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Abstract

Previous literature on VLSI routing and wiring estima-
tion typically assumes a one-to-one correspondence be-
tween terminals and ports. In practice, however (say,
in a gridded routing regime), each \terminal" consists
of a large collection of electrically equivalent ports, a
fact that is not accounted for in layout steps such as
wiring estimation. The presence of multiple ports for
a given terminal gives rise to the group Steiner mini-
mal tree problem. In this paper, we address the general
problem of minimum-cost routing tree construction in
the presence of multi-port terminals. Our main result is
the �rst known heuristic with a sub-linear performance
bound. In particular, for a net with k multi-port termi-
nals, previous heuristics have a performance bound of
(k�1) �OPT , while our construction o�ers an improved

performance bound of (1 + ln k
2
) � pk �OPT . Our Java

implementation is available on the World Wide Web.

1 Introduction

Previous works on routing often assume a one-to-one
correspondence between terminals and ports. In other
words, they either implicitly or explicitly require each
terminal to consist of a single port. However, in actual
layout, a \terminal" to which a wire is to be routed
can consist of a large collection of separate ports. Even
though a wire may connect to any one of these ports,
this degree of freedom is often not fully exploited in
routing or in wiring estimation.

In this paper, we address the general problem of
minimum-cost Steiner tree construction in the presence
of multi-port terminals. Clearly, the problem of inter-
connecting a net with multi-port terminals is a direct
generalization of the NP-hard Steiner problem, and is
therefore itself NP-hard (in the classical Steiner problem
each terminal contains exactly one port). The Steiner
Minimal Tree problem is de�ned as follows.

The Steiner Minimal Tree (SMT) problem: given
an undirected weighted graph G = (V;E) and M � V ,
�nd a minimum-cost tree which spans all of M .
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The Steiner nodes V � M may be optionally used
in order to reduce the overall cost of the tree spanning
the set of terminals M . In this paper, we address the
generalization of the Steiner Minimal Tree problem to
nets having multi-port terminals, formalized as follows.

The Group SteinerMinimal Tree (GSMT) problem
[4, 10]: given an undirected weighted graph G = (V;E)
and a family N = fN1; :::; Nkg of disjoint groups of
nodes Ni � V , �nd a minimum-cost tree which contains
at least one node (i.e., port) from each group Ni.

As in the classical Steiner problem, we are allowed to
include optional (i.e., Steiner) nodes, in order to reduce
the cost of the spanning tree interconnecting the groups
of N .

We note that there is a second version of the GSMT
problem, namely, the strong connectivity version, which
allows di�erent connections to the same group to attach
to di�erent nodes in that group (i.e., all the nodes of a
group are implicitly connected to each other, which al-
lows the solution to the GSMT problem to be a forest -
see Figure 1(b)). On the other hand, the GSMT prob-
lem studied in this paper (i.e., the one de�ned above)
involves weak connectivity 1(a), where the solution to
the GSMT problem must be strictly a tree (and intra-
group edges must be explicitly part of the solution).
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Figure 1: A feasible solution for (a) the weak-connectivity
version of GSMT, and for (b) the strong-connectivity ver-
sion of GSMT. Ovals represent terminals (i.e., groups), hol-
low dots represent ports within a terminal, and solid dots
represent Steiner nodes.



The GSMT problem captures several practical sce-
narios in VLSI layout design:

� In grid-based maze routing regimes, \dot-models"
or similar techniques are commonly used to cre-
ate multi-node routing abstracts for each terminal
within the multi-layer grid. A complicated termi-
nal geometry can easily have 30 or more ports lo-
cated on multiple fabrication layers. These ports
form a group in the GSMT formulation. The ports
are electrically equivalent, and a routing tree may
connect to more than one port of a given terminal:
here, the strong connectivity model applies.

� Alternatively the possibility of rotating and mirror-
ing a module also induces multiple port locations
for a given terminal (for a general module, there are
up to 8 possible orientations) [10]. These locations
correspond to a group in the GSMT formulation.
Use of these ports is mutually exclusive, and a ver-
sion of the weak connectivity model applies.

� Finally, there are cases in practice where a number
of ports (say, around the boundary of a block) are
electrically equivalent (by virtue of being connected
inside the module, e.g., by feedthroughs); again,
the GSMT problem applies with these sets of ports
forming groups.

