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ABSTRACT

The graph dualization approach to floorplan design with
rectangular modules usually involves topology generation fol-
lowed by sizing. The sizing problem for nonslicible topologies
is NP-complete. Slicible topologies are often preferred for
their simplicity and efficiency. Linear time algorithms exist
for generation of topology corresponding to a given rectan-
gular graph, but these do not guarantee slicible topologies
even if one exists. Moreover, there is a class of rectangu-
lar graphs, known as inherently nonslicible graphs, which
do not have any slicible topologies. Previous methods for
efficient generation of a slicible topology under sizing con-
straints for any rectangular graph, are likely to require ad-
dition of pseudo-blocks, thereby more empty area. In this
paper, new tighter sufficiency conditions for slicibility of rect-
angular graphs are postulated and utilized in the generation
of slicible area-optimal floorplans. These graph-theoretic con-
ditions not only capture a larger class of slicible rectangular
graphs but also help in reducing the total effort for unified
topology generation and sizing.

Keywords : Very large scale integration (VLSI), Floor-
planning, Slicible Floorplans, Nonslicible Floorplans, Heuris-
tic Search, Planar Graphs, Graph Dualization.

1. INTRODUCTION

Floorplanning is an important phase of VLSI physical design
cycle. It determines the topology of the layout, i.e., the rela-
tive positions of the logical modules on the chip, based on the
interconnection requirements of the circuit, the dimensions of
the logical modules and estimates for area, wire length, etc.
The floorplan optimization problem consists of finding a
suitable topology and sizing[5]. A well-known approach to
floorplan topology generation is based on graph dualization
[4]. The interconnection requirements among the different
functional modules in a floorplan are generally represented

by an adjacency graph. A fioorplan and its adjacency graph

have a geometric duality relation. Characterization of adja-

cency graphs which have a rectangular floorplan realization

is given in [4]; such graphs are called rectangular graphs.
In the floorplan optimization problem, various objective
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Fig. 1 : An INS Graph

functions such as the area and the perimeter of the outer-
most bounding rectangle, the total wire length for intercon-
necting the modules, or some other routing area estimate are
commonly used. In many cases, a good estimate of the areas
of the building blocks are available at this stage, although
their aspect ratios may vary over a wide range. Area-optimal
floorplan generation based on graph dualization, appear in
[1, 3, 4, 10]. It was established in [6] that there is a class
of rectangular graphs, called Inherently Nonslicible (INS)
(Fig. 1), which do not have any slicible floorplan realiza-
tion. Although certain sufficiency conditions for slicibility
have been formulated {7, 9], exact characterization of INS
graphs is still unknown. Hence, given an input rectangular
graph, none of the existing polynomial time algorithms can
guarantee a slicible floorplan for it, even if one exists. Since
slicible floorplans are often preferred due to their simplicity in
sizing [5, 8] with respect to the nonslicible ones, our empha-
sis here is on the generation of area-optimal slicible floorplans
without using pseudo-blocks, for a larger subset of non-INS
graphs.

The paper is organized as follows: main results are summa-
rized in Section 2, preliminaries appear in Section 3, then the
key theorem on tighter sufficiency conditions for slicibility is
established in Section 4. The unified floorplanning algorithm
using the new criteria is outlined in Section 4 and concluding
remarks are presented in Section 5.

2. MAIN RESULTS

In graph dualization, a major condition for rectangular floor-
plan realization is that the graph must not contain any com-
plex triangle. In [9], it has been shown that with an additional
constraint that the input graph contains no complex cycle of
length 4 (complex 4-cycles), slicible floorplans always exist.
In this paper, a stronger condition for slicibility is proved.
It is also shown that even if a rectangular graph contains
complex 4-cycles, it is necessarily slicible, provided either all
complex 4-cycles in the graph are maximal, or there does not
exist any complex 4-cycle in the graph whose all four vertices
are assigned to be corners of the corresponding floorplan.
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Fig. 2: BFS ordering of extended rectangular graph

