m ← a

† m: memory operand, special registers: a,p,t

4. Introduction to Propositional Logic

In general logical expressions can be used to model
qualitative information about a processor or system. Pro-
positions and propositional logic expressions can be
automatically translated into binary variables and linear
constraints. Specifically logical propositions are replaced
by binary variables, where true and false are equivalent to
binary values of one and zero. Reasoning can be shown to
be equivalent to solving a mixed integer linear program-
ming problem. Although there are many advantages to
using a ILP model instead of a production system, the big-
gest drawback is computational time, since solving a ILP
problem is NP-complete[9]. However if the system is com-
pletely composed of horn clauses it can be solved by a LP
solver and a rounding technique. Several examples will be
given below to illustrate horn clauses and their translation
into constraints of a ILP problem.

Horn clauses are logical expressions that have at
most one conclusion. Specifically horn clauses are disjunc-
tions with not more than one non-negated term. For exam-
ple if A is true and B is true then C is true can be expressed
as:

IF Pa AND Pb THEN Pc

which can be translated into
NOT (Pa AND Pb) OR Pc

(NOT Pa) OR (NOT Pb) OR Pc

In this last disjunction, there is only one non-negated term
(the last term, Pc), so it is a horn clause. One can automati-

cally translate any logical proposition into an ILP con-
straint using binary variables. For example this last dis-
junction can be translated by using the following binary
variables: xA , xB , and xC to represent the propositions PA ,

PB , PC respectively and write the following constraint:

(1−xA)+(1−xB)+xC ≥ 1

5. Methodology and Modeling

This section will briefly describe the methodology
for code generation. Given an application described in a
high level language (such as ’C’) and a DSP processor to
run the application, the following methodology maps the
application into a set of instructions to be executed by the
DSP processor. First the application is scheduled based
upon the parallelism of the targeted DSP architecture (for
example scheduling operations to make use of multiple
functional units would be very important for many parallel
DSP architectures). Next detailed instruction mapping is
performed by first generating a code generation model.
Arc mappings are developed and the logical propositions
detailing constraints of the targeted instruction set architec-
ture are developed. A model is then automatically gen-
erated from these logical propositions representing the ILP
model for code generation. The high level language
describing the application is decomposed into a series of
basic blocks which are then optimized through the code
generation model for performance, code size and finally
estimated power. After the code is generated (which
assumes direct memory addressing), the data layout is per-
formed using existing[13] or extended techniques[11] fol-
lowed by an optimization approach to address generation
(using auxiliary registers) such as [12]. In this paper for
illustration purposes we will use the TMS320C2x processor
as the target processor. The partial instruction set architec-
ture is shown in table 1. The TMS320C2x architecture is a
non-homogeneous register architecture that contains special
registers a ,p ,t , and has multiplier and alu functional units.
The next two sections will illustrate how the model is gen-
erated from a target processor.

5.1. Arc Mappings

To model the target DSP processor in our model we
first describe the arc mapping process. Any basic block
from an application can typically be represented by a data
flow graph, where each operation is a node and arcs define
the transfer of data output from one operation to the input
of another operation. In this model each arc can be mapped
into different sets of instructions, each representing the path
taken by the data value in the architecture. The path for
example may be composed of register to memory or
memory to register types of data transfer.

The arc mapping process is to determine for each
type of arc the total number of different paths that could
occur and identify each one as a set, s . For example in fig-
ure 1a) there is a multiplication operation * , which sends
data to an addition operation +. We identify this type of arc
as a multiply-add arc. This means that the data produced
by the multiplication operation will be input to an addition
operation. Figure 1a) shows the four possible paths for
transferring the result of the multiplication operation to an
input of the addition operation in the TMS320C2x proces-
sor. For s=1 the output of the multiplication is stored in
register p until it is used by the addition operation. No
extra instructions are required for this path. In s=2 the data

is transferred from the p register into the a register right
after the multiplication, using instruction PAC . In the
remaining types it is transferred from the p register to
memory (for example using instruction SPLm) and when it
is required for input to the addition operation it is a
memory operand (s=3) or loaded from memory into the a
register (s=4) (for example using instruction LACm). Fig-
ure 1b) shows the three mappings for an addition-
subtraction arc.

*o

+

pp
pp

p→aa
aa

p→m.
.m

p→m.
.m→a

s=1 s=2 s=3 s=4
(a)

+o

-

aa
aa

a→m.
.m

a→m.
.m→a

s=1 s=2 s=3
(b)

Figure 1. Example of arc mappings for *→+ in a) and
+→− in b) for the TMS320C2x.

