Quick Conservative Causality Analysis

Ellen M. Sentovich
Cadence Berkeley Laboratories
1919 Addison Street Suite 303-304
Berkeley, CA 94704-1144

Abstract

The causality problem isthat of determining if a combi-
national circuit with cycles has acceptable behavior: that
for all inputs the outputs are well-defined and stable. While
the problem manifests itself at the circuit level, it usually
originates at the system level. It may arise when a system
isdesigned as a collection of modules. when composed, cy-
clesare discovered in theensemble. One must analyzethese
cycles to correct possible errors or to capture the correct
behavior appropriately for further synthesis. Previoudy
published algorithms use iterated ternary logic simulation.
Thisis correct and robust, but expensive and in many cases
overkill. In this work, a more efficient but conservative
algorithm is proposed based on applying standard logic
synthesi s techniques of increasing power. WWe present initial
results to demonstrate the practicality of this approach.

1. Introduction
1.1. The causality problem

The causality problem here is that of determining if a
combinational circuit with cycles has acceptable behavior.
Acceptable circuit behavior isoften defined as behavior that
has an input/output-equivaent acyclic circuit implementa
tion. That is, for each input of the cyclic combinational
circuit, the outputs are well-defined and stable. Any ago-
rithmfor causality analysisrelieson aparticular definition of
acceptabl e behavior, which specifies equiva ence and stabil -
ity conditions. Thisbehavior in turn relies on an underlying
delay model. At ahigher level, causality can be viewed as
the property that amodul e has well-defined, stable behavior
at the outputs for each possibleinput.

The causality problem may arise in severa contexts:

e An implicit specification of a single circuit or state
machine may not have a well-defined causal imple-
mentation (i.e., with an acyclic combinationa part).

o A set of causa circuits composed together may exhibit
non-causal behavior.

¢ In system specification, where the design is composed
of individual modules, combinationa loops between
modules may be accidentally or deliberately (e.g.,
shared resources) designed in.

In many cases, the design has been well-conceived, and the
cyclesarein fact false: they are static cycles that are never
active dynamically.

With ESTEREL[2] specifications, causality problems can
ariseintwo ways. Firgt, due to the powerful language con-
structsand implicit nature of state-machine specification, an
individual module may exhibit causality problems. Second,
during module composition, individualy causa modules
may produce a system with causality problems. A number
of examples of the first type, some causa and some non-
causal, are given in [1]. An example of the second type,
whichisareal busarbiter that is causa but cyclic, is given
in[4]. The specification hasacircuit implementation that is
gtatically cyclic but dynamically acyclic. Causaity anaysis
isused in the compiler now to determine which systems are
truly causal despitetheir structural cycles.

Another applicationisin behavioral specifications, where
resources may be shared in such a way as to creste a static
cyclein the specification. An exampleisgivenin [6]: two
operatorsADD and SHIFT may beperformed in either order
depending on thevalue of aselect variable. Hencethere are
paths from ADD to SHIFT and from SHIFT to ADD, but
they are never active simultaneoudly.

When combinational cycles are detected, causality anal-
ysisisusualy carried out before synthesis and optimization
proceeds. If the circuit is correct (causa), it can be re-
implemented asan acycliccircuit. If incorrect,onemust find
the undesirable behavior and correct it. One can certainly
generate cyclic hardware and software implementations for
cyclic specifications immediately, skipping causality analy-
sis. However, without thisanaysis, there is no guarantee of
correct behavior, and without generation of the equivalent
acyclic implementation, there are currently no methods for



synthesisand optimization.

1.2. Previous work

In [6], a definition of combinational circuits' was given
withan agorithmfor determiningif acycliccircuitisinfact
combinational. The algorithmis based on symbolic simulea-
tion using the 3-valued Scott Boolean domain: {0, 1, L}. It
consists of breaking all cyclesin the circuit, assigning bro-
ken wiresthe undefined value L, and iteratively simulating,
assigning newly-determined simulation valuesto the broken
feedback wires a each iteration. The algorithm is mono-
tonic and guaranteed to converge. This paper aso provides
good motivation and references for the causality problem
(e.g., [11] which solvesthe problem of cyclesin the context
of resource sharing by restricting the sharings considered).

