
A SIMPLE AND EFFECTIVE GREEDY MULTILAYER ROUTER FOR MCMS

Young-Jun Cha1 Chong S. Rim2;3;� Kazuo Nakajima3

1Electronics and Telecommunications Research Institute, Taejon, Korea
yjcha@etri.re.kr

2Department of Computer Science, Sogang University, Seoul, Korea
csrim@ccs.sogang.ac.kr

3Electrical Engineering Department, University of Maryland, College Park, MD, 20742, USA
kazuo@eng.umd.edu

ABSTRACT

We present a very fast area router for MCM design. Given
a set of nets and a routing area, it repeatedly routes as
many nets as possible in two layers selected from top to
bottom until all the nets are routed. The router uses a line
sweep technique and a simple net selection algorithm. By
using e�cient data structures and a novel priority scheme,
the routing can be �nished in time almost proportional to
the routing area. For the benchmark circuits, the proposed
router generates comparable routing results faster by over
an order of magnitude (18 times on the average) than the
previously reported best router.

1. INTRODUCTION

In the traditional electronic system implementation, each
chip is packaged separately and the chips are interconnected
in a printed circuit board (PCB). With the Multi-Chip
Module (MCM) technology, several chips are packaged into
a single chip, which enables us to integrate more circuits in
the same area, to simplify the interconnection in the PCB,
and to reduce the interconnection delay. Thus, the MCM
technology is well suited for very high-performance VLSI

system implementation[2, 3, 8, 13, 14].

An MCM device consists of IC chip modules and a pack-
age body which forms a multilayer routing area. The
modules are usually placed on the top layer of the rout-
ing area, and the remaining layers are used for routing
signals, power and ground, heat conductance, and signal

redistributions[3, 14]. The modules may have input and out-
put pads, which are directly connected to the top layer of
the MCM package, or they may have their own input and
output pins, which are connected to the pads surrounding

each module on the top layer of the package[2]. We may need
to use distributed vias or pin redistribution layers to con-
nect the pads to the signal routing layers, and hence a pin

redistribution procedure may be applied before routing
[5]
.

In this paper we assume that this problem has been resolved

� This author of the paper was supported in part by 94'
Non Directed Research Fund and 95' Grant For Faculty
Research Abroad, Korea Research Foundation.

so that the terminals of every net are already located in the
signal routing area.

In general, an MCM routing area consists of a much larger
number of grid points than those on conventional PCBs and
a large number of layers are needed for routing. Therefore,
the routing problem for MCM is much more di�cult to
solve, and hence a very fast and e�ective routing method is
ever needed. Major �gures of merits used in MCM routing
include the number of routing layers, the number of vias,
and wire length. Their minimization would lead to higher
performance, higher yield, and lower fabrication cost.

In the past several approaches have been proposed for

MCM routing
[4, 6, 7, 9, 10, 11, 13, 15]

. One approach
[4, 7, 13]

ex-

tends the traditional maze routing technique[12], which is
not suited to large problem sizes often encountered in MCM

routing. Another approach[9, 15] uses layer assignment in or-
der to overcome the size and net ordering problems. In this
approach, a global routing of nets is �rst obtained and then
each net is assigned to layers so that wires of di�erent nets

do not intersect each other. A third approach[6] applies
topological routing to MCM.

Recently, two routers, called SLICE and V4R
[10, 11]

, were
developed and the V4R was shown to be the best performer.
Both algorithms iterate the process of sweeping selected
columns of a routing region in one direction. In each such
process, as many nets as possible are routed on a single layer
for SLICE and on double layers for V4R. Since a matching-
based algorithm is used at each selected column, they re-
quire high execution times and may not be able to cope
with large MCMs of the future. The SLICE is even worse
since it keeps all the net routing information on the entire
single layer because of its reliance on maze routing for the
case of routing failure.