5.2 Instruction Set Architecture Constraints

Once the arc mappings are defined for the target pro-
cessor, the constraints of the instruction set architecture of
the DSP processor are defined using logical propositions
and translated into a code generation model. The model
takes the scheduled data flow graph (representing basic
blocks of the application) as input and generates code as
shown in figure 2. The example in figure 2 is the complex
multiply (cr = ar*br + ai*bi , ci = bi*ar + ai*br). The
corresponding scheduled data flow graph corresponding to
a sequence of operations is shown at left hand side of figure
2. The final output from this model is shown at the right
hand side. The logical propositions or the ILP constraints
will also be given. Apart from basic model constraints the
remaining processor specific constraints which look after
conflicts in resources, register allocation, memory transfers,
etc are horn clauses. Examples of some of the constraints
for the code generation model will be provided below.

The basic formulation of the objective function to be
minimized is a sum of costs. In particular the code size
model is a direct sum of the number of instructions gen-
erated. The performance model is the actual number of
cycles required to run the code and again a function of the
instructions generated. The estimated energy model is a
function of how many memory operands are used (where
we account for the number of memory accesses from
instruction memory and data memory).

Execution Time =

o ,s
Σcycles(o ,s)xo ,s−

o
Σsavings(o)po

Code Size =

o ,s
Σcodesize(o ,s)xo ,s−

o
Σcsavings(o)po

Estimated Energy =

o ,s
Σmemaccesses(o ,s)xo ,s−

o
Σmsavings(o)po

The simplest constraint is shown below which ensures that
each operation must be assigned to only one set of instruc-
tions s .

s
Σxo ,s=1

The remaining constraints will be expressed using proposi-
tional logic to illustrate their representation as horn clauses.

The constraint that each input to an operation must
be stored in a different resource, can be represented as : for
o1→o and o2→o, where End(o1,s1)=End(o2,s1) then

IF Po1,s1 THEN NOT Po2,s2.

and translated into a mathematical ILP constraint using the
transformations described in section 4. Similarly for the
TMS320C2x, exactly one input to an adder must be in
resource register a is formulated as follows: for o1→o and
o2→o, where o is an addition operation,
End(s1)=p , End(s2)=m

IF Po1,s1 THEN NOT Po2,s2.

The general resource conflict constraints are illustrated in
figure 3. In figure 3a) the operation * cannot be mapped
into type s=1 (which uses register p) since operation *1
will always store it’s output in register p . Similarly in fig-
ure 3b) operation + cannot be mapped into type t=1 due to
conflict with resource a . This type of conflict constraint
can be represented by, o1→o2, T(o1)≤T(o3)≤T(o2),
where operation o2
uses a resource (such as the a or p register) that is also
being used to store the intermediate value generated by o1
for o3

IF Po1,s1 AND Po2,s2 THEN NOT Po3,s3

Finally code compaction constraints are used to map
to parallel instructions. These constraints are also horn
clauses that restrict the parallel proposition Po . For exam-

ple if we have an addition operation that does not have any
memory operands followed by a multiplication operation
then we can use the MPYA m instruction to save on perfor-
mance and code size (see table 1). Again this relates to two
sequential operations , where o1 is addition, o2 is multipli-
cation, T(o1)=T(o2)−1o11→o1,o12→o1and
End(o11,s1)=m or End(o12,s2)=m

IF (Po11,s1 OR Po12,s2) AND Po1,s AND Po2,s

THEN NOT Po1

This last constraint can easily be reformulated to support
mac instructions in other processors, for example the
M56000, where the multiplication can be chained with the
addition operation.

This model also supports operations which transfer
data to more than one operation. In this case a variable per
operation is used to map to sets of instructions. For exam-
ple input data to a multiplier can be a memory operand or
loaded into the t register. If the same input data is used by
more than one operation a second load into the t register
(LT m) is not required. An example of this optimization is
shown in figure 2 for input data bi which is stored only
once in the t register, so the multiplication bi*ar does not
require a LT m instruction. The model has also been
extended to simultaneous scheduling. In this case the vari-
able xo ,s is replaced by xo ,t ,s where t refers to the time (or

control step) that operation o is scheduled at. Precedence
scheduling constraints are added and existing constraints
are extended for scheduling.

ar*br

ai*bi

-

bi*ar

ai*br

+

LT mar
MPY mbr

PAC

LT mbi
MPY mai

APAC
SACL mcr

MPY mar
PAC

LT mai
MPY mbr

APAC
SACL mci

p(*)
→

p(-)
→

p(*)
→

LT mar
MPY mbr
LTP mbi
MPY mai

MPYA mar
SACL mcr

LTP mai
MPY mbr

APAC
SACL mci

Figure 2. Example of mapping from a high level data flow
graph into sets of instructions, and compacted code.
These mappings are done simultaneously.