In [8], the algorithm was extended to sequential circuits,
and an efficient implementation was outlined. In[9], aproof
of correctnessof thea gorithm under the up-bounded inertial
delay model was given.

In paraléel, the notion of constructive causality [1] was
being devel oped and imposed as a requirement for correct
ESTEREL specifications. Inthe ESTEREL language, one spec-
ifies a synchronous, reactive, control system as a set of
interacting modules. The language is based on communi-
cation of signals, and provides constructs for concurrency
and pre-emption. The ESTEREL compiler trand atestheset of
modul esinto an equival ent Boolean circuit, which isanother
implicit representation of the underlying state machine,

The implicit specification method and rich signal con-
structs imply that non-causal behavior can be given. The
compiler performs a static causality check on theinput pro-
gram trandlated to a dependency graph. Thisapproximation
to the definition of causality held at the time turned out
to be too weak. As a result, constructive causality was
born. Its complete semantics at the behavioral, operational,
and circuit levels, isgivenin [1]. The basicideaisthat a
design must be reactive (have at least one response per in-
put), deterministic (at most one response), and constructive
(the solutionis derived by fact propagation rather than self-
justification). The key result isthat a constructively causal
design has a stable, well-defined circuit equivalent. There-
fore, the complete causality analysis program in ESTEREL,
sccausal [5], isbased on theresultsin [6, 8, 9, 1] and
is applied to the Boolean circuit representation of ESTEREL
programs.

1A combinational circuit hereafter is a circuit with no delay elements
that has “acceptable” behavior, as described in the beginning of thisintro-
duction and formally defined in [9].

Figure 1. Simple non-causal circuit

1.3. Efficient causality analysis

We present here an algorithm that is built on the same
assumptions (delay model, ternary simulation) but that uses
standard logic synthesis and optimization. It is more effi-
cient since it does not require a three-valued moded, it does
not perform iteration, and it uses a variety of efficient al-
gorithms applied successively to the circuit rather than full
symbolic simulation at the outset. It isalso conservativein
that it may declare a causal circuit non-causal. We focus
ontheanaysisof cyclic combinationa circuitsto determine
an acyclic equivalent. The extension to sequential circuits
isnot trivial, but has been donein [8]; that method can be
easily modified to work with the causality analysis method
proposed here. Of course, combinationa causdity analysis
can be applied to sequential circuits directly, but the anal-
ysiswill only be carried out statically: as though all states
are reachable. We present results on real combinational and
sequential circuits generated from ESTEREL.

2. Example

A simple example illustrates the notion of causality,
causality analysis, previous algorithms, and the contribu-
tion of thiswork.

Consider the circuit shown in Figure 1. It iseectrically
non-causal: when | and Jareboth1l, X = Y andY = X.
While stable solutions exist (X = 1, Y = 0; X = 0,
Y = 1), thereis no guarantee that the wires will stabilize
giventhede ays, and thereisnoway of knowingwhich of the
two stable solutionswill bereached. Theternary simulation
algorithm would break the cycle at, for example, point B,
creating a new input and output, B;,, and B,,:. Assigning
B, to L (unknown), and allowing the inputsto assume al
vaues,weobtain Byy: = I-Y =1-(J+By,) =I1J+11.
lterating, Bout = I - (J+ (I -J+1-1))=1J+11.
There is no change, so the iteration stops and the circuit is
non-causal since B,,,; cannot be assigned a stable value for
each value of theinput.

Now consider a modification of this circuit, where the
{1, 1} input to the cross-coupled gates is prohibited by the
environment. This is modeled by the circuit in Figure 2.
Again breking thecycleat B, Boyy = I'Y = I' - (J' +
Bin) = IJ-(I+J+Biy) = IJ+1J L = IJ and stabilityis



Figure 2. Restricted inputs creates a causal
version

Figure 3. Acyclic version

reached. B;, isnow implemented by /.J. Thefina acyclic
version of thecircuit is shown in Figure 3.