In this paper, we propose a very Simple but very E�ective
Greedy Routing Algorithm, called SEGRA. It generates
routing results very comparable to those of V4R but runs
faster by over an order of magnitude (average 18 X). Un-
like SLICE and V4R, our algorithm routes nets by sweeping
each and every column of the area and in two directions si-
multaneously. We create a sweep line each at the left and
right boundaries of the routing area, and perform the rout-
ing by moving the two sweep lines toward the center. In
each sweeping SEGRA tries to route as many nets as pos-
sible on two layers, and this process is repeated until all
the nets are routed. When a sweep line arrives at a new
column, vertical routing of each net is tried by applying a
simple priority-based algorithm. Since we use a small num-
ber of priority levels and e�cient data structures for column
and terminal searching, the routing can be done in almost
linear time with respect to the routing area.

vertical tracks

horizontal
tracks

left sweep
line (LSL)

right sweep
line (RSL)

right running
points

left running
points

terminal
vertical tracks

nonterminal
vertical tracks

Fig. 1. An illustration for terminologies.

Our router successfully completed the routing of the
benchmark circuits used for the performance evaluation of
SLICE and V4R. SEGRA runs about 90 times faster than
SLICE, and about 18 times faster than V4R, on the aver-
age. For each circuit, SEGRA used the same number of
layers as required by V4R, a smaller number of vias and a
very similar total wire length.
Section 2 de�nes some basic terminologies and gives an

overview of SEGRA. Section 3 describes the algorithm and
Section 4 presents our data structures and analyzes the time
complexity of our algorithm. The experimental results are
shown in Section 5, followed by conclusions in Section 6.

2. TERMINOLOGIES AND ALGORITHM
OVERVIEW

The inputs to our MCM routing problem are sets of modules
and nets and a multilayer routing area. The outputs are
sets of wire segments placed in each layer and vias created
between speci�c adjacent layers. Our goal is to complete
the routing so as to minimize the total length of wires, the
number of vias, and the number of layers used.
We assume that the modules are placed on the top layer

of the routing area and that any preprocessing such as pin
redistribution has already been �nished. Each layer in the
routing area consists of a Manhattan style rectangular grid
and each pin of every net is located on a grid point. We call
the horizontal and vertical grid lines the horizontal and ver-
tical tracks, respectively, which are depicted as lightly dot-
ted vertical and horizontal lines in Fig. 1. We call the verti-
cal tracks which have terminals terminal vertical tracks and
the others nonterminal vertical tracks. Our router treats
the two types of vertical tracks di�erently.
Our basic routing scheme is described in Fig. 2. We

�rst read a netlist and the routing area information such
as the numbers of horizontal and vertical tracks. While
reading the netlist, if the net consists of more than two
terminals (i.e., it is a multi-terminal net), we obtain a min-

imum spanning tree
[1]

for the net and partition it into two
terminal nets. Thus we assume that a net consists of two
terminals throughout the paper. We denote the numbers of
terminals, horizontal tracks, vertical tracks, and terminal
vertical tracks by T , H, V , and Vt, respectively. We denote
the number of horizontal tracks having terminals by Ht.
We construct an array for sweeping the routing region

and another for searching terminal information. The former
is a simple linear array of size proportional to maxfH;V g,
called the status array. While sweeping the region, we use
two status arrays for storage of information related to the

START

Y

N

by vertical sweep

N

Y
END

Are all the
nets routed?

Route top two unrouted layers
by horizontal sweep

construct data structures
Read inputs and

Route top two unrouted layers

Are all the
nets routed?

Fig. 2. Overall routing scheme.

sweeping. The array for terminals is designed to accom-
modate any necessary search such as �nding on a speci�c
horizontal track the nearest terminal from the current po-
sition. As explained in Section 4, its size is proportional to
T and the operations on it can be done in logarithmic time.
While sweeping the routing area, SEGRA routes as many

nets as possible in two adjacent layers currently selected
from top to bottom, and the unrouted nets are considered
for the next pair of layers. The sweeping direction is al-
ternatively changed. If it is horizontal for the current two
layers, the direction of sweeping for the next two layers is
vertical, and vice versa (see Fig. 2). We use such a sweeping
technique to improve the routing quality. In each process
of sweeping, whether horizontal or vertical, we perform net
routing in exactly the same way. Hence we describe our
algorithm for a horizontal sweep only in the following.
Before the start of a sweep, we create two vertical lines

