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Abstract - This paper reports on a highly effective
methodology to construct complex high performance
microprocessors.  Critical aspects of the methodology include
an integrated database for design control, algorithmic power
grid generation, fully customized clock network insertion,
timing driven placement and routing, an integrated timing
closure strategy, and incremental checking that includes
formal netlist verification, DRC and LVS.   The methodology
places particular emphasis on continuously improving the
integration process and incrementally improving both the
design and the interoperability of the tools.  The final chip
tape-out was 17 calendar days from the final netlist.

I.  INTRODUCTION

The current generation of high performance superscaler
microprocessors  pushes chip transistor counts of 3-5 million.
The architectural complexity and cycle time requirements create
critical challenges in clock distribution, robust power
distribution, timing driven design, engineering change
management, and full-chip  verification.  To deal with these
challenges,  a design methodology was crafted to rapidly and
repeatedly integrate the chip while providing fully customizable
clock and power distribution and an automated engineering
change (EC) facility to deal with last minute timing and logic
corrections. A “pseudo-hierarchical” design approach was
applied to manage the floorplan, placement, and routing
optimization of the standard cell control logic.  The methodology
is an evolution from a traditional hierarchical approach and
results in a die size reduction of 96mm2 on the same netlist.

The methodology was applied to a highly superscaler
PowerPC™ microprocessor.  The chip was fabricated in an
0.35µm ( Leff = 0.25µm), 2.5V CMOS n-well technology with six
levels of metal: five for global routing and one for local
interconnect.  The die, as depicted in Figure 1, is 10.4mm X
14.4mm and contains 6.5 million transistors.  The chip includes
48KByte of cache and 121 custom macrocells.  Random control
logic is implemented with approximately 67,000 standard cells
instantiated at the top level of the hierarchy.  In addition, there
are approximately 32,000 master-slave latches (25,300 of which
are in custom macrocells) that require a highly tuned clock
distribution network.

The design environment consists of third-party and
proprietary IBM CAD tools interfaced to Cadence Design
Framework II™ (DFII).  DFII is used for data and design process
management.  Using the DFII extension language, SKILL™,
enables the team to customize and extend the environment as
needed.

Figure 1. Chip layout (metal layers not shown)

II.  METHODOLOGY OVERVIEW

The cornerstone of the design methodology is the ability to
rapidly and repeatedly integrate and verify the chip.   The notion
of “construct by correction” was utilized to repeatedly integrate
the chip over a three month period.  Each iteration incrementally
improved the overall quality of the design, and enabled real-time
feedback of parasitic RC values to the timing tool.  In order to
iterate on the design, a consistent design view of VHDL,
synthesized netlist, and physical design data is essential.  As
such, facilities were developed to enforce consistency by creating
incomplete or missing physical design data such that it matched
exactly the specifications of the incoming netlist (Figure 2).  This
enabled floorplanning, placement, and routing to continue,
despite errors, throughout the earlier phases of the integration



process to provide valuable timing feedback with routing
parasitics.  Any problems encountered are corrected concurrently
and captured on the next pass through the process.  In addition,
techniques were developed to make early full-chip DRC and LVS
assessments without final routing data.  The net result of the
incremental process was a final netlist to tapeout cycle of 17
days, which included two EC passes, a crosstalk assessment, and
a fast-path assessment.

Despite the fact that the focus of the methodology is on
iterative improvement and rapid integration, technical
capabilities are not sacrificed.  The final integration cycle
includes a fully custom, algorithmically generated power
distribution on five layers of metal that includes legal standard
cell core site definition based on power analysis.  In addition, a
fully customized clock distribution network is generated with a
resultant typical skew of 180pS.  Furthermore, multiple routing
passes are performed to handle special classes of nets.  The
methodology focuses on tight integration of these sophisticated
capabilities to maintain quality and productivity.
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Figure 2 Methodology Overview

III.  DATABASE AND METHODOLOGY CHECKS

 The chip integration methodology discussed above uses the
DFII database to represent all chip design views from the original
synthesized netlist to final chip.  The DFII database models both
the logical and physical  structure of the chip so all changes
could be represented.

 There are two key components to the database:
1. The DFII autoLayout view contains full-chip

netlist, placement and global routing information.
2. The DFII abstract views for macrocell and standard

cell components (essential placement and routing
data derived from the layout views).