Now suppose we take the origina circuits, cut the
B arcs, and ask the question “is B,,; independent of
B;, 7" For the non-causal circuit, Byy: = IJ + By,
Bouth®Boutm = I+ J # 1 and the answer is no.
For the causal circuit, B,,: = IJ and the answer is yes.
Thissimpleanaysisisequivaent to asingleiteration of the
ternary symbolic simulation, but note that there are many
ways of determining the independence of B,,; from B;,
using logic synthesis techniques. For example, in the sim-
plest case, constant propagation in the circuit may revesl
independence. Efficient ATPG techniques can be used to
determine independence, as can logic simplification. In the
[imit, the BDD for B,,: can be built and tested for inde-
pendence: Bou:p,, = Bourg~ ? Or even more simply,
does B;,, appear as avariablein BDD(B,y:)? The inde-
pendence check is of course computationally equivaent to
exhaustive simulation of an output with respect to an input,
but by viewing the problem this way, and noting that in
many cases full analysisis not required, a better algorithm
can be devised. Simple logic synthesis algorithms are not
performed apriori in theternary simulation analysismethod
because an ateration of thelogic may destroy the causdity
properties of the circuit.

Such simple arc-breaking followed by dependency anal-
ysisis not by itself a correct algorithm for causality deter-
mination, as the next example illustrates.

Example2.1 Consider thefollowing simplenon-causal cir-
cuit.

Thiscircuitisreactiveand deterministic, and hencelogically
correct. However, it is not congtructively causal since it

Yon

Y off

Figure 4. Dual-rail encoding of I.J-example

stabilizes only due to feedback. See [1] for the precise
definition of constructive causality and the reasons behind
thischoice.

Breaking the two cycles by cutting before the fanout point
resultsin B,y: = B;n + Bin = 1, whichisnot the correct
result. Breaking the two cycles using the two feedback arcs
does retain the dependency needed to demonstrate that this
circuit isnon-causal. The difference, of course, isprecisely
what one obtains using ternary versus binary simulation.

3. Method

Several observations about causdlity anaysis and
ESTEREL-generated circuits lead to our new agorithm, as
described in this section.

Observation 3.1 Ternary simulation is equivalent to dual-
rail encoding and binary simulation.

This is formaly proven in [3]. This observation implies
that in the complete causality analysis algorithm, one can
replace aternary simulation iteration by atransformation of
the circuit to the dua-rail encoded version followed by a
binary simulation. The dual-rail encoded version of the /.J-
examplecircuitisshowninFigure4. Notethat each interna
signal is encoded by a pair of signals, and that al the gates
in the circuit are positive unate (no negations) with respect
to the internal signals. In practice, it is most efficient to
first break the cycles and dual-rail encode only the signals
corresponding to the broken cycles, and al the signalsin
their transitive fanout cones.

Example 3.1 The dual-rail encoding of the OR-gate with
feedback is given by

Xon

Xoff



Figure 5. ESTEREL version of OR-gate example

The reader can verify that cycle breaking and dependency
analysis will now yield the correct result: Xon,,; and
Xof four Will depend on X on;, and Xof f,, respectively,
regardless of where the feedback is broken.

Observation 3.2 Often in practice iteration is not neces-
sary, especially if one breaks the feedback judicioudly.

This observation indicates that anon-iterating, conservative
computation will often suffice to correctly compute causal-
ity. In[6], it was demonstrated that convergence isreached
in < k iterations, where k is the number of feedback arcs
broken. It followsthat if only one arc is broken, the non-
iterating a gorithm produces the correct result.

Thus, it is very important to choose the feedback set
carefully. If simulation isiterated, a poor choice still leads
to a correct result, but after many iterations. (For example,
consider the case of breaking al the interna wires of a
circuit.) If simulation is not iterated, fewer feedback arcs
provides increased reiability of results as less information
flows across the feedback boundary.

Observation 3.3 ESTEREL-generated circuits are partially
dual-rail encoded.