Based on these conditions, the unified floorplan optimiza-
tion method of {2, 3] is adapted to generate slicible floorplans
for a larger set of input rectangular graphs, and nonslicible
ones for the rest. For an input graph, first all the complex
4-cycles are detected and if these are maximal, i.e., not con-
tained in any other complex 4-cycle, an area-optimal slici-
ble floorplan is produced. The subgraph contained within a
maximal complex 4-cycle is replaced by a super-vertex. The
method suggested in [3] is then recursively applied to the re-
duced graph, and the expanded versions of the super-vertices.
At any level of the recursion, our tighter conditions are once
again used to decide whether the corresponding sub-floorplan
to be generated is slicible. In this paper, the method proposed
for floorplan optimization has two major advantages: (i) it is
simpler, as it uses a reduced graph for topology generation
thereby inducing a much smaller search domain, (ii) it is likely
to generate slicible floorplans without any pseudo-vertices for
a larger set of input graphs than previous algorithms.

3. PRELIMINARIES

A rectangular floorplan (RFP) is essentially a rectangular
dissection of a given rectangular section by isothetic line seg-
ments called cuts. The indivisible non-overlapping rectangles
correspond to the functional modules. A floorplan is said to
be slicible if it is obtained recursively by using through-cuts
or slices only, otherwise it is nonslicible. A slicible RFP can
be represented by a tree. Conventionally the circuit modules
are assumed to be rectangular in shape and the junctions
among such rectangles are assumed to be T-junctions only.
Two floorplans having same rectangular graph are said to be
equivalent.

A given a plane triangulated graph (PTG) G has a corre-
sponding RFP F only under certain necessary and sufficient
conditions [1, 4]; such an adjacency graph is called a rectan-
gularly dualizable graph, or in short, a rectangular graph.
These graphs have unique plane embeddings.

To determine a floorplan F for a rectangular graph G, the
unique embedding of G is first extended by adding four ex-
ternal vertices r, b, I and u on four sides of G corresponding
to the right, bottom, left, and top boundaries respectively
of a floorplan of G. The exterior vertices of G are con-
nected appropriately to the external vertices and the edges
(u,7), (1, b), (b, 1), (I,u) are added in order to form an ex-
tended rectangular graph E(G) (Fig. 2), which is also pla-
nar. A vertex in G adjacent to more than one vertex of r(G),
b(G),l(G),u(G) is called a corner vertex. At most four ver-
tices on the outermost cycle of G are chosen as corner vertices
[4]). A corner vertex in G corresponds to a corner module of
F. The four corner vertices in G need not always be distinct.

Next, G4 the geometric dual of E(G) (without considering
the exterior face of E(G)) is determined and embedded recti-
linearly to obtain a floorplan F. Since the outermost cycle of

G, the four sides of this rectangle, denoted by West, South,
East and North consist of the four sets of exterior vertices of
G,

A path in Gy is a sequence of vertices such that the con-
secutive vertices in it are adjacent. A cut in the floorplan is
a path in G4 between two exterior vertices on two opposite
sides; the corresponding cut-set of edges in E(G) decomposes
it into exactly two non-empty subgraphs G; and G,. The two
sequences of vertices on the two sides of these cut-edges of G,
called the boundary paths P; and. P, of the cut, are essentially
the new boundaries of the sub-floorplans on the two sides of
the cut, for the subgraphs Gy and G,, respectively.

A chord free path (CFP) [9] in G is a path P =< vy, vs,

.. yun > where for all i # j: a) v; # vj and, b) if (v, v;) € G,
then |i — j| = 1. If Pis not CFP, then it has two vertices v;
and v; such that |i—j| > 1 and the edge (v;, v;) in G is called a
chord of P. A chord (v;,v;),1 < j is called a mazimal chord
of P, if there is no other chord (v, v;) where k <i < j <1

A cut is chord free if both of its boundary paths are chord
free. A proper slice in a floorplan is a cut which is chord
free (therefore embedded as a straight line) and both G; and
G, are rectangular. A cut is vertical (horizontal) if it is
between North and South (East and West) sides. The cut-set
in G corresponding to a slice in a floorplan is often referred
to as a slice in G. Hence, a floorplan of a given G can be
obtained in a top-down fashion by recursively finding slices
among several possible cuts in the floorplan. For nonslicible
floorplans, slices may not exist at some levels of recursion.