Even though such scenarios are very real, the free-
dom to connect to any of several port locations has not
been explored in geometric or graph-based routing tree
constructions, nor has it been accounted for in wiring
estimation.1 In deep-submicron technologies, the error
incurred by simply approximating multiple ports with,
say, their center of gravity can be substantial { espe-
cially when the error propagates to delay or slew-time
estimations through multiple logic stages. Furthermore,
instances of this problem become common when hier-
archical design methodologies are applied (e.g., when
global nets can be partially pre-routed).

The strong connectivity version, though NP-hard as
well, is somewhat more tractable than the weak version.
In particular, an instance of the strong connectivity ver-
sion can be approximated by converting the GSMT in-
stance into an instance of the graph Steiner problem,
and then setting to zero the weight of every intra-group
edge. This enables e�ciently solving the strong-GSMT
problem to within a factor of 2 or less of optimal using
known graph-based Steiner tree algorithms [8] [12] [13].

The only existing approximation algorithms for the
weak GSMT problem produce solutions k � 1 times
worse than optimal [5]. Here, we propose a new heuristic

with an improved performance ratio2 of (1+ ln k
2
) �
p
k,

where k is the number of groups. On the negative side,
it is known that this problem cannot be e�ciently ap-
proximated with a performance bound of less than ln k�
OPT [2] [6].

1Detailed maze routers implicitly exploit this degree of free-
dom, but their solutions may have unbounded error.

2The performance ratio is an upper bound on the ratio of
heuristic solution cost divided by optimal solution cost, over all

problem instances (i.e., the worst-case of cost(APPROX)

cost(OPT )
).

2 Depth-bounded Steiner trees

In this section, we will introduce the concept of
depth-bounded trees and prove that an optimal depth-2
-bounded Steiner tree approximates the optimal group
Steiner tree to within a factor of

p
k.

In general, the given graph Gmay violate the triangle
inequality, i.e., there may be edges (u; v) inGwhose cost
is greater than the the cost of the minimumu-to-v path
in G. Clearly, an optimal group Steiner tree (GSMT)
will contain no such edges, since replacing such edges
with the corresponding shortest paths will decrease the
total tree cost. Therefore, without loss of generality, we
will replace G with its metric closure; i.e., the complete
graph where the cost of each edge (u; v) is equal to the
cost of the minimum u-to-v path in G.

In order to simplify our analysis, we modify G as
follows. For any port v we will create a new node v0 and
a new zero-cost edge (v; v0); now v

0 supplants the role
of v, i.e., v0 becomes a port and v becomes a non-port
(see Figure 2). Clearly, an optimal tree in the modi�ed
graph will have the same cost as an optimal tree in the
original, unmodi�ed graph. This transformation insures
that in the optimal Steiner tree every port is a leaf.
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Figure 2: All ports become leaves.

Let T be an arbitrary tree with a �xed node r called
the root. We de�ne the depth of a rooted tree T as the
maximum number of edges in root-to-leaf paths. Our
heuristics for the group Steiner problem aim to con-
struct rooted trees of either depth one or depth two.
We de�ne d-stars to be rooted trees of depth of at most
d (see Figure 3(a)-(b)).

Our motivation for de�ning d-stars is two-fold: (i)
they can be used to approximate optimal group Steiner
trees well, and (ii) they can be constructed e�ciently,
as discussed in the next section. The goal of the rest of
this section is to show that for any arbitrary (but hence-
forth �xed) tree T there exists a low-cost 1-star and a
low-cost 2-star spanning the leaves of T . In particular,
this implies that an optimal group Steiner tree can be
approximated by a group Steiner 2-star (that is a 2-star
which spans all the groups).

In deriving upper-bounds on the cost of 2-stars, we
will sum the costs of tree paths between nodes which are
adjacent in 2-stars. However, since such paths are not
necessarily disjoint, the same tree edge may be counted
multiple times in this sum/bound. We refer to this sit-
uation as edge reuse (see Figure 3(c)). For the tree T ,
edge reuse provides a loose upper bound on the ratio
cost(2-star)/cost(T ). Indeed, if no edge is used more
than j times when replacing edges of a 2-star by the
corresponding paths in T , then the 2-star has cost no
more than j times the cost of the tree T . Our overall
strategy below is to derive upper bounds on the edge
reuse for 2-stars.
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Figure 3: (a) A 1-star, and (b) a 2-star with root r.
(c) Graph edges are thin, while 2-star edges are thick; the
edge e is (re)used here three times in dashed paths between
nodes adjacent in the 2-star.