The OR-gate example treated in the previous section
might be specified in ESTEREL as follows:

nodul e OR

signal X in
present X then enmt X else enmt X end
end si gnal

end nodul e

Thedirect trandlationto acircuit asdescribed in[1] leads
to the circuit shown in Figure 5.2 While Xon and Xoff are
not explicitly modeled by wiresasthey arefor full dud-rail,
the positive and negative tests for X being ON and OFF
are explicitly modeled by wires X_is.on and X_is off as
showninthefigure. The present test of asigna in ESTEREL
always generates two gates in this manner and hence two

2Thisis only part of the circuit generated. There is additional circuitry
implementing initialization and the termination codes.

fanout arcs. Note also that fanout points are not modeled:
gates have multiplefanout arcs. If the signal ison acycle
and its fanout does not reconverge, effectively both arcs
must be broken to break all feedback (which is equivalent
to dual-rail). If thereis reconvergence, it is possible that
only one arc is broken (where two must be broken in the
dual-rail version). This may still return a correct causality
result depending on the function at reconvergence, but not
always. The circuitsin Figures 1 and 2, for example, are
correctly analyzed with one broken feedback arc. Still,
we can take advantage of this pseudo-dual-rail property of
ESTEREL circuitsto build and test aquick prototypecausdity
checker. In summary:

e Observation 3.1 impliesthat an iteration of the ternary
simulation-based causality checking algorithm can be
performed by first dual-rail encoding the circuit and
then performing binary simulation. Furthermore, any
binary-based transformations (e.g., standard logic op-
timization) can be performed on the dual-rail version
without destroying causality properties.

e Observation 3.2 impliesthat in many cases, and cer-
tainly if only one arc is broken, a single ssimulation
iteration suffices to determine causality. If multiple
iterations are required for a causal circuit, at the com-
pletion of the first iteration the information is smply
inconclusive: it will appear as though the values of
the feedback arcs are unknown, when in fact further
iteration would determine these values. Hence, single-
iteration simulation is usualy correct by observation
3.2, and at least conservative (anon-causal conclusion
may be made for acausal circuit).

e Observation 3.3 impliesthat in many cases, one need
not fully dual-rail encode a circuit to use the binary
simulation method for causality determination: the
ESTEREL-generated circuit already duplicates enough
signals that arc-breaking and binary simulation suf-
fices to determine causality. The result in thiscase is
not conservative asanon-causal circuit may bedeemed
causal. However, one can usethisnotion to implement
a prototype causality checker to compare the perfor-
mance of a binary-simulation-based agorithm to that
of thefull ternary one.

These are the main ideas behind our method. The algo-
rithmis described more thoroughly in the next section.

4. Algorithm

Observations from the previous section indicate that a
conservative aternative agorithm to iterated ternary simu-
lation would consist of:



o breaking aminima number of feedback wires

o transforming the circuit into the dual-rail encoded
version by dua-rail-duplicating gates (adding the
DeMorgan-equivaent gate) in the transitive fanout of
each broken-arc input

o performing dependency analysis (binary simulation).

Observation 3.3 only indicates that one may omit the dual-
rail encoding step and still obtain the correct result in some
cases. (Inal of our cases, we obtain the correct result, both
for causal and non-causal circuits,) We use thisobservation
toquickly build aprototypeof our agorithmtotest it against
thecurrent version, thoughin practicethisisof lessusesince
itisnot conservative, and thus conservative or full causdity
will haveto be run subsequently anyway (except inthe cases
whereit determines acircuit to be non-causal, and produces
ameaningful error trace). The prototypea gorithm ssimply

1. breaks cycles
2. performs a dependency computation

3. creates an acyclic equivaent version if possible, or
produces an input pattern exhibitingthe causality error.

4.1. Breaking combinational cycles

As noted in Section 3, it is desirable to break as few
arcsas possible. Weimplemented two agorithmsfor cycle-
breaking. The first is guaranteed to bresk the minimum
number of arcs, and was published in [10]. It isvery fast
even on large graphs. The second isthevery simplebut fast
depth-first search algorithm of Tarjan. In our experiments,
aswe had quitesmall examplesor large exampleswith small
strongly connected components, we always used the more
robust exact algorithm.

4.2. Dependency computation

The second step in the a gorithmisto determine whether
or not the broken feedback outputslogically depend on the
broken feedback inputs; if not, they can be expressed in-
dependently, and the broken arcs reconnected to create an
acyclic equivalent circuit.