In a plane graph, a complex cycle of length n (or a com-
plex n-cycle), denoted by C,, is a cycle of n edges such that
there exists at least one vertex in the finite region bounded
by the cycle. A necessary condition for rectangular dualiz-
ability is that G must not contain any complex triangle. One
of the earlier sufficiency conditions for existence of slicible
floorplans, is that G has no complex 4-cycles. An example of
a rectangular graph with complex 4-cycles, and its floorplan
is illustrated in Fig. 1. A maximal Cy (MC,) is defined to
be a C, which is not contained in any other C, of the rect-
angular graph, (eg. cycle 1,2,3,4 in Fig. 1). By definition,
a MC, of a rectangular graph cannot contain another MCjy.
A C, can be either center-sliced or corner-sliced [9]. Due to
rotation symmetry, there are four different corner-slicings of

an MC,.
4. NEW STRONGER SLICIBILITY CRITERIA

Some of the known properties of slicible floorplans and the
corresponding rectangular graphs, which are relevant to our
new criteria for slicibility, are recapitulated below.

(2)[4] Let G be a planar triangulated graph with corner vertices

(b)(9]

(e)[9}

fixed. G admits a RFP if and only if E(G) contains no
complex triangle.

Let G be a planar triangulated graph which admits a
rectangular floorplan. Let E, be a vertical slice on G
and G, and G, be two sub-graphs decomposed by E,. If
both boundary paths P(E,), P,(E,) are chord free, then
both G, and G, admit rectangular floorplans.

Let F(G) be a slicible rectangular floorplan. Let § =
(e, ..., en) be aslice of F{G). The corresponding set of
dual edges E, = (e},...,e,) in G is a proper slice.

(d)[9] The intersection of a proper slice E, and any C, is either

Gy is embedded as the bounding rectangle of the floorplan for
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empty or contains exactly two edges.

OQur new result on slicibility is now presented in the theo-
rem below.



Theorem 1 A rectangular graph G with n vertices, n >
4, is slicible if it satisfies either of the following two con-
ditions :

e its outermost cycle is a complex 4-cycle (Cy) and not
all the four exterior vertices of it are required to be

COTNETS;

e its outermost cycle is not a Cy and all the complex

4-cycles of G are mazimal.

Proof : Consider an arbitrary rectangular graph G =
(VE). E(G) contains no complex triangle (C;). It is to be
shown that if either of the above conditions is true, then there
always exists a proper slice E, through G.

For a given E(G), the corner vertices are fixed. If G con-
tains a cut-vertex v,, E, can be the set of edges incident to
the left (or right) of v.. If there is a vertex v € G which
occupies two corners (non-distinct), simply let E, be the set
of edges incident to v. This covers the first sufficiency condi-
tion of the theorem. Since the outermost cycle is a complex
4-cycle and not all four exterior vertices are not required to
be corners, one of them is assigned two corners.

Thus the remaining graphs are those with distinct corners
in E(G) and G contains no cut vertex. For this purpose, the
vertices of E(G) are labeled using a procedure similar to that
used in [9] :

o Delete the vertices u(G), I(G), and b(G) and their inci-
dent edges.

o Starting from r(G) as the root vertex, traverse the re-
maining graph in a breadth-first (BFS) manner. Label
a vertex v at level ¢ in the BF'S tree as v'.

The graph is now redrawn so that vertices on the same BFS
level are vertically aligned (Fig. 2). It was shown in [9] that
if the graph does not contain any Cy, then it admits a slicible
floorplan. Considering the above BF'S ordering, now the sec-
ond condition of our theorem is proved by showing that it is
possible to construct a proper slice even in the case when com-
plex 4-cycles exist, provided all of them are maximal. In this
construction procedure, for each proper vertical slice we con-
sider only the maximal chords. Moreover, a sequence of slices
from right to left s constructed, so that the right boundary
path of any slice is always chord free. From planarity of the
rectangular graph, since chords are pairwise non-crossing, lo-
cal modifications around a maximal chord (details given later
on) are used for such construction. For the purpose of estab-
lishing our stronger condition, w.l.o.g. it suffices to consider
only complex 4-cycles with a single vertex within it. Any
subgraph within a complex 4-cycle can always be replaced
with a super-vertex and our results apply equally to those
cases too.