More formally, given a tree T , a 1-star S1, and a 2-
star S2 (collectively denoted Sd), let reuseT (Sd) denote
the maximum number of times that any tree edge is
used in tree paths connecting nodes adjacent in Sd. In
order to establish an upper bound on the cost of a 1-
star, we �rst select an appropriate common root r for
S1 and S2.

The following is a known fact from graph theory
(which we prove here for the sake of completeness).

Lemma 1 Any tree T has at least one node r, called the
center, such that each connected component of T � frg
contains at most half the leaves of T (See Figure 4).

Proof: We direct each edge e = (u; v) in T from u to v
if the number of leaves in the connected component of
T �feg containing v is strictly more than the number of
leaves in the other component (See Figure 4(a)). Since
T is a tree, we can start from an arbitrary node and walk
along directed edges, until we reach a node r without
any incident outgoing edges. The node r is a center
since no connected component of T �frg contains more
leaves than the sum of the leaves in all of the other
(disjoint) components.

Placing the root r of S1 at a center of the tree T

minimizes the edge reuse of S1, as follows.

Lemma 2 Let r be a center of the tree T with the set
of leaves L. The 1-star S1 with the root r and leaves L

costs no more than
jLj

2
� cost(T ).

Proof: Since r is a center of T , reuseT (S1) is not larger
than jLj=2 (See Figure 4(b)). Indeed, the reuse of an
edge e of T is the number of root-to-leaf paths in T that
contain e. But since r is a center, any edge of T lies on
at most half of all such paths.

Now, we will construct a 2-star S2 from the tree T

with cost no more than 2 �
p
jLj � cost(T ), where L is

the set of leaves of T . Note that a center r of the tree
T will serve as a root of both S1 and S2. Note also that
S2 and T (and S1) have the same set of leaves, namely
L. Thus, to completely specify the 2-star S2, we need
to select an appropriate set of intermediate nodes that
lie on paths between the root r and the leaves.

component
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Figure 4: (a) When a tree center is removed, no subtree
has more than jLj=2 leaves. (b) When we place the root
at a center of the tree, no edge is reused more than jLj=2
times (in dashed paths). In this example, the edge reuse of
the 1-star is 7.

Let Ci be connected components of T �frg. In order
to connect nodes in di�erent Ci, we must pass through
the root r. De�ne Ti as a component Ci plus the root
r and the (unique) edge between the root and Ci (Fig-
ure 4(a) shows three such components Ci). Finally, we
denote by Li = Ci \ L the set of leaves of T that are
contained in Ti. Because the root r is a center of T ,
the size of Li is at most jLj=2 in each rooted subtree
Ti. Now, we will construct a 2-star S2 for the entire
tree T by taking the union of the 2-stars for each of the
subtrees Ti. Note that the edge reuse of S2 in T is the
maximumof edge reuses over all Ti. We de�ne a node u
as an ancestor of v if the path from the root to v passes
through u.

Now we determine an appropriate set of intermediate
nodes for a 2-star S2 in each Ti. First, we sort the
leaves of Ti in an arbitrary depth-�rst manner, labeling
them l1; l2; :::; ljLij. Next, we partition this sequence
into �xed-size blocks of contiguously-numbered leaves.
We de�ne the intermediate nodes of our 2-star for Ti as
the set of least common ancestors3 of the leaves in each
of the blocks. In our 2-star, the root is connected to
these intermediate nodes, and each intermediate node
is connected to the leaves of the corresponding block.

Note that the edge reuse is determined by two kinds
of paths: (i) paths from the root to intermediate nodes
(Figure 5(a)), and (ii) paths from intermediate nodes to
leaves (Figure 5(b)). The number of paths of type (i)
is clearly bounded by the number of blocks, i.e., jLij=b,
where b is the block size.