The dependency computation interleaves | ogic optimiza
tion and dependency check. The simple dependency check
processes nodes in topologica order searching for a path
from each B;, to each B,,; and using this information to
compute on-the-fly whether cycles would appear in thecir-
cuit were the arcs to be reconnected. If not, the check is
successful. If only asingle arc is broken, this computation
simplifies to a check for a path from B;, t0 B,,:. The
compl ete dependency computation proceeds as follows:

o simpleconstant propagation; simpledependency check

e simple logic optimization, collapsing small nodes to-
gether and simplifying node functions; simple depen-
dency check

¢ introduce externa don’t care conditions from the Es-
TEREL specification and repeat simple logic optimiza-
tion; simple dependency check

e build BDDs for al B,,; variables; check for BDD
dependencies of each B, on its corresponding B;.,,
determine the existence of cycles.

The last is the most robust, and returns an exact answer
as to whether an output depends on an input. It is not too
expensivein practice, asthestrongly connected components
in the original circuit graph are small (and hence the logic
conesbetween temporary inputsand outputs), and thecircuit
has aready been optimized before building the BDDs.

In general, it is not sufficient to check simply that each
By isindependent of its corresponding B;,,. With more
than one feedback arc, interdependencies could till lead to
acycliccircuit on reconnection. For this, it sufficesto build
adependency graph using the dependency information com-
puted above (from simple to robust) and perform acyclicity
checks on thisgraph. The on-the-fly cycle check mentioned
above is an efficient implementation of this. In practice,
we never observed interdependencies leading to additional
cycles.

4.3. Creating the acyclic circuit or produc-
ing an error trace

If the simple dependency check is successful, an acyclic
version of the circuit can be created by simply reconnecting
the broken feedback arcs. A negative simple dependency
check result implies there is no path from the input to the
output of interest (or no cycle-forming set of paths), so
simple reconnection will result in an acyclic circuit. (This
will only happen after somelogicalteration, such as constant
propagation. Before this, it is known that there is at least
one topologica path between the two or there would not
have been acycle.)

If smple dependency fails but BDD dependency suc-
ceeds, the acyclic circuit must be created using logic func-
tionsderived from the BDD and then reconnecting the feed-
back arcs. That is, the function for each feedback arc out-
put is completely re-implemented based on its BDD. This
step can imply a significant logic increase depending on the
functions: the ADD/SHIFT example mentioned in the in-
troduction would require duplication of these operators. In
practice, thisstep isnot too expensiveasthe BDDs are lim-
ited to only the necessary scopein thecircuit. Furthermore,



our examples were limited to circuitsdescribed in ESTEREL,
which tend to be control-based.

If the circuit is dua-rail encoded before the dependency
check, a circuit equivaent to the original is obtained by
merging the dua rail (feedback) inputs and removing the
negative dual rail outputs before reconnecting the feedback
arcs. Thisisfollowed by simple logic optimization and/or
explicit merging of theduplicated internal signalsto recover
the area overhead incurred in dua-rail encoding.

If the circuit is determined to be non-causa, an error
condition is produced simply by: Input_error = By g, &
Bourg— For sequential circuits, an additional constraint
is imposed that the Input_error contain the initial state, to
ensure that it isavalid condition.®

4.4. Optimizing cyclic circuits

We have cast the algorithm as one for causality analysis,
but it can be used as acyclic circuit optimizer aswell. Sup-
pose one has a cyclic implementation, and onewould liketo
retainthisformsinceitismoreefficient. Therearecurrently
no | ogi c optimi zation programs that can optimizecyclic cir-
cuits. Inaddition, for the samereason that ternary simulation
must be used to perform causality anaysis, acyclic subcir-
cuits of a cyclic circuit cannot be abstracted and optimized
with standard techniques while maintaining the causality
properties. The simple agorithm proposed hereis a cyclic
circuit optimizer: cycles are dual-rail encoded, standard
logic optimizationisapplied, dual-rail signalsand gates are
merged to recuperate the overhead, and a final logic opti-
mizationis applied.