Let E(i, ) denote the set of edges between levels ¢ and j
and let the vertices at level ¢ be labeled i,.. ., v:.' Then, a

vertical slice through E(G) is simply given by

So = E(i,§) — {(u(G),z) | = € V} - {(b(G), ) | y € V}.

Iis boundary paths are given by

Po(S0) = (v = u(G), th, .., v sy = B(G));  Pi(S) =
(v =u(G),v},..., v v, 1 = B(G)). '

In the proof below, consider j = i+1. A number of possible
cases may arise when all complex 4-cycles of G are maximal.
Case 1. Isolated set of maximal Cys in G.

Case 1.1. All the C;s interior to G.

Consider the BFS representations for a C, interior to G
(Fig. 3) and the slice S;. Then, the corresponding segments
of P, and P, are given by

Po(So) = (v}, vhyyy- -y 0); ,v:,tll,...,v:;*l .

Pi(So) = (v
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Fig. 3: Proper slice in a graph with isolated C,
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A. As illustrated in Fig. 3a, the cut S, has a C; on its
left. Let vi*! be the topmost vertex in the BFS ordering
mentioned above, which is adjacent to v} +1- In order to con-
struct a proper slice, consider a detouring operation w.r.t.
the maximal chord (v, v;t') on left of S;. The modified slice
Sy excludes those edges of Sy which have left end-points in

the range < vj¥},...v*! >, and includes the maximal chord

itself, the edge (vj*!, v:,*_;‘l), the edges between levels i +1 and
i+ 2 wilh right endpoints iu the range < vit, ... v >, and
the edge (vit!,vj%}), thereby ensuring a CFP on the left of
the ;. For example, in Fig. 4, the edges (1,2), (2,6), (2,7),
(3,7), and (3,4) in Sy are replaced by the edges (1,2), (1,6)
and (1,4) to obtain Sj. It is claimed that such local modifi-
cations do not result in the creation of any new chord on the
right of S.

For the sake of contradiction, let P,.(S,) have a chord (a, 8).
Now the following cases may arise :

A.i) Both a and 8 are at level i : (a, §) is an edge of P,(S}),
which became a chord when the maximal chord was de-
toured. This implies that there is a chord (v}, },,), but
since a sequence of vertical slices from right to left is
being obtained, this would have been a chord in the pre-
vious iteration between levels i — 1 and 4. If i = 1, then
the presence of this chord implies the existence of a C;
in E(G).

Both a and B are at level i+1: By construction of S,
both of these vertices must be included in P,(S}) due to
the local modification. This implies the existence of a
C3 inG.

a is at level i and B is at level i + 1: The only pos-
sibility is that & = v} and B = v;*', but this implies the

existence of a Cs = (v}, v;'',v}*!) in G.



B. Now, consider the alternative BFS representation (Fig.
3b). The cut S, intersects the Cy and has a maximal chord
on its left. To construct a proper slice S}, a similar detour
operation w.r.t. the maximal chord on left of S, is performed.
Once again, if S; happens to have a chord (a, A), the following
possibilities may occur.

B.i) Both a and B are at level i : (a, ) became a chord
of P,(S;) when the maximal chord was detoured. This
is similar to Case A.i above and is handled in the same
manner.

B.ii) Both a and B are at level i+1: By construction of S},

and from planarity of the graph, such a chord cannot

exist. ’

B.iii} a is at level i and B is at level i+1: By construction of

85, and from planarity of the graph, such a chord cannot

exist in this case also.

Case 1.2. Some C;s along the outermost cycle of G.
In this case, w.l.o.g. assume that the vertices v}, v2 and
2
v

. are at the three corners of G. It is clear to see that the
detour operations of Case 1.1 are identically applicable in this
case, and hence a proper slice can be constructed through the
C,. Extending our reasoning to the general case, it can be
inferred that if G contains an isolated C, having at most three
exterior vertices of the latter along its outermost cycle, then
a proper slice can be constructed through the C,.

| ./ I
| / |
@ | 7 |
| I |
& _ J
B 1
| v | | ; ! vp"ll 1 vi
Pl Vk », k
) o » I
g 1 |
v vli I\ qu Vli
| N

) [ © |
Fig. 5: Proper slices in a graph
with two C,s sharing an edge

Case 2. Connected set of maximal C;s.
Case 2.1. Two C,s sharing an edge.
Case 2.1.1. Both C,s interior to G.