Now we estimate the contribution to edge reuse of
paths of type (ii). Since we have sorted the nodes in
depth-�rst order, any node v will be a common an-
cestor for a sequence of contiguously-numbered leaves,
say lx; lx+1; :::; ly. Clearly, v is an ancestor of the least
common ancestors of all blocks that are contained com-
pletely in this sequence. Thus, the edge between v and
its parent u does not lie on the paths from the interme-

3a common ancestor of a set of nodes is the least common
ancestor if it is not an ancestor of any other common ancestor of
these nodes.



diate nodes to leaves of such blocks. Therefore, we are
concerned only with paths to the leaves outside of such
blocks. Such leaves may occupy only the �rst or the last
b� 1 positions in the sequence lx; :::; ly. This induces a
bound of 2 � (b�1) on the contribution of type-(ii) paths
to the reuse of edge (u; v).
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Figure 5: Triangles represent depth-�rst -ordered sub-
trees. (a) Type-(i) paths which reuse the edge (u; v) termi-
nate at intermediate nodes below v (there are no more than
jLij=b of these). (b) Type-(ii) paths which reuse the edge
(u; v) terminate at leaves that lie in the leftmost and the
rightmost blocks that together contain at most 2 � (b � 1)
leaves.

Thus, the total edge reuse is at most jLij

b
+ 2 � b.

Choosing b =
p
jLij=2 yields an upper bound on edge

reuse of 2
p
2 � jLij. Since the root is the center of T , we

have jLij � 1

2
jLj, and the edge reuse is at most 2

p
jLj.

This proves that for any tree T with the set of leaves L
and a center r, there is a 2-star rooted at r with the same
set of leaves L, and with cost at most 2

p
jLj � cost(T ).

A more sophisticated analysis can improve this bound
by a factor of 2. This establishes the following result.

Theorem 3 Let Opt be an optimal group Steiner tree,
let k be the number of groups, and r be a center of Opt.
Then:

1. the cost of an optimal Steiner 1-star rooted at r is
at most k

2
� cost(Opt); and

2. the cost of an optimal Steiner 2-star rooted at r is

at most
p
k � cost(Opt).

3 A Provably-Good Heuristic

From the previous section, we know that an optimal
Steiner 2-star is a reasonable approximation of an opti-
mal group Steiner tree, denoted Opt. Unfortunately, the
problem of �nding an optimal Steiner 2-star is NP-hard.
In this section, we will therefore indirectly approximate
Opt by approximating an optimal Steiner 2-star. We
can show that the problem of approximating a mini-
mum set cover can be embedded in the problem of ap-
proximating a minimum Steiner 2-star. Therefore, for
any � > 0, it is unlikely that there exists a polynomial-
time approximation algorithm with performance ratio
(1 � �) � lnk, where k is the number of groups [2]. We

present a (sub)optimal algorithm with performance ra-
tio 1 + ln k

2
� 0:307 + ln k.

Theorem 3 states that there exists a low-cost Steiner
2-star with the root placed in a center of an optimal
group Steiner tree Opt. Although we do not know which
node of the graph G is a center of Opt, this is not an
obstacle: for each node r of G we construct a low-cost
Steiner 2-star Appr2(r) with root r, and then we select
the least-cost Appr2(r) over all possible choices of r (see
Figure 6). Thus, we only need to specify how we will
construct a Steiner 2-star Appr2(r) with a given root r.

Group Steiner Heuristic for arbitrary weighted graphs
Input: a graph G = (V;E), a family N

of k disjoint groups N1; : : : ; Nk � V
Output: a low-cost tree Appr spanning

at least one vertex from each group Ni
For each node r 2 V do

�nd a low-cost 2-star Appr2(r) rooted at r
intersecting each group Ni; i = 1; :::; k

Output the least-cost 2-star Appr,
i.e. such that cost(Appr) = minr2V cost(Appr2(r))

Figure 6: Our main approximation algorithm for the
group Steiner problem on arbitrary graphs produces a low-
cost Steiner 2-star.

Let Opt1(r) be the optimal Steiner 1-star rooted at
r, and let Opt2(r) be the optimal Steiner 2-star rooted
at r. The main idea in constructing Appr2(r) is se-
quential improving of Opt1(r). There are two advan-
tages to using Opt1(r) as an initial approximation for
Opt2(r): (i) unlike Opt2(r), the 1-star Opt1(r) can be
found e�ciently, and (ii) the cost of Opt1(r) is bounded
by k

2
� cost(Opt) if r is a center of Opt (Theorem 3).