 Critical to the “construct by correction” method is the
ability to rapidly integrate incrementally improved versions of
the design.  A facility called “Process Cells” manages and
enforces design consistency.  The full-chip synthesized netlist is

the “golden” chip representation.  Process Cells analyzes the
netlist and checks for a unique symbol in the standard cell or
macrocell library referenced by each instance in the netlist.  If a
symbol is missing, or has incorrect terminals, a symbol is created
which matches the terminals required in the netlist.  The symbols
are an important link to the original netlist, since they will be
referenced to create a full-chip schematic netlist for final
verification.  Next, an inventory of layouts that corresponds to
the symbols is built.  If a layout is missing, a “black box”
consisting of a place and route boundary can be generated
automatically or by the macrocell designer.  Finally, an abstract
is created from each layout.  During abstract generation, the
symbol and layout are examined for consistency.  Terminals in
the layout but  not in the symbol are deleted, while terminals in
the symbol but missing from the layout are created.  At this
point, Process Cells has ensured that a consistent set of symbols
and abstracts are available to construct a  full-chip autoLayout
view  of the synthesized netlist, and to proceed with
floorplanning, placement, and routing.  This innovative approach
allows floorplanning, placement, and routing to occur with no
layout, symbol, or schematic cellviews, and to incrementally add
them to the chip integration process as they are completed.

 In order to avoid problems in the abstract generation
process, macrocell designers are provided with a methodology
checking program. This program ensures that layouts meet
guidelines established for placement and routing.  The key
checks are:

• Pin names match names found in the netlist.
• Pins are on-grid.
• Pins are on correct layer and accessible to router.
• Manufacturable shapes are enclosed by a place and

route boundary by half the minimum design rule
space.

• Clock pin(s) meets the clock router methodology.
 Process Cells provides an important link to the macrocell

design team.  The system is highly automated and is designed to
tolerate problems in the macrocells, including violations of the
methodology checks.  When a problem is identified, it is
communicated to the macrocell design team for resolution while
chip integration proceeds.  When a new type of error is found,
enhancements are made to Process Cells so that future chip
integration runs can tolerate such an error, and the methodology
checks are enhanced to prevent reoccurrence of the error.  Hence,
each iteration of the methodology results in faster processing of
the chip.  Once abstracts are generated and the netlist imported
into DFII, chip integration can take place.  The remainder of the
paper details the various chip integration operations summarized
in Figure 3

IV.  FLOORPLANNING

During floorplanning, the macrocell blocks (i.e. cache and
dataflow macrocells) are pre-placed at fixed locations while the
standard cells are optimized with a "pseudo-hierarchical"
floorplanning approach.



Pseudo-hierarchical floorplanning is a technique whereby the
design can be hierarchically planned and timed without incurring
any of the physical design complexities caused by doing true
hierarchical floorplanning, placement and routing.  It also
minimizes potential global suboptimizations due to local
optimizations inherent in a hierarchical design approach.
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 Figure 3 Chip Integration Process

Hierarchical designs have certain advantages over flat
designs: early timing prediction, design complexity management,
design size management, and concurrent design.  However,
difficulties arise from concurrent design of the global and lower
levels of the hierarchy.  Routing resource and area allocations
between levels of hierarchy must be carefully and constantly
managed to prevent local routing congestion and area growth.
Additional problems exist in optimal soft/hard-block pin
placement, global area optimization with rectangular soft/hard-
blocks, and the timing optimization of critical paths which span
multiple levels of the hierarchy.

This pseudo-hierarchical floorplanning approach assigns
hierarchical entities of random logic to overlapping regions in the
floorplan.  The region controls provide a good estimate of the
global route lengths for early timing prediction and analysis.
Region size, location, and composition are optimized to meet the
cycle-time objective (timing closure).  Region composition is
iteratively determined by analyzing timing constraints and
connectivity constraints.  Due to tool integration issues, true
timing driven floorplanning is not used.  Instead, the floorplan is
incrementally updated with placement results.  The members of
each region are color coded so that the floorplanner can
graphically analyze the interaction of different regions and
interactively modify region size, location, and composition.  In
this design, 45 logic entities specified in the VHDL are dissolved

and reconstituted as 23 tightly integrated regions.  Overlapping
regions allow cell intermixing between adjacent VHDL logic
entities to minimize wire length and congestion.  Logic function
that is not critical to the timing of the design, such as the self-test
control logic, is placed in a region located in the least congested
area of the die.  Once all logic macrocells have been assigned to
regions (more than one macrocell can be assigned to the same
region), a flat placement and routing of the entire design can be
completed in a matter of a few hours and fed back to the
floorplan.