*o

*1

+

p→a
a
a
a

p→m.
.
.m

p→m.
.
.m→a

s=2 s=3 s=4
(a)

+o

-1

-

a→m
.
.

m

a→m
.
.

m→a

s=2 s=3
(b)

Figure 3. Example of conflict with resource p and a in a)
and b) respectively, requiring the use of s=1 for both
cases to be illegal.

6. Experimental Results

Several DSP examples are used to illustrate this
methodology. Although any operation sequencer or
scheduler can be used in comparison with previous research
the same sequence of operations was used when we com-
pared our results to previous research in order to make the
comparison fair. All the code generated using the technique
described in this paper has been verified through simulation
with TI compiler generated code. The cmul example was
taken from [11] and the dfg example was taken from [2].
The lms is a least means square algorithm and the hp1 and
hp2 are high pass filter in direct form I and direct form II.
The fft is a fast fourier transform taken from [16].
Although performance, code size or estimated energy can
be optimized, the results in tables will provide code size or
execution time results (or total number of cycles), since for
TMS320C2x with on chip memory these are equivalent for
basic blocks. Performance improvement is calculated as a
[old # of cycles]/[new # of cycles] times improvement.
All solutions are reported for the GAMS/Cplex LP/ILP
solver[14] on a 133MHz Pentium PC.

Table 2 compares with the results of the TI C com-
piler generated code (set at the highest level of optimiza-
tion) with the optimization model presented in this paper.
To make a fair comparison all auxiliary register related
instructions ie. computations/loads/etc were not included in
the count. The code generated therefore assumes direct
memory addressing and is only comparing actual computa-
tions related to the operations in the flow graph. For exam-
ple the cmul example is that shown in figure 2 which uses
10 instructions (without counting indirect addressing-
related instructions). The sequence of operations used for
the cmul example is same as that used in [11] in order to
compare with their code compaction technique which
required 12 instructions.

Table 3 shows the size of the ILP models and the
cpu times required to generate the solutions. When simul-
taneous scheduling was not performed, and a sequence of
operations was input to the model, all solutions could be
obtained from one LP solution. To illustrate the model per-
formance the extension to simultaneous scheduling,
instruction selection, register allocation and compaction
was performed for the cmul example in only 2.3 cpu
seconds, see second last row of table 3 (after searching
through several nodes of the branch and bound tree). The
code compactor in [11] (which does not perform instruction
selection and register allocation) uses an ILP solution and
runs on a RS/6000. A final run was also performed to see
if the optimization model could improve upon the result of
the sequencing of operations to optimize performance. In
this case a cutoff value is used and the model for full
scheduling, instruction selection, compaction and register
allocation is solved. For the dfg example sequenced opera-
tions were obtained from the analysis in [2]. Using 21
instructions as a cutoff the ILP with simultaneous

scheduling was solved and after 1042 cpu seconds it deter-
mined that the problem was integer infeasible. This proved
that the code generated from the ILP model in this paper
was in fact optimal.

Since the TI ’C’ compiler is an industrial compiler a
complete comparison of final code generated was per-
formed with our code generation model presented in this
paper in combination with the address optimization tech-
nique in [12]. These results are shown in table 4 (where O
refers to the number of instructions used to generate com-
putations of basic block alone and A refers to instructions
used for address computations alone). Minimization of the
number of memory accesses, to estimate energy optimiza-
tion, was also performed. In the fft example an optimal
solution was obtained in 1 cpu second (which was in fact
the same as the optimal performance solution, shown in
table 2).

Table 2. Performance Comparison

of Cycles/Code Size Times
Example Compiler/Prev Res Optim Impr

cmul 15/12 10 1.50/1.20
dfg 24 21 1.14
hp1 48 22 2.18
hp2 48 30 1.60
lms 43 26 1.65
fft 108 99 1.09

Table 3. CPU times and Model sizes

ILP Size
Example Var Eqn CPU sec

lms 112 149 0.3
hp2 124 171 0.1
hp1 123 190 0.1
dfg 65 163 0.3

cmul 43 59 0.1
fft 274 1504 3.4

cmul in [11] 141 44 0.7
cmul† 137 381 2.3
dfg† 332 1465 105

† Simultaneous scheduling

Table 4. Code Generation And Address Optimization

Ex TI ’C’ Compiler Optimization Times
O A Cyc O A Cyc Impr

hp1 48 39 87 22 6 28 3.10
lms 43 36 79 26 6 32 2.46
fft 108 87 195 99 7 106 1.83

7. Discussions and Conclusions

Although the model is solved as an ILP, the majority
of examples in this paper could be solved using only one
LP solution. This is not surprising since related research
has shown that the use of logical inferences and horn
clauses in ILP’s has this characteristic[7]. Although the
strict use of only horn clauses may require large number of

constraints we found that the number of constraints gen-
erated in this model were manageable. An ILP approach
was used instead of a production system since it is indepen-
dent of the order of rules (therefore does not restrict formu-
lation or ordering of rules), and it is easier to model com-
plex constraints, including non-horn clauses. The optimal-
ity of the code generated by this modeling approach is only
as good as the model itself. In other words if the con-
straints and arc mappings defined in the model are not com-
plete, then the code generated may not be optimal.