Therefore, to measure the approximation quality of a
2-star, we will compare its cost to the cost of an optimal
1-star with the same root and with leaves taken from
the same groups spanned by the 2-star. Formally, let
S

0
2 be a 2-star with root r and let groups(S0

2) be the
set of of groups spanned by S

0
2. We denote by S

0
1 an

optimal 1-star with root r connected to groups(S0
2) (see

Figure 7). We de�ne the norm of S0
2 as norm(S0

2) =
cost(S0

2)=cost(S
0
1).

In order to specify our low-cost 2-star Appr2(r), we
need to select the intermediate nodes and also deter-
mine the set of groups that should be connected to each
intermediate node. It is therefore natural to represent
Appr2(r) as a union of subtrees, each consisting of a
single intermediate node that is connected to the root
as well as to certain leaf ports. Such rooted subtrees
will be called partial stars (see Figure 7(a)).

We select the partial stars for Appr2(r) in the follow-
ing greedy manner. First, we �nd a partial star P with
the minimumnorm (i.e., the minimum ratio of the cost
of P over the cost of the corresponding 1-star). Next, we
remove the groups that it spans (i.e., groups(P )) from
the set of all groups. Finally, we determine the next
partial star with minimum norm, and iterate until all
groups are spanned. Figure 8 gives a formal de�nition
of this procedure.
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Figure 7: (a) A Steiner 2-star, and (b) the corresponding
optimal 1-star. The shaded areas in (a) is a \partial star".

In order to complete the description of our heuristic,
we will next present an e�cient procedure that, given a
root r and set of groups M , �nds a minimum-normpar-
tial star P (r;M ) rooted at r and spanning some of the
groups in M . This procedure is formally described in
Figure 9. Note that in this procedure we use cost(u;Ni)
to denote the cost of an edge between u and any node
in group Ni.

Rooted Steiner 2-star Heuristic
Input: a graph G = (V;E), a family N of k disjoint groups

N1; : : : ; Nk � V and a root r 2 V
Output: A low-cost 2-star Appr2(r) with the root r

intersecting each group Ni

Appr2(r) frg
M  N
While M 6= ; do

�nd a partial star P = P (r;M) with the minimum norm
M  M n groups(P )
Appr2(r) Appr2(r) [ P

Output Appr2(r)

Figure 8: The greedy heuristic for the rooted graph.

The following lemma establishes a performance ratio
for the Rooted Steiner 2-star Heuristic (Figure 8). (The
proof is omitted in this extended abstract.)

Lemma 4 Let Optd(r), d = 1; 2, be an optimal Steiner
d-star rooted at r. The cost of the output of the Rooted
Steiner 2-star Heuristic (Figure 8) is at most:

cost(Appr2(r)) � (1 + ln
cost(Opt1(r))

cost(Opt2(r))
) � cost(Opt2(r))

Together with Theorem 3 this implies our main result:

Theorem 5 The Group Steiner Heuristic (Figures 6,
8, 9) solves the the Group Steiner Minimal Tree problem

with performance ratio (1 + ln k
2
) �
p
k, where k is the

number of groups.

Minimum Partial Star Algorithm
Input: a graph G = (V;E), a family M of k disjoint groups

N1; : : : ; Nk � V and a root r 2 V
Output: The minimum-norm partial star P (r;M) with the

root r and leaves from some groups of M
For each v 2 V do

sort M = fN1; :::; Nkg such that
cost(v;Ni)

cost(r;Ni)
�

cost(v;Ni+1)

cost(r;Ni+1 )

�nd j 2 f1; :::; kg that minimizes

norm(v) =
cost(r;v)+

P
j

i=1
cost(v;Ni)P

j

i=1
cost(r;Ni)

M(v) fN1; :::;Njg
Find v with the minimum norm(v)
Output the partial star P (r;M) with the intermediate node v

adjacent to the root r and groups M(v)

Figure 9: Our algorithm for �nding a minimum-norm
partial star.

Proof: Our overall Group Steiner Heuristic (Figure 6)
runs the Rooted Steiner 2-Star Heuristic (Figure 8) for
all possible roots r 2 V . If the root is a center rc
of the optimal group Steiner tree Opt, then by Theo-
rem 3, we know that cost(Opt1(rc)) � k

2
� cost(Opt) �

k
2
� cost(Opt2(rc)), where k is the number of groups.