This pseudo-hierarchical floorplanning approach couples the
timing control of a hierarchical design with the advantage of a
flat design in placing the standard cells in non-rectangular areas.
This "pouring" of the standard cells into the natural outline of
large pre-designed macrocells yields higher density and
performance.

V.  POWER ROUTING

After custom macrocell placement, a power distribution
network is algorithmically generated using a custom SKILL
program.  The power grid is generated on five levels of metal
with multiple width wires and pitches supported on each metal
level.  The algorithm provides the capability to define multiple
power terrains by area and level of metal.  For example, two
areas of the chip may have completely unique grids on all layers.
Two other areas of the chip may share a common power grid on
metal levels one and two, yet have different power grids on metal
levels three though five.  Chip-level obstructions can also be
added to reserve areas for special routing or wire isolation.

The power grid interaction with a macrocell is personalized
for each metal level. Macrocells can interact with a metal level in
three ways: stop at the macrocell boundary, wire through the
macrocell connecting to power pins and avoiding obstructions, or
wire through the macrocell ignoring pins and obstructions.  This
flexibility allows the power grid to be tailored for each macrocell
and assures robust connections.

Power analysis is performed after the grid is personalized.  If
large IR drops are discovered because of truncation at macrocell
boundaries, the underpowered rails are removed from the
network. This guarantees that all remaining areas of the power
network are adequately connected.

Standard cell core placement sites are now added to the
floorplan. By design convention, all standard cells make power
connections on the metal-one layer.  The algorithm searches the
list of all metal one rails and adds core sites in open areas that
have the required first metal power rails. The IR drop analysis
guarantees that the generated core sites have sufficient power
connections and no further analysis is required.  The chip is
ready for standard cell placement.

VI.  TIMING DRIVEN PLACEMENT

The objective of standard cell placement during
floorplanning is to provide accurate feedback to timing analysis
for iterative improvement of region composition and macrocell
placement.  Only region constraints are employed during these



iterations to ensure fast turn-around-time. Once the floorplan is
optimized, the placement is further refined by asserting timing
constraints to improve critical path delay. This design flow
consists of multiple iterations of placement, global routing,
parasitic extraction, and timing analysis (Figure 4). During each
iteration, the cycle time is measured using the extracted net
capacitance and RC.  Drive strength of standard cells is
readjusted to match the net loading, and the design is re-timed
with the newly selected cells.  A set of critical paths is identified
from this timing run and a new set of tighter capacitance targets
is generated to steer placement to a more optimal solution.
These steps are repeated until the target cycle time is met or no
further improvement is possible.  The placement engine,
Cadence QPlace™, supports various forms of timing constraints
with minimal impact on run time. Net capacitance constraints are
applied to nets in the critical paths. This directs QPlace to work
harder to minimize these nets, thus improving the chip operating
frequency.

The net capacitance targets are generated by invoking a
custom program during static timing analysis.  Nets in the critical
paths are sorted by "slack".  Slack is defined as the difference in
time between the capture clock and arriving data; positive slack
means that the path is faster than the required cycle time while
negative slack means that the path is slower.  The net
capacitance  target is set proportional to the path slack, i.e. nets
in the paths with more negative slack are assigned a tighter
capacitance target.  Nets connecting standard cells within a
region have a tighter capacitance target than nets connecting
standard cells between regions.  Nets connecting large custom
macrocells are not constrained even if they are in the critical path
since they are fixed during floorplanning.

An alternative approach to setting net capacitance targets is
to use path constraints, where critical paths are defined with a
specified cycle time. In general, this is the best method for timing
driven design. However, controlled experiments with path
constraints demonstrated that there is only marginal
improvement over the net capacitance constraint method for this
design.  This is due to the iterative refinement of the net
capacitance targets over many chip integration passes.
Additionally, path constraints are more disruptive to the
methodology  since the timing analysis tool is not tightly
integrated with the placement tool.

The final stage of placement exercises an algorithm which
inspects the entire chip for n-well contacts to the power supply.
The algorithm optimally inserts n-well contact cells in the
standard cell rows to meet the design rule specification.