Any scheduler such as one to minimize maximum
density of variable lifetimes or the scheduler in [4] can be
used in conjunction with this instruction selection, compac-
tion and register allocation model. Other DSP processors
can be modeled, such as the Motorola M56K and
TMS320C3x. In combination with our addressing tech-
nique the savings in performance and codes size is even
more significant, see table 4. For example in the cmul case
the acutal final code using indirect addressing provides
improvement over what was reported as the theoretical
lower bound in [11].

In summary code size and performance improve-
ments of 1.09 to 2.18 times (see table 2) were attained over
previous research and commercial compilers. The tech-
nique presented in this paper performs simultaneous
instruction selection, compaction and register allocation in
very fast cpu times unlike other researched models[5].
Simultaneous scheduling and instruction selection, com-
paction, and register allocation can also be done with this
model, however cpu times do increase (see table 3). In con-
trast to previous research which examined code compaction
without instruction selection and register allocation [8], or
code generation without compaction [1] the model
presented in this paper can perform these tasks simultane-
ously. This research is important for industry since code
generation for DSP processors or cores that minimizes code
size, energy dissipation and maximizes performance, is
critical to ensuring that the final product will be reliable,
cost effective, and competitive. This research is supported
in part by grants from NSERC and ITRC.
References
[1] G.Araujo, S.Malik, "Optimal Code Generation for Embdded

memory Non-homogeneous register architectures", 8th Interna-
tional Symp on System Synthesis, 1995, p36-41.
[2] G.Araujo, S.Malik, M.T-C.Lee "Using Register-Transfer

Paths in Code Generation of Heterogeneous Memory-Register
Architectures", Design Automation Conference, 1996.
[3] A. Timmer,M.Strik, J.vanMeerbergen, J.Jess "Conflict

Modeling and Instruction Scheduling in Code Generaton for
In-house DSP Cores", Design Automation Conference, 1995.
[4] S.Liao, S.Devedas, K.Keutzer, S.Tjiang, A.Wang "Code

Optimization Techniques for Embedded DSP Microprocessors"
Design Automation Conference 1995.
[5] T.Wilson, G.Grewal, B.Halley, D.Banerji "An Integrated

Approach to Retargetable Code Generation " 7th Int’l Symp High
Level Synthesis, 1994 p70-75.
[6] R.Raman, I.Grossman,"Relation Between MILP Modeling

and Logical Inference for Chemical Process Synthesis" Dept of
Chemical Eng, Technical Report, CMU, Jan 1990.
[7] Hooker, J.N. "Resolution vs. Cutting Plane Solution of Infer-

ence Problems: Some Computational Experience", Operations
Research Letters, vol7,No1(1) 1988.
[8] P.Marwedel, G.Goossens Eds. Code Generation for

Embedded Processors, Kluwer Academic Pub, 1995.
[9] Garey, Johnson Computers and Intractability, Freeman,

1979.
[10] E.Lee, "Programmable DSP Architectures: Part I and II",

IEEE ASSP Magazine, Oct and Nov 1988.
[11] R.Leupers, P.Marwedel, "Time-Constrained Code compac-

tion for DSP’s", Trans on VLSI Systems, Vol.5,no.1, March
1997.
[12] C.Gebotys, "DSP Address Optimization Using A Minimum

Cost Circulation Technique", to appear Int’l Conf on Computer-
Aided Design, Nov 1997.
[13] S.Liao,S.Devadas,K.Keutzer,S.Tjiang,A.Wang, "Storage

Assignment to Decrease Code Size", ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI),
1995.
[14] A.Brooke, D.Kendrick, A.Meeraus, GAMS A User’s

Guide, Scientific Press, 1992.
[15] TMS320C2x User’s Guide, Texas Instrument Inc, 1996.
[16] P.E.Papamichalis, Digital Signal Processing Applications

with the TMS320 Family, Vol.3, Prentice Hall, 1990.

	CD-ROM Home Page
	ISSS97
	Front Matter
	Table of Contents
	Session Index
	Author Index