Therefore, Lemma 4 implies that the cost of the tree
output by our main algorithm is at most 1 + ln k

2
times

the cost of the optimal Steiner 2-star. Finally, by The-
orem 3, we obtain a group Steiner tree that costs no
more than (1 + ln k

2
) �
p
k times the optimum.

4 Time Complexity and Enhancements

In this section, we �rst estimate the runtime of our
heuristic and then we discuss several ways of improv-
ing its runtime and performance ratio. Let n denote
the total number of ports in all of the groups, i.e.
n = j [ki=1 Nij. Let � denote the time complexity
of computing all-pairs shortest paths in the graph G.
As part of our preprocessing, we shall also compute in
time O(n � jV j) all vertex-to-group distances (i.e., dis-
tances between each vertex and the closest port in each
group). The time complexity of the Minimum Partial
Star Heuristic (Figure 9) is O(jV j � k � logk). There-
fore, the Rooted 2-star Heuristic (Figure 8) has runtime
O(jV j �k2� logk), where k is the number of groups. Thus
we obtain the following result:

Theorem 6 The total runtime of the Group Steiner
Heuristic (Figure 6) is O(� + jV j2 � k2 � logk), where
k is the number of groups, and � is the time complexity
of computing all-pairs shortest paths.

The performance ratios derived in previous sections
pertain to worst-case analysis. However, in practice we
are also interested in the average-case behavior of our
heuristics, in terms of both the solution quality and the
runtime. One such practical improvement entails omit-
ting the removal of the set of groups spanned by the
minimum-norm 2-star (see the inner loop of the algo-
rithm in Figure 8). Instead, every time we accept an



intermediate node, we update the best possible current
star by calculating the distance to a particular group
not from the root, but rather from the closest already-
accepted intermediate node. We then use this distance
to sort the groups in the Minimum Partial Star Algo-
rithm (Figure 9).

Another practical enhancement entails computing a
group minimum spanning tree (GMST) instead of a
group Steiner minimal tree (GSMT), that is, a mini-
mum spanning tree for a set of nodes containing exactly
one port from each group. It can be shown that the op-
timal GMST is at most twice longer than the optimal
GSMT. Thus, in approximating the GSMT by a GMST,
we lose only a factor of 2 which does not asymptotically
increase the overall bound of (1 + ln k

2
) � pk, yet yields

substantial savings in runtime.

We may further modify our algorithm by �nding the
minimum spanning (or approximate Steiner) tree for
the set of intermediate nodes and ports chosen by the
Group Steiner Heuristic (Figure 6). We may also make
local (one at a time) port substitutions in groups to re-
arrange the tree topology and reduce the overall cost.

Although provably-good heuristics are frequently
outperformed by local optimization methods, the out-
put of the former can serve as a good starting point
for local-improvement post-processing schemes. For ex-
ample, it was shown in [11] that Christi�des' heuristic
(i.e., the best-known heuristic for traveling salesperson
in graphs [9]) also provides excellent initial traveling
salesperson tours for further local rearrangements.

In the rest of this section, we will show how to handle
more e�ectively instances of the GSMT problem with
some degenerate groups, i.e. groups of size 1. We will
see that treating degenerate groups di�erently will yield
improvements in solution quality as well as in runtime.

The degenerate groups by themselves induce an in-
stance of the classic Steiner Minimal Tree problem, and
such an instance can be approximated e�ciently by
known methods (with a constant performance ratio).
Thus, to solve the SMT problem for degenerate groups,
we may choose a provably-good heuristic from among
the numerous existing ones [1] [3] [7] [8] [12]. For exam-
ple, in time O(jV j3) we may �nd a Steiner tree which
is at most 11

6
times longer than the optimal [13]. The

remaining issue now is to combine the Steiner minimal
tree over the degenerate groups with a tree spanning the
other, non-degenerate groups.

Let N = M1 [M2 be the partition of N into groups
containing exactly one port (M1), and groups containing
at least two ports (M2). We suggest the followingCom-
bined Group Steiner Heuristic (CGSH): �rst, we �nd
the usual SMT for the ports of M1 using the algorithm
from [13]. Next, using our Group Steiner Heuristic (Fig-
ure 6), we �nd the GSMT for the family of groups that
includes M2 and a single arbitrary port from (one of the
groups of)M1. Finally, we output a minimum spanning
tree over the union of these two trees.