called left sweep line (LSL) at the left end and right sweep
line (RSL) at the right end of the routing area. The nets
are then routed gradually as the two lines move toward the
center of the area. If the two terminals of a net n are located
on opposite sides of LSL and the routing is still going on,
the routing for n is partially done on the left side of LSL.
At this time, the routing to the right of LSL starts from the
point on the line where the current partial wiring for n ends.
We call this point the left running point of n. Similarly, if
the terminals of n are located on opposite sides of RSL,
the right running point of n is the point where RSL and
the partial wiring result of n meet. See Fig. 1.
Following the movement strategy to be explained in the

next section, LSL and RSL move to the right and the left,
respectively. While this movement, when a sweep line meets
a terminal of a net n, a running point is created for it. The
running point moves with the sweep line until it can imme-
diately be connected to the other terminal or its running
point of the same net n. When such routing is done, it be-
comes part of the routing result of n which is the trajectory
of the running points. We call the right running point (or
the right terminal if it has not met RSL) the target of the
left running point. Similarly, we call the left running point
or the left terminal the target of the right running point.
Whenever a sweep line arrives at a new vertical track,

the running points on the sweep line may move vertically
toward their targets. The objective is to make a running
point meet its target e�ectively. Similar vertical movements

are made at selected columns in SLICE and V4R[10, 11].
However, their matching-based approach is likely to lead
to longer running times. Our algorithm uses a greedy run-
ning point selection strategy for vertical movement. With a

horizontal sweep (H) f
Create LSL, RSL, and their status arrays;
while (LSL and RSL are not adjacent to each other

and unrouted nets exist) f
repeat f
if (A terminal vertical track or RSL is just to the right

of LSL, or all nets are routed)
break;
else Move LSL one grid point to the right;
if (LSL is on a terminal vertical track)
Create running points on LSL, and update
the status array;

else
Update the priority of each running point on LSL;
vertical move on LSL(0, H � 1, 6);

g
repeat f
This part is the same as the above repeat block except
for RSL and right instead of LSL and left. g

g g

Fig. 3. Horizontal sweep procedure.

limited number of priorities used for the selection, SEGRA
runs faster. We explain the priority scheme and the vertical
movement algorithm in Sections 3.2 and 3.3, respectively.

3. ROUTING ALGORITHM

3.1. Horizontal Sweep

An outline of our horizontal sweep procedure is shown in
Fig. 3. We assume that the horizontal and vertical wire
segments are to be placed in odd and even numbered lay-
ers, respectively. Initially, the sweep lines LSL and RSL
are located at just one grid point outside of the leftmost
and rightmost vertical tracks, respectively. LSL �rst moves
one grid point to the right and performs the operations
described below. LSL continues making right moves over
contiguous nonterminal vertical tracks and stops at the last
such track before reaching a terminal vertical track. RSL
then starts moving to the left in the same way as LSL, and
this entire process is repeated until both lines are adjacent
to each other or all the nets are routed. As explained be-
low, this scheme does not require frequent updates of the
status arrays, leading to a reduction in running time. The
operations on LSL are now described for the two possible
cases.
Case (i) LSL is on a terminal vertical track: We �rst

determine the running points to be located on LSL. We
create a left running point for each terminal located on the
current vertical track. If another running point already ex-
ists at the same position, we remove this old running point
and defer the routing of the corresponding net to a later
trial. We keep all the other existing running points. If no
running point exists at a grid point g on LSL and on the
same horizontal track from g to the nearest terminal m to
the right, we create a running point for m, provided that
no running point is generated from m and point g and the
position of m are within a predetermined distance. The
running points created in this way are to allow for possible
detours to improve routability.
The running points are stored in the status array for LSL.