VII.  CLOCK METHODOLOGY

Clock design is a major part of the overall chip integration
methodology and often a critical path to a fast design turn-around
time. The hierarchical clock design methodology used here
streamlines this process while minimizing clock skew and power.

The system clock distribution network contains three stages,
a large global clock buffer (GCB), approximately 20 regional
clock buffers (RCBs) and several hundred local clock buffers

(LCBs). Control signals on the LCB inputs are used for clock
gating and test clock generation. A single phase of the clock is
distributed to the inputs of all LCBs. The LCBs generate two
pairs of complementary clocks, one pair to the master latches and
the other to the slave latches.  The portion of clock trees within
the custom macrocells are designed and routed as part of the
macrocell layouts. The clock interface to a macrocell layout
consists of only one input pin. This simplifies global (top-level)
clock routing and helps identify inaccessible clock pins. Variable
width clock routing of macrocells occurs concurrently with
floorplanning so that chip-level information is used to guide the
optimization of the macrocell clock tree.
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Figure 4 Timing Driven Design Iteration

After floorplanning, placement and power routing are
complete, clock tree synthesis and optimization are performed at
the global chip level to generate and place clock buffers. This is
accomplished using IBM CO2, a tool that traverses the clock
trees, identifying and reconfiguring equivalent nets as well as
adding parallel copies of buffers to minimize clock skew [1].
The LCBs at the leaf nodes of the clock tree are placed at the RC
centroid of the latch cluster to minimize RC induced skews.  All
the buffers are then snapped to legal placement locations and any
cell overlaps resolved.  Using IBM CLOCKTREE, a two-layer
balanced router that can vary the width of each wire segment,
clock routing is then performed on all but the lowest (local clock
buffer to latch) levels in the clock tree; the local clock buffer to
latch levels are routed with minimum width wires using Cadence
Cell3™.

Once the clock design is complete, signal routing takes place.
At the same time, the clock nets are extracted, verified and
analyzed to ensure the skew objective is met. To ensure a
functional design, early mode (fast path) analysis using the
extracted SPICE netlist is performed and any problems are fixed
either by replacing the LCB with one that has a late launch clock
or by adding delays to the fast paths.  The capacitance for the
entire network including macrocells is 558 pF and the typical
clock skew is 180 pS [2]. This compares favorably with the mesh



scheme,  where sizable networks having capacitance values of
1400 pF and 2000 pF (for 2 different chips) were required to
achieve similar skews [3].

VIII.  ROUTING

Once power routing, placement and clock-tree generation are
complete, signal routing is carried out.  Because five levels of
metal were available for routing, congestion was not a major
concern for this design.  In addition, it was found through
iterative analysis that wiring parasitics extracted after global
routing were consistently within 5% of the final routed
parasitics, insuring that the cycle time of the routed design could
meet the prediction.  Therefore, the primary issue during routing
was on-chip signal coupling (crosstalk).

Factors contributing to crosstalk include the interaction of
five levels of metal for routing, circuits on a net with small
output drive devices or pass-gate input structures, fast signal
slew rates, and the large die size which leads to long parallel
nets with only an 0.9µm separation.  Crosstalk avoidance
therefore must be considered as part of the overall routing
methodology.

One ideal attribute of a router is the ability to route nets such
that the simultaneous switching of adjacent signals will not cause
signals to fail noise margin guidelines.  However, due to existing
tool limitations, a modified wide-wire routing technique is
adapted to isolate noise-sensitive signals from other nets. This
approach is selected because of the availability of routing
resources.  With simulations and previous hardware indicating
that major crosstalk problems occur between signals that are one
track away from each other on the same level of metal (for this
fabrication technology), noise-sensitive nets are routed first as
triple-wide wires.  All timing-critical nets are then routed,
followed by the remaining nets in the design.  The triple-wide
wires are then resized back to their default (single) widths,
creating an effective isolation region to other nets.

IX.  EC METHODOLOGY

An essential component of the methodology is an EC process
for making complex changes to the design without restarting chip
integration.  An ideal EC process handles an arbitrarily complex
change, locates the new logic at the point of failure, impacts a
minimum number of manufacturing levels, and does not effect
chip cycle-time or area.  This methodology addresses all aspects
of the ideal EC process, while focusing on two areas in
particular:

a) The ability to make complex logic changes using
metalization layers only.

b) A technique to add gates as close as possible to
connected logic in order to reduce any impact on cycle
time.