Two BFS representations exist for this case, as shown in
Fig. 5. Consider Fig. 5b. Slice S, is intersecting the C, on
the right and has a chord on left of it. Application of the
slice*detour operation results in Sj. By same reasoning as in
Case B of 1.1 above, it can be shown that no chord exists on
either side of S;. However, the proper slice S} is special, as
it corner slices both the Cys simultaneously.

For the alternate BFS representation of Fig. 5c, following
the reasoning of Case A of 1.1 above, a proper slice can be
obtained which essentially corner-slices both the C,s simul-
taneously.

Case 2.1.2. One or both C;s sharing some boundary
vertices and / or edges of G.
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Fig. 6: Proper slice in a graph
with two C,s sharing a vertex

Let us assume w.l.o.g. that three exterior vertices of one of
the Cys are at the corners of G. Then, by reasoning identical
to those of Case 1.2, it is clear to see that a proper slice can
be obtained which corner-slices both the Cys simultaneously.

If G contains only the two Cys sharing an edge (Fig. 5)
then also a proper slice can be constructed through G.

Case 2.2. C,s sharing a vertex.

Case 2.2.1. Both C,s interior to G.

Consider the BFS representation in Fig. 6. The cut S
which detours a chord is a proper slice by similar reasoning
as above. This essentially corner slices both the Cis.

Case 2.2.2. One or both the C,s have some vertices
and /or edges on the outermost cycle of G.

As shown in Fig. 6, a proper slice can be obtained through
both the Cs. If the boundary vertices of the Cys are such
that the vertices v}*' and v{*? are adjacent to ¢(G) in E(G),
then bipartitioning the graph using S} yields an E(G,) with a
Cs. Hence, in this case, slicibility of G cannot be guaranteed.

Finally, in our above analysis, since the modified slice in-
cludes the maximal chord that is detoured, there is a possi-
bility of introducing a chord to the left of the modified slice.
If there is a chord between any two vertices in level i + 2
which are connected to vfi“, it implies the presence of a C; in
G. Alternatively, a chord may exist to the left of S} between
two vertices in level i 4 2 either of which is also connected
to the vertices v;T}, vt} ..., vi*!. In such a case, an alter-
native proper slice through G can be constructed by starting
the BFS traversal of E(G) from (G (Fig. 7). If for a par-
ticular assignment of corners, it is not possible to construct
a vertical slice through G at some stage, a horizontal slice
can always be constructed through it. Blocking of both hori-
zontal and vertical slices implies the presence of a nested Cj,
which contradicts the second condition of Theorem 1 [11].

" For a small set of E(G)s, however, construction of a proper
slice through it may not be possible; such examples are shown
in Fig. 7. It is easy to show that for such E(G)s, slight

“alteration of the corners of the E{G) will always make G

slicible.

In general, however, G may contain a combination of all
the above cases. In all the instances, extending the above
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Fig. 7: Some interesting cases

discussions, it is easy to show that a proper slice can always
be constructed. a

Observation 1 For a rectangular graph G containing
nested Cys, slicibility cannot be guaranteed by the above
eriteria.

UNIFIED TOPOLOGY GENERATION AND
OPTIMAL SIZING

The new result on slicibility is utilized to obtain a unified
method for topology generation and optimal sizing. The
method starts with an input rectangular graph G and checks
whether it satisfies the first condition of Theorem 1. Then
it finds all the Cys in it, and selects the MC;s in them. The
subgraph within each of them is then replaced with a super-
vertex to obtain a reduced graph G. The information stored
for a super-vertex are its subgraph and the nesting of Cys in
it. The unified floorplan optimization method AOFFP* of [3]
is then applied to G with the addition of recursive checking
of condition 1 in Theorem 1 for the subgraphs G, and G;.

For topology generation, an AND-OR graph search is ap-
plied as in [3]. Each OR node represents the several ways
of splitting a rectangular graph (or its subgraph), and each
AND node represents an actual split. For each leaf node,
since the set of implementations are known, they are used to
estimate the dimensions of any composite module (which is
a part of the RFP) corresponding to a subgraph.