In addition, each entry of the array contains the closest
terminal or running point located in the sweep direction and
its distance from LSL. This information is used to detect an
obstacle, which is a terminal or a running point that does
not correspond to the net currently under consideration.
The array also contains the information on the target of
each running point. After running point adjustments, we

update these information quickly using our data structures
and binary search to be explained in Section 4.
Case (ii) LSL is located on a nonterminal vertical track:

We keep the current running points. If no running point
exists on a grid point on LSL, we create a running point
for the nearest terminal to the right in the same way as when
LSL is located on a terminal vertical track, and update a
few more things in the status array.
After the creation of running points, we determine if a

vertical movement is needed for each running point and if
so, we move the point. We �rst �nd the priority according
to the priority selection criteria to be described in Section
3.2. We explain the vertical movement of running points
in Section 3.3. After completion of the vertical movement
phase, we move LSL to the next right column and repeat
the same procedure. However, if the next vertical track
is a terminal vertical track, we temporarily suspend the
movement of LSL, and starts moving RSL to the left.

3.2. Priority Selection

The priority of a running point measures how much vertical
movement it needs. The running point with the highest
priority which has not yet been tried is �rst chosen for such
movement. There are six levels of priority, where 6 is the
highest and 1 is the lowest. With this limited number of
priority levels, our vertical movement algorithm runs very
e�ciently. The priority of each running point rp is set by
certain rules. They di�er in the above two cases and are
described below.
Case (i) LSL is located on a terminal vertical track:

1. If the horizontal track that accommodates rp is empty
entirely to the right of LSL or rp and its nearest terminal
or running point to the right on the same horizontal track
correspond to the same net, we give priority 1 to rp, since
we can directly connect the two objects.

2. If there is an obstacle at the distance of four or more grid
points to the right, we assume no urgency to move rp
vertically. Therefore, we give a lower priority than that
determined by Rule 3 shown below. The exact priority
setting is based on the following rule: If no running point
has been created from the right side (i.e., on RSL), we
give priority 2 to rp since the routing problem for the net
may be resolved with RSL. However, if a running point
has been created on RSL, we give priority 3 to rp since
the problem is not resolved even on the right side.

3. If an obstacle is located within three grid points from
the location of rp to the right, we assume some urgency
of moving rp to another position. We give priority 5 if a
running point is created on the right side and give priority
4 otherwise.

Case (ii) LSL is located on a nonterminal vertical track:
We keep the priority determined on the previous terminal
vertical track. However, if an obstacle is located within
two grid points, we change the priority of rp to 6. This
is because rp has only three trials for vertical movement
before it is deferred to the next pass, and hence it needs
to be routed as quickly as possible. Therefore, even if the
sweep line is located on a terminal vertical track, there may
be running points with priority 6. We try to move these
points �rst during the vertical movement procedure to be
explained below.

3.3. Vertical Movement

The procedure of vertical movement is given in Fig. 4, where
U and L indicate the upper and lower limits of the search

vertical move LSL(L, U , p) f
if (U � L) return;
do f
Find an untried running point rp whose priority is equal
to p starting from U down to L;
if (such an rp is found)
Mark rp tried, and try to move rp vertically;

g while (rp is moved or every running point has been
tried)

if (no running point has moved)
if (p > 2) vertical move(U , L, p� 1);
else return;
else f
Suppose that the vertical position of rp is moved up
from Yd to Yu.
if (p > 2) vertical move(Yu+ 1, U , p� 1);
vertical move(L, Yd � 1, p);

g
g

Fig. 4. Vertical movement algorithm.

range, respectively, and p is the priority level currently un-
der consideration. We start the vertical movement proce-
dure with the initial settings of p = 6, U = H � 1 and
L = 0, where H is the number of horizontal tracks. Note
that the running points with priorities > p are not consid-
ered for movement since they have failed at previous trials.
If a running point is selected and successfully moved up
from Yd to Yu, we apply the same procedure recursively to
the intervals [Yu+1; T] and [B; Yd�1] on the same vertical
track. Note that, in the interval [Yu + 1; U], we search for
running points with priority p� 1 since the running points
of priority p have already been tried in the interval.