To facilitate the process, a small EC library consisting of the
following gates is created:  inverter, NAND, NOR, AND-OR,
delay line, terminator (capacitive load for late balancing of
clocks), tie-up/down (to tie off gates disabled by an EC), and a
latch.  These gates are designed with a two-channel gate array

primitive (unpersonalized) cell which contains two NMOS and
two PMOS transistors, and is personalized only with metal.  The
EC gates are the same height as, and abut to, the standard cells
and can be located in any legal placement site.

At the conclusion of the integration process, at the time the
full-chip autoLayout view is converted to a layout view, gate
array primitive cells are placed in all unoccupied standard cell
placement locations on the chip.  EC logic can subsequently be
placed at any of these locations.

During final chip integration, one late EC required the
transformation of a single cycle path to a half cycle path, the
removal of approximately six gates and the addition of
approximately twenty gates.  The chip cycle time was maintained
due to the richness of the EC library and the ability to place the
EC elements in close proximity to the change.

X.  DESIGN VERIFICATION

Key to the success of delivering working silicon on an
abbreviated schedule is a method to quickly verify the final mask
design against the high-level language description of the chip,
which is verified by exercising billions of logic simulation cycles.
This process is accomplished using formal verification
techniques developed at IBM.

Once the VHDL description is verified, a reference model is
generated using IBM's logic synthesis system [4].  After synthesis
and timing optimization, formal verification is performed against
the reference model to verify that logic and timing correction
transforms maintained Boolean equivalence with the reference
model [5].  This process also verifies that the many logic changes
applied during the synthesis and timing correction process are
properly incorporated into the design (Figure 5).

After physical design, the resulting schematic netlist is
formally verified against the timing-optimized model using the
same Boolean equivalency checking software.  This process is
critical in verifying:

1. Correct operation of data translation from the IBM
synthesis system to the Cadence design framework.

2. Logic changes made during the physical design
process, such as fanout repowering and clock
distribution, are logically equivalent to the original
design.

3. Last minute engineering changes (to fix functional
bugs or critical path timing problems) are applied
correctly.

To complete the formal verification cycle, custom macrocells
instantiated in the schematic netlist are formally verified against
their VHDL descriptions [6,7].

As a result of these processes and software described above,
formal verification insures that the final schematic netlist used
for full-chip logic-versus-schematic (LVS) verification is
logically equivalent to the VHDL description of the chip.

Due to chip data volume and turnaround time considerations,
Avant!™ Vericheck™, a hierarchical physical verification tool
for full chip  design rule checking (DRC) and LVS checking, is
used.  Coupled with a macrocell auditing scheme that ensures



DRC and LVS correct standard cells and custom macrocells,
hierarchical checking proves extremely advantageous in
diagnosing full-chip design errors very quickly.
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Figure 5 Verification Flow

Critical to the requirement for rapid turnaround time in the
“construct by correction” method are two techniques developed
to reduce the number of errors caught late in the design cycle.

First, DRC checking is executed on chips of increasing
completeness. For example, an initial run is made on a chip that
includes only the I/O and the power distribution network.  Later,
another run is made on a complete floorplan with all custom
macrocells placed but with no global routing.  With each
iteration, more and more of the methodology and floorplan
related errors are eliminated.

A second, more important technique is used to provide LVS
results on a fully placed, but unrouted chip.  Virtual nets are
created by attaching text to the terminals of each instance in the
design. The text identifies the net that would be attached to each
terminal  later by the global router.  This approach provides
critical full-chip LVS results many weeks earlier than the
traditional approach.

XI.  SUMMARY

This paper presented a robust design methodology for high
performance microprocessors.  The methodology focused on
“construct by correction” to iteratively improve the design. The
pseudo-hierarchical approach provides the benefits of
hierarchical design in terms of timing prediction yet suffers none
of the shortcomings of hierarchical design management and area
suboptimizations.  Indeed, the methodology succeeds by
postponing critical design decisions to as late in the design cycle
as possible.  Regions evolve during the design cycle, rather than
being predefined at the start, and placement and routing are
globally optimized.  The methodology was successfully
implemented on a PowerPC microprocessor and is easily

extensible to other high performance, highly integrated products,
such as ASICs.
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