A leaf may be a simple vertex or a super-vertex. In case the
leaf is a super-vertex, its corner vertices are first determined,
and the unified method is recursively applied to the corre-
sponding subgraph to determine the set of implementations
for it. During recursive bipartitioning, a minor alteration is
required in selecting one of the possible slices at an OR-node;
the slice with the best score among those for which the two
corresponding subgraphs satisfy Theorem 1, is chosen and
then slices in the subgraphs are searched for. In the event
of failure to find such a slice, the one with the best score is
selected and both slices as well as Z-cuts [3] in the subgraphs
are looked for.

At the end of the search procedure at the topmost level
of rccursion, as in [3], a marked trcc is produccd, cach node
of which represents either some cut or some basic rectan-
gular block. This marked tree corresponds to the floorplan

5.
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tree Tr corresponding the obtained topology. A bottom-up
processing is now performed using TF to obtain an optimal
implementation of the topology generated.

By applying our new results of Theorem 1 to topology gen-
eration and sizing of RFPs, a substantial reduction in the
search space is attained. Moreover, since slices are used for a
larger set of input rectangular graphs, the bottom-up sizing
procedure is very simple.

Complexity : The time complexity for finding all C,s is
O(nlogn), n being the number of vertices in the rectangular
graph, as shown in [9]. The complexity for the AND-OR
search method is difficult to analyze but that of the bottom-
up sizing is polynomial in n in all slicing and most of the
nonslicible cases.[3].

Currently implementation of this new algorithm is in
progress and experimental results will be available shortly.

5.1. The Algorithm

Algorithm optplan
Input: A rectangular graph G;
Output: A floorplan topology for G and an irreducible
set of implementations for it.
begin
find all C;s in G;
replace interior subgraph of each MC, with a super-vertex
to obtain the reduced graph G;
for each super-vertex, preserve corresponding subgraph
and the list of C,s and their nestings in it;
AO_FP(G)
(* finds optimal implementations for topology obtained *)
find size(G);
end.
procedure AO_FP(G')
begin
if G’ satisfies Theorem 1 then
AO_FP. (G"); (* only slices to be looked for in G *)
else AO_FP,  (G');
(* both slices and Z-cuts to be looked for in G *)
end;

The subroutines AO_FPy;, ,, and AO_FP,_ , are the same

as the AO-FP* {3]; in the former, only slices are used, while
in the latter, slices and/or Z-cuts are used. During the topol-
ogy generation phase, when a leaf node corresponding to a
super-vertex is encountered, a recursive call to AO_FP is ini-
tiated on the subgraph corresponding to the super-vertex. If
this subgraph has complex Cjs, then their interior portions
are again reduced to super-vertices at that level of nested
recursion.

5.2. Example

Fig. 8a shows a rectangular graph G having three Cys
viz., (11,12,14,21), (16,17,18,23) and (25,26,27,28), of which
the first two are MC,s. In order to apply our algorithm to
this graph, first the nested C; (25,26,27,28) is replaced with
a super-vertex 24 to have a reduced graph G as shown in
Fig. 8b. Fig. 8c shows a BFS representation of E(G) and
a proper slice through it, corner slicing the C, (16,17,18,23).
Corresponding P; and P, are observed to be chord free.

At the top level of recursion, using AO_FP;j, ., let a leaf
node n, of the AND-OR graph correspond to a super-vertex,
and hence a next level of recursion initiates at n,. If the sub-
graph corresponding to n, is a C, with all four exterior ver-

tices as distinct corners, AO_FP,,,, is applied to it followed

by the bottom-up function find.size(). On completion of the



execution of find_size() at node n,, control returns back to
AO_FP*. _ for the G and continues in that manner.

slice
6. CONCLUSION

Even though complete characterization of Inherently Nonsli-
cible floorplans is still an open problem, our work in this pa-
per is one step forward to revealing the mystery. If the input
graph contains only maximal complex 4-cycles, our algorithm
always generates a slicible floorplan. For other types of in-
put graphs, however, our method may use Z-cuts to obtain
a general floorplan. Optimal sizing has been incorporated in
our method so as to generate area-optimal floorplans. The
notion of super-vertices to reduce the input graph and the
doubly recursive approach need to be studied further for im-
provement.
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Fig. 8: (a) A graph, (b) its reduced form,
(c) BFS ordering of the reduced graph
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