If the number of degenerate groups is large, then the
CGSH heuristic will enjoy considerable runtime savings
as compared to the Group Steiner Heuristic (of Figure
6). Moreover, the following theorem shows that this
heuristic also enjoys an improved performance bound.

Theorem 7 The Combined Group Steiner Heuristic
solves the GSMT problem with a performance ratio of
at most:

11

6
+ (1 + ln

k2

2
) �
p
k2

where M2 is the set of groups of size at least 2, and
k2 = jM2j+ 1.

5 Experimental Results

We have implemented our heuristic for the group
Steiner problem using the Java programming language.
Our implementation is available on the World-Wide-
Web at:

http://www.cs.virginia.edu/
~

robins/groupSteiner/

This choice of implementation will enable researchers to
execute our code directly o� the World-Wide-Web using
any Java-enabled browser (this is the �rst implementa-
tion of a CAD research workbench using Java as far as
we know). Preliminary results appear quite promising
and are discussed below.

We compared our heuristic with the heuristic pro-
posed by Reich & Widmayer [10]. Their heuristic begins
by �rst �nding the minimumspanning tree T for the en-
tire set of nodes of all the groups. If a leaf node is not
the last member of its group in the tree T , then it may
be removed. The heuristic then repeatedly deletes such
a leaf node which is incident to the longest edge among
all such nodes (see Figure 10 for a formal description of
this algorithm).

The RW heuristic for the Group Steiner Problem [10]

Input: a graph G = (V;E), k disjoint groups N1; : : : ; Nk � V

Output: a low-cost tree T spanning � 1 nodes from each Ni

M  [ki=1Ni

Find minimum spanning tree T over M , i.e. T  MST (M)
Repeat forever

For each leaf l node of T do
�nd the group N(l) = Ni containing l
If N(l)\ T = l, then mark l

If all leaves of T are marked then exit repeat
�nd an unmarked leaf l incident to the longest edge
remove l from T , i.e. T  T � l

Output the tree T

Figure 10: The heuristic of Reich & Widmayer [10] for
the Group Steiner Problem

Table 1 compares two versions of our heuristic (Fig-
ure 6) to the Reich & Widmayer algorithm [10] (Figure
10). We created each group by �rst de�ning a randomly-
placed square area of predetermined size, and then uni-
formly and independently distributing nodes inside this
square-shaped area. We varied the predetermined group
areas among 10%, 50%, and 100% of the overall square
routing region. All table numbers represent the average
relative improvement over 100 trials, given as a percent
improvement over the tree cost of Reich & Widmayer's
algorithm [10] (negative numbers represent disimprove-
ments).



In the context of VLSI layout, we are primarily con-
cerned with the rectilinear (or Manhattan) plane, where
the cost of routing between two nodes (ax; ay) and
(bx; by) is de�ned to be jax � bxj + jay � byj. While
our implementation uses the rectilinear metric to deter-
mine the distances between ports, our algorithms are
general and indeed apply to arbitrary weighted graphs.

The �rst version of the Group Steiner Heuristic (Fig-
ure 6) that we implemented has the following three mod-
i�cations:

1. Intermediate nodes are selected strictly from
among the ports (i.e., all of the constructions
benchmarked are spanning trees - they do not use
Steiner nodes other than ports);

2. The root of the 2-star is selected from a single ran-
domly chosen group;

3. After accepting an intermediate node in the inner
loop of Figure 9, it is removed from further consid-
eration in subsequent iterations.

The second version which we implemented is a hy-
brid approach which is our �rst version above, except
that the solutions are post-processed with a minimum
spanning tree algorithm (i.e., we output the minimum
spanning tree over the nodes selected by our modi�ed
heuristic described above).

The table column labeled \2-star" shows the aver-
age percent improvements of our modi�ed heuristic over
Reich & Widmayer's algorithm, while data for the hy-
brid approach is given in the column labeled \2-star +
MST". As can be seen from the table, the hybrid ap-
proach signi�cantly outperforms the algorithm of Reich
& Widmayer as the group sizes and the group areas
increase.
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