Suppose that the procedure for vertical movement is
called with parameters L, U , and p. We search the sta-
tus array corresponding to the interval [L; U] from top to
bottom and �nd the �rst running point with priority p. If
there is such a point, we try to move it vertically; else we call
the procedure again with priority p� 1 if p > 2; otherwise
we terminate the procedure.

Suppose that a running point rp is found. We de�ne the
following position and sets of positions (see Fig. 5). Let
t denote the vertical track on which LSL is placed, and
assume that the target is located vertically higher than rp.

1. pb is the position at the intersection of the current sweep
line and the horizontal track that holds the target.

2. Sc is the set of positions located on t between rp and pb
but excluding rp and pb.

3. Let em = 5 + 1

30
jScj. Let Su (respectively, Sl) be the set

of em positions located just above pb (respectively, below
the position of rp) on t. Note that the value of parameter
em is determined experimentally and the number 5 is
added for the case of a very small Sc.

The positions to which rp tries to move are searched in
the order of pb, Sc, Su and Sl. Note that Su and Sl are extra
margins for the case when the search fails at pb and in Sc.
If pb or any other position in the above sets of positions is
located outside the interval [L; U], it is ignored. Also, if any
obstacle is located within the interval, we reduce the search
interval accordingly. The search procedure is described in
detail below.

1. If the right side of the horizontal track from pb is empty
or the nearest terminal or running point from pb to the
right belongs to the same net as rp, rp is moved to pb and
routed immediately.

target of rp

left running
point rp

p
b

Sc

Su

Sl

p
2

LSL

t

p
1

Fig. 5. Search range for vertical movement.

2. We search the points in Sc from top to bottom. If there
is no obstacle on a horizontal track from a point p1 in
Sc to a point p2 which is located on the same vertical
track as the target (see Fig. 5), and p2 and the target
can be connected vertically, we move the running point
to p1. Checking the existence of an obstacle between
p1 and p2 horizontally has already been done when we
updated the status array. Obstacle checking between p2
and the target can be done very quickly by performing
the operation O2 to be described in Section 4. If we �nd
an obstacle between p2 and the target vertically, no more
search in Sc is needed since we can not directly connect to
the target from any point below the obstacle. Therefore,
we do the vertical search only once.

3. If the search in Sc fails, we search the positions �rst in Su
from bottom to top and then in Sl from top to bottom.

4. If rp has made a vertical movement before with Rules 2
and 3 above, only the �rst rule is applied. If it fails, no
vertical movement will be made for rp. This leads to a
reduction of the number of vias.

If no good position for rp to move to is found after com-
pleting the above procedure or if it has priority 6, we try to
move the running point to the position where rp will most
likely be routed in the next movement. For this we search
Sc, Su and Sl as follows:

5. We start searching from the closest position to the target
in the order of Sc, Su and Sl. In this search, if the priority
of rp is changed to 1, we move rp to the position. This
leads to an easy connection between the two points at a
later trial.

Note that position pb is not searched again because we sim-
ply can not move rp to the position. Also, if rp has previ-
ously been tried for vertical movement by the same search
procedure, it is not tried again. The same is true when it
has moved by Rule 2 or 3.

Once the vertical movement is successful for the selected
running point, we update the status array, adjust the search
interval, and try to move a running point within the inter-
val (see Fig. 4). If no running point with the same priority
is movable, we search running points with the next lower
priority from top to bottom.

4. ALGORITHM IMPLEMENTATION AND
COMPLEXITY

We present an e�cient implementation of the proposed al-
gorithm and its complexity analysis. As described above,
SEGRA frequently performs the following basic operations:

: terminal

row array

row major ordered terminal array

column array

column major ordered terminal array

t5t3 t13

t11 t10 t8

t1 t6

t2 t7

t12 t4 t9

t3 t5 t13 t11 t10 t8 t1 t6 t2 t7 t12 t4 t9

t3 t12 t11 t2 t5 t1 t10 t4 t8 t9 t13 t6 t7

Fig. 6. Data structures for our routing algorithm.