5. Implementation and results

The program cheap_cause has been implemented in-
side the Sis logic synthesis program [7]. A dependency
graph is created for the cyclic circuit and used to compute
the set of feedback arcs. The corresponding wires are bro-
ken in the network and the dependency analysis performed.
Dual-rail encoding was not implemented for this prototype
implementation; in fact, with the simple reliance on the
partial dual-rail encoding obtained with the ESTEREL trans-
lation, the correct causality result was obtained in al cases.
Furthermore, the advantage of this method in terms of final
logic area will not be affected by the overhead incurred by
dual-rail encoding: duplicated gates and signalscan later be
merged.

31t may be valid in another state, but we do not yet do the analysis to
determinethe valid reachable states. In all experiments, an error condition
was found at the initial state.

5.1. Comparison with sccausal

For comparison, we describe the sccausal algorithm
[5] and note some of itsproperties. First, three-valued func-
tions (TVFs) for each node computed using two variables
per node, and usingaBDD representation. Thisisexpensive
since the number of variablesis doubled; it has a dramatic
effect on the efficiency of the BDD computations. Next,
a weak topologica ordering (WTO) is computed for the
nodes. rather than compute feedback arcs directly, an or-
dering is computed for node processing during simulation.
This ordering is not a static one-pass through al nodes,
but rather contains cycles within that are iterated to con-
vergence. The algorithm iterates to convergence, correctly
handles full ESTEREL (the agorithm described here handles
only pure ESTEREL), and handles sequentia circuits. Fi-
nally, if thecircuitis causal, an acyclic versionisbuilt based
on the BDDs. Thisis another source of inefficiency, since
thestructureof theinitial implementationislost completely.

5.2. Experiments

A number of experiments have been run on the pro-
totype version of cheap_cause, and comparisons made
with sccausal . However, we note the following points.
First, neither sccausal nor cheap_cause arefully op-
timized: sccausal has been released in a beta version,
and cheap_cause is ill a prototype. Second, though
in some cases cheap_cause may return the correct result
immediately (in all cases, in our examples), even with full
dual-rail encoding it is conservative since it performs no
iteration. Therefore, itsutility isintended more as a prepro-
cessor to sccausal , and as an optimization scheme for
cyclic circuits, than as a causality anaysis program in its
own right.

We have run our program on al the anomalous causal-
ity programs P1-P13 described in [1]. In &l cases,
cheap_cause returned the correct result very quickly.
Comparison of computation times with sccausal is not
meaningful since the circuits are so small.

The program was applied to an industrial example for
in-vehicle communication [12] called prosa. The origina
versioniscausa but hascycles. sccausal makesthisde-
termination and computes the acyclic circuit in 720 seconds
on a sund. cheap_cause was able to correctly deter-
mine this with only one broken arc (the origina graph of
1989 vertices and 3463 edgesisreduced to asinglestrongly
connected component with 82 vertices and 118 edges), and
simple constant propagation, in 19.4 seconds. The circuit
produced by sccausal has 8346(6842) literalsin sum-of-
products (factored) form, and 64 latches; after optimization
in SIS, it has 1099(839) literds and 44 latches. The circuit
produced by cheap_cause has1268(1268) literalsand 73



latches; after optimization, 838(761) literalsand 71 latches.

On a second, non-causa version of prosa, sccausal
completes in 987 seconds, cheap_cause in 61 seconds.
The error traces cannot be compared since sccausal re-
turns values on internal sc format wires and corresponding
linesin ESTEREL code (useful for source-code debugging),
and cheap_cause returnsvauesonthecircuit /O signals
(useful in the ESTEREL simulators).

The second example, megjia, is an industria control de-
sign which is causal but contains cycles. sccausal per-
forms the analysis and writes the result in 44 seconds. The
circuit has 2910(2454) literals and 28 latches, reduced to
637(484) literals and 21 latches by Sis. cheap_cause
breaks one arc and performs the analysis in 25 seconds,
with aresulting circuit of 878(878) literals and 43 latches,
reduced to 543(439) litera'sand 43 latches by Sis.

It is interesting to note the difference in the number of
registers. sccausal isable to reduce this number on the
fly during the reachable states computation. In both cases,
theinitia circuitisconsiderably smaler for cheap_cause,
which could make a decidable difference for further opti-
mization of large circuits.

These are of course good scenarios on the type of de-
signs that cheap_cause can handle. We mention these
results simply as indication that the proposed agorithms
have practical use; more experimentation is warranted.