Circuit V �H S �
test1 300 � 300 98,878 1.10
test2 400 � 400 708,649 4.43
test3 500 � 500 1,452,580 5.81
mcc1 599 � 599 1,145,010 3.19
mcc2-75 2; 032 � 2; 032 46,358,085 11.23
mcc2-45 3; 386 � 3; 386 39,391,604 3.44

Table 1. The value of � for each test circuit.

O1: Given a horizontal interval [xl; xr] with xl < xr, and
a horizontal track th, �nd the closest terminal to xl on
th in the interval if one exists.

O2: Given a vertical interval [yl; yu] with yl < yu, and a
terminal vertical track tv, �nd the closest terminal to
yl on tv in the interval if one exists.

In order to perform the above operations e�ciently, we
create two terminal arrays, one sorted by row major order
and the other by column major order. They are used to
access to a row and a column through the column and row
arrays which point to the starting terminal in each row and
each column, respectively. For example, in Fig. 6, the infor-
mation on the terminal located at the third column and the
�rst row may be obtained by �rst �nding the start index of
the third column in the column array and then accessing to
the information at the �rst row on the row major ordered
terminal array. These arrays enable us to determine the
location of a terminal and the existence of a terminal at a
given position.
The operations O1 and O2 can be done by a modi�ed

binary search algorithm[1] after �nding the terminal array
through the row or column array. If Ttr terminals are lo-
cated on a vertical or horizontal track, each operation needs
O(log Ttr) time.
As described in the preceding section, SEGRA has two

main phases: (i) status array upgrade when the sweep line is
located on a terminal vertical track, and (ii) vertical move-
ment. The most time consuming work in the �rst phase is
to �nd the closest terminal on a vertical track in the sweep
direction whenever the sweep line meets the terminal verti-
cal track. It takes O(H � log(Vt)) time using operation O1
to perform this work. With a total of O(Vt) status array
upgrades, this phase runs in O(VtH log Vt) time.
The time complexity of vertical movement is analyzed as

follows: With six priorities, we search the status array at
most 6 times to select a running point on each vertical track.
This takes place O(H) times in total. The sweep line moves
over V vertical positions and these moves are repeated L=2
times if L layers are used, and hence the router searches
O(LV H) running points in total.
Suppose that a total of w running points are actually

tried for their vertical movements. For each such point we
search the positions in Su[fpbg[Sc [Sl for possible verti-
cal movements (see Fig. 5). Let S be the total accumulated

Circuit No. of
Chips

No. of
Nets

No. of
Pins

Grid Size

test1 4 500 1,000 300 � 300
test2 9 956 1,912 400 � 400
test3 9 1,254 2,508 500 � 500
mcc1 6 802 2,495 599 � 599
mcc2-75 37 7,118 14,659 2,032 � 2,032
mcc2-45 37 7,118 14,659 3,386 � 3,386

Table 2. Features of benchmark circuits (pitch
of mcc2-45: 45�m, others: 75�m).

Circuit SEGRA V4R SLICE 3D{Maze
test1 4 4 5 4
test2 4 4 6 4
test3 4 4 6 4
mcc1 4 4 5 5
mcc2-75 6 6 7 {
mcc2-45 4 4 { {

Table 3. The number of layers used for routing.

number of such positions for the w running points. Testing
the vertical movability needs O(Ht) time since the exis-
tence of an obstacle in the horizontal direction is already
done when updating the status arrays and operation O2 is
applied at most twice for each running point. Therefore,
the total time needed is O(S +w logHt).
With the above analysis, the total routing time is

O(TtrH log Ttr + LV H + S + w log Ttr), where Ttr �
maxfVt; Htg. Practically speaking, we may assume that
the number of terminals is much smaller than the size of
the routing area, which is HV . Therefore, we may assume
that w is much smaller than HV since T is smaller than
HV . Since log Ttr is a very small number compared with
V and H, we can say that the time is approximated to
O(LV H + S). The vertical displacement between two run-
ning points is not so large, and hence the number of points
for testing vertical movements may not be large. That is,
S may be a few times larger than V H. Therefore, if we
assume that S = �V H, the total running time becomes
O((L + �)V H). Table 1 shows the values of � for the cir-
cuits we tested in this study. Clearly, � is much smaller
than V and H. Since the number L of layers used is also
a very small number compared to V and H, the time com-
plexity of SEGRA is approximately equivalent to that of
searching the entire routing area several times.
The proposed algorithm use the status arrays, the row

and column arrays, and the terminal arrays. Therefore, the
space complexity of SEGRA is O(maxfH;V g + T), which

is similar to that of V4R[11].