6. Conclusions and futurework

We have presented an algorithm for efficient causdity
checking. While it is conservative, it has been demon-
strated on a suite of examples to return correct results. It is
based on the observation that ternary simulation is equiva
lent to dual-rail encoding of feedback signals followed by
binary simulation. The latter is implemented efficiently
by applying a series of logic optimization techniques of in-
creasing power. Theresults provideboth amethod for quick
causality analysis, and a method for optimization of cyclic
circuits. Furthermore, thefinal acyclicimplementation may
be produced directly from the logic synthesis tools rather
than from BDDs, <o it retains the structure of the initial
implementation as much as possible.

There are severa areas for futurework. First, full cheap
causality needs to be implemented with complete dua-rail
encoding of the circuits, rather than relying on the structure
of ESTEREL-generated circuits and the arc-breaking algo-
rithm to maintain some integrity of the causality analysis.
Second, amodified al gorithm must be devel oped for sequen-
tial circuits. This agorithm will simply be an iteration of
the causality analysis presented here, and areachable states
computation (both done on the arc-broken acyclic circuit)
similar to thealgorithmpublishedin[8]. Third, more exam-
plesfor causality analysismust be obtained and anayzed, so

that the gain of this new method over the compl ete method
can be assessed on practical designs. Finally, thetechniques
should be applied to cyclic circuits as an a priori optimiza-
tionmethod, beforefull-causality iscarried out. Thisshould
improve the performance of sccausal significantly.

Acknowledgements

Helpful discussionswith Gérard Berry are gratefully ac-
knowledged. This work was supported in part by the Na
tional Science Foundation under grant INT-9505943.

References
[1] G. Berry. The Constructive Semantics of Pure Es-
terel. 1996. To Appear, avalable now at ftp:

Ilwww.inria.fr/meijelesterel/papers/constructiveness.ps.gz.

[2] G. Berry and G. Gonthier. The Esterel Synchronous Pro-
gramming Language: Design Semantics, Implementation.
Science of Computer Programming, 19(2):87-152, 1992.

[3] G.Berry and E. Sentovich. On constructive causality, 1997.
Work in progress.

[4] R. DeSimone. Note: A small hardware bus arbiter speci-
fication leading naturally to correct cyclic description, Mar.
1996. Technical note.

[5] A. Girault, T. Shiple, and H. Toma. The sc-causal compiler,
1997. Documentation provided with the ESTEREL compiler.

[6] S.Madlik. Analysisof Cyclic Combinational Circuits. InPro-
ceedings of the| EEE International Conference on Computer-
Aided Design, pages 618625, Nov. 1993.

[7] E. Sentovich, K. Singh, C. Moon, H. Savoj, R. Brayton,
and A. Sangiovanni-Vincentelli. Sequential Circuit Design
Using Synthesis and Optimization. In Proc of the ICCD,
pages 328333, Oct. 1992.

[8] T. Shiple, G. Berry, and H. Touati. Constructive Analysis of
Cyclic Circuits. In Proceedings of the European Design &
Test Conference, pages 328-333, Mar. 1996.

[9] T.R. Shiple. Formal Analysisof SynchronousCircuits. PhD
thesis, UC Berkeley, Electronics Research Laboratory, Col-
lege of Engineering, University of California, Berkeley, CA
94720, Oct. 1996. Memorandum No. UCB/ERL M96/76.

[10] G. Smith and R. Walford. The Identification of a Minimal
Feedback Vertex Set of aDirected Graph. |EEE Transactions
on Circuits and Systems, CAS-22(1):9-15, Jan. 1975.

[11] L. Stok. FalseLoopsthrough Resource Sharing. In Proceed-
ings of the IEEE International Conference on Computer-
Aided Design, pages 345-348, Nov. 1992.

[12] R.v.Hanxleden, J. Bohne, L. Lavagno,and A. Sangiovanni-
Vincentelli. Hardware/software co-design of afault-tolerant
communication protocol. In Proceedings of the IEEE In-
ternational Wor kshop on Embedded Fault-Tolerant Systems,
Dallas, Sept. 1996.



	CD-ROM Home Page
	ISSS97
	Front Matter
	Table of Contents
	Session Index
	Author Index