5. EXPERIMENTAL RESULTS

We have implemented the proposed algorithm in C. For the
performance evaluation of SEGRA, we used the six bench-

mark circuits provided by Khoo and Cong[10, 11], who pre-

sented the routing results of V4R
[11]

, SLICE
[10]

and 3D-

Maze[11]. Table 2 shows the main features of the circuits[11],
where test1, test2 and test3 are circuits obtained by ran-
domly created two terminal nets, and mcc1, mcc2-75 and
mcc2-45 are actual MCM circuits from MCC. Note that
mcc2-75 and mcc2-45 are created with a grid pitch of 75
�m and 45 �m, respectively, from the same circuit.
Table 3 shows the number of layers used for routing by

the four routers. Note that the entry marked as `-' means
that the router failed to complete the routing. For each

Circuit SEGRA V4R SLICE 3D{Maze
test1 2,080 2,250 2,013 2,975
test2 4,476 4,493 5,271 7,127
test3 5,833 5,855 6,892 9,347
mcc1 6,773 6,993 6,386 8,794
mcc2-75 36,362 36,438 47,864 {
mcc2-45 34,305 36,473 { {

Table 4. The number of vias used for routing.

Circuit SEGRA V4R SLICE 3D{Maze
test1 103,682 104,128 109,092 107,908
test2 270,021 271,067 286,723 273,642
test3 433,610 435,466 459,046 441,552
mcc1 433,202 394,272 402,258 397,221
mcc2-75 5,517,133 5,559,479 5,902,818 {
mcc2-45 9,135,340 9,130,705 { {

Table 5. The total length of wires used for routing.

circuit tested SEGRA used the same number of layers as
that by V4R which is the most recently reported router.
Table 4 gives the number of vias used for routing. We

counted the number of vias as the number of connections be-
tween two wire segments on di�erent layers where no other
wire segment is involved in the middle of the connection. If
the layers are not adjacent, the resultant connection leads
to a so-called stacked via. We assume that the modules and
I/O pins are located on the top and bottom layers, respec-
tively. This via counting method is apparently used in V4R
for the �rst three test circuits, which consist of two terminal
nets only. As shown in the table, SEGRA used a smaller
number of vias than V4R for each of the three circuits. If
V4R used the same counting method, SEGRA performed
better than V4R for the remaining three circuits, too.
Table 5 shows the total length of wires produced by the

routers for each circuit. SEGRA used a shorter length of
wires than V4R for four of the six circuits. Better results
for the remaining two circuits would possibly be generated
if we incorporate into SEGRA more e�cient handling of
multi-terminal nets, which is currently under investigation.
Table 6 shows the running time of each router. We ran

SEGRA on a SPARC II compatible workstation with 32
Mbytes of memory in order to make a fair comparison with
V4R. We have veri�ed the fairness of this computing envi-
ronment by actually running SLICE on the same computer.
The resulting run times are very similar to those shown in
Table 6. On the average, SEGRA ran about 90 times faster
than SLICE. As V4R is about 5 times faster than SLICE,
SEGRA is about 18 times faster than V4R for the circuits
we tested.

6. CONCLUSIONS

We presented a very fast multilayer MCM router, called
SEGRA. Further improvements of greedy routers such as
SEGRA are often possible. However, the matter of fact is
that SEGRA produced good routing results for the bench-
mark circuits 18 times faster on the average than the previ-
ously best performer V4R. The routing results are compara-
ble to and sometimes better than those generated by V4R.
The faster speed and the e�ectiveness of SEGRA mainly
come from (i) a greedy method for net selection and verti-
cal wire movement and (ii) e�cient data structures.

7. ACKNOWLEDGMENT

The authors would like to express their gratitude to Prof.
J. Cong of UCLA for supplying the benchmark data.

Circuit SEGRA V4R SLICE 3D{Maze
test1 0:00:02 0:01:00 0:02:00 0:08:00
test2 0:00:05 0:01:00 0:06:00 0:48:00
test3 0:00:08 0:03:00 0:12:00 1:40:00
mcc1 0:00:10 0:03:00 0:12:00 0:59:00
mcc2{75 0:02:59 1:06:00 8:15:00 {
mcc2{45 0:04:09 1:37:00 { {

Table 6.Routing times (hr:min:sec).

REFERENCES

[1] A. V. Aho, J. E. Hopcroft and J. D. Ullman, Data
Structures and Algorithms, Addison-Wesley, Menlo
Park, CA, 1987.

[2] H. B. Bakoglu, Circuits, Interconnections, and Packag-
ing for VLSI, Addison-Wesley, Menlo Park, CA, 1990.

[3] A. J. Blodgett, \Microelectronic packaging," Scienti�c
American, pp. 76{86, July 1983.

[4] J. D. Cho, S. Liao, S. Raje and M. Sarrafzadeh, \M2R:
Multilayer Routing Algorithm for High-Performance
MCMs," IEEE Trans. on Circuit and System I, pp.
253{265, Apr. 1994.

[5] J. D. Cho and M. Sarrafzadeh, \The Pin Redistribu-
tion Problem in Multi-Chip Modules," Proc. IEEE Ap-
plication Speci�c IC Conference 91, pp. P9-2.1, 1991.

[6] W. W-M. Dai, T. Dayan and David Staepelaere,
\Topological Routing in SURF: Generating a Rubber-
Band Sketch," ACM=IEEE 28th Design Automation
Conference, pp. 39{44., June 1991.

[7] A. Hanafusa, Y. Yamashita and M. Yasuda, \Three-
Dimensional Routing for Multilayer Ceramic Printed
Circuit Boards," Proc. IEEE Int'l Conf. on Computer-
Aided Design, pp. 386{389, Nov. 1990.

[8] D. Herrell, \Multichip module technology at MCC,"
Proc. IEEE Int. Symp. on Circuits and Systems, pp.
2099{2103, May 1990.

[9] J. M. Ho, M. Sarrafzadeh, G. Vijayan, and C. K.
Wong, \Layer Assignment for Multichip Modules,"
IEEE Trans. on Computer-Aided Design, Vol.9, pp.
1272{1277, Dec. 1990.

[10] K. Y. Khoo and J. Cong, \A Fast Multilayer General
Area Router for MCM Designs," IEEE Trans. on Cir-
cuits and Systems II, pp. 841{851, Nov. 1992.

[11] K. Y. Khoo and J. Cong, \An E�cient Multilayer
MCM Router Based on Four-Via Routing," IEEE
Trans. on Computer Aided Design, Vol 14, pp. 1277{
1290, Oct. 1995.

[12] C. Y. Lee, \An Algorithm for Path Connections and
its Application," IRE Trans. on Electronic Computers,
Vol. EC-10, pp. 346{365, 1961.

[13] R. Miracky, T. Bishop, C. Galanakis, H. Hashemi, T.
Hirsch, S. Madere, H. Muller, T. Ruswick, L. Simth, S.
Sommerfeldt and B. Weighler, \Technology for Rapid
Prototyping of Multi-Chip Modules," Proc. IEEE Int'l
Conf. on Computer Design, 1991, pp. 588{591.

[14] H. B. Richard, P. M. William, and H. Jackson, \Mul-
tiChip Modules," Proc. 26th ACM=IEEE Design Au-
tomation Conf., 1989, pp. 389{393.

[15] M. Sriram, and S. M. Kang, \Detailed Layer Assign-
ment for MCM Routing," Proc. IEEE Int'l Conf. on
Computer-Aided Design, 1992, pp. 386{389.

	CD-ROM Home Page
	ISPD97
	Front Matter
	Table of Contents
	Session Index
	Author Index

