
PARTITIONING-BASED STANDARD-CELL GLOBAL PLACEMENT

WITH AN EXACT OBJECTIVE

Dennis J.-H. Huangy and Andrew B. Kahngyz�

y UCLA Computer Science Dept., Los Angeles, CA 90095-1596 USA
z Cadence Design Systems, Inc., San Jose, CA 95134 USA

ABSTRACT

We present a new top-down quadrisection-based global
placer for standard-cell layout. The key contribution is
a new general gain update scheme for partitioning that
can exactly capture detailed placement objectives on a
per-net basis. We use this gain update scheme, along
with an e�cient multilevel partitioner, as the basis for a
new quadrisection-based placer called QUAD. Even though
QUAD is a global placer, it can achieve signi�cant improve-
ments in wirelength and congestion distribution over GOR-
DIAN-L/DOMINO [SDJ91] [DJS94] (a leading quadratic
placer with linear wirelength objective and detailed place-
ment improvement). QUAD can be easily extended to
capture various practical considerations; our timing-driven
placement can obtain wirelength savings (as well as small
cycle time improvements) versus the SPEED [RE95].

1. INTRODUCTION

In the physical implementation of high-performance, com-
plex deep-submicron integrated circuits, module placement
is a critical step. Given �xed decisions from the upstream
stages of the chip design
ow { namely, microarchitecture
design, chip timing, chip planning, logic synthesis and phys-
ical
oorplanning { it is placement solution quality that is
the major determinant of whether timing correctness and
routing completion can be achieved. This paper describes
a new placement tool for the standard-cell methodology;
we assume a row-based layout with uniform module heights
and variable module widths, with instance sizes of up to
several tens of thousands of cells being of greatest inter-
est. For overviews of (standard-cell) placement, see, e.g.,
Lengauer [Len90] or Shahookar and Mazumder [SM91].
A VLSI circuit netlist consists of a set of modules (cells)

connected by signal nets. In the corresponding edge-
and vertex-weighted netlist hypergraph N(V;E) with V =

�This work was supported by a grant from Cadence
Design Systems, where ABK is currently Visiting Scien-
tist (on sabbatical leave from UCLA) (abk@cs.ucla.edu,
ak@cadence.com). Dennis J.-H. Huang is currently at Synop-
sys, Inc. (dhuang@synopsys.com).

fv1; v2; : : : ; vng and E = fe1; e2; : : : ; emg, the n vertices cor-
respond to netlist modules (cells) and the m hyperedges
correspond to signal nets. Each hyperedge e 2 E is a sub-
set of V containing one source vertex, with the remaining
vertices of the hyperedge being sinks. The input to a placer
is assumed to be the netlist and cell library information.
De�ne the location of a cell (and all its pins) to be the

location of its center. A placement of the n cells in V is an
assignment of cells to locations in two-dimensional plane.
The placement is legal if cells are not overlapped and are
placed within the prescribed row coordinates. The placer
typically seeks a legal placement of V , such that layout
area is minimized while maintaining auto-routability and
satisfying timing and other performance constraints. For
cell-based placement, the �rst-order objective is to place
connected cells closer together to reduce both wirelength
and lower bounds on signal delay. Thus, most placers have
a minimum-wirelength objective: Given a netlist N(V;E),
�nd a legal placement such that

P
e2E

cost(e) is minimized,

where cost(e) is the routing cost of the net e.
It is di�cult to estimate routed wirelength, and hence

only simple estimates are used in practice. Let MST (e)
denote the minimum spanning tree (MST) cost over the lo-
cations of cells belonging to net e. Also, let HP (e) denote
the half perimeter of the minimum enclosing bounding box
of the locations of cells belonging to net e. In practice, to-
tal MST cost and total HP cost are the most commonly
used wirelength estimates for wirelength driven placement;
any other practical estimate needs to have similarly low
time complexity of evaluation. (Following several previous
works, we will use the MST estimate for illustrative pur-
poses and to evaluate total wirelength of our placements;
however, our placer handles arbitrarily complicated per-net
placement objectives.)

2. PARTITIONING-BASED PLACEMENT

Our proposed placement approach is based on top-down
partitioning. In this section, we �rst review the traditional
(KL-FM) iterative partitioning approach, along with its
gain update scheme. We then review several partitioning-
based placement techniques in the literature, centering on
the issue of terminal propagation. We will omit discussion
of local-improvement techniques (e.g, simulated annealing
[SS93] [SS95] and DOMINO [DJS94]).

2.1. Gain Update in Iterative Partitioning

Iterative improvement heuristics for netlist partitioning typ-
ically start with an initial solution and make a series of
passes. Each pass iteratively determines the move of one
or more cells which achieves the best possible gain in the
partitioning objective. After all cells have been moved in

a given pass, the best solution seen during the entire pass
is selected; the next pass begins with this selected solution.
The process terminates when a local minimum is reached,
i.e., the current pass does not improve the objective. Com-
puting and updating gain data is the heart of the iterative
improvement approach.
The prototype iterative heuristic is that of Kernighan and

Lin (KL) [KL70], which uses a pair-swap move structure.
During each pass, every cell is moved exactly once between
two partitions. At the beginning of the pass, all cells are
\unlocked", i.e., free to be swapped. Iteratively, the pair
of unlocked cells with highest gain is swapped. After the
selected cells are swapped, they become \locked" and the
algorithm updates both the cost of the new partition and
the gains of the remaining unlocked cells. After all cells
are locked, the lowest-cost partition encountered over the
entire pass is restored and returned. Further passes are
executed, each using the result from the previous pass as
its starting point, until no improvement results. Computing
gains in the KL heuristic is expensive; O(n2) swaps are
evaluated before every move, resulting in a complexity per
pass of O(n2 log n) (assuming a sorted list of costs). The
method of Fiduccia and Mattheyses (FM) [FM82] reduces
the time per pass to linear in the size of the netlist (i.e.,
O(p), where p is the total number of pins) by adopting a
single-cell move structure, and a gain bucket data structure
that allows constant-time selection of the highest-gain cell
and fast gain updates after each move.

2.2. Min-Cut Placement

Placement by recursive (bi-)partitioning is based on re-
peated division of a given circuit into subhypergraphs to
optimize a given partitioning objective. With each parti-
tioning of the circuit, the given layout area is partitioned
in either the horizontal or the vertical direction. Each sub-
hypergraph is assigned to a partition; when each subhy-
pergraph has only one cell, then each cell will have been
mapped to a unique (non-overlapping) position on the chip.
Early approaches which use a min-cut partitioning objec-
tive are due to such authors as Breuer [Bre76] [Bre77] or
Lauther [Lau79]. Most modern partitioning-based placers
use some form of KL-FM partitioning heuristic, also with
the minimum net-cut objective. Because the minimum net-
cut is a poor abstraction of the real placement cost function
(e.g., only in some limiting sense will total cuts capture to-
tal (MST) wirelength), various devices have been used to
improve min-cut placement; the most important of these
are quadrisection and terminal propagation.

2.3. Quadrisection

While many placement tools have relied on top-down min-
cut bipartitioning, the main disadvantage of such an ap-
proach is that it can greedily obtain very good results in
the �rst cut, but then bad results in successive cuts. The
placement problem is essentially two-dimensional, in that
we assign cells to locations in a planar layout. However,
min-cut bisection adopts a one-dimensional approach, par-
titioning the netlist along a single cut line at each step.
Suaris and Kedem [SK87b] [SK87a] [SK88] [SK89] use

quadrisection to divide the chip, yielding a truly two-
dimensional placement procedure and results that are supe-
rior to those of top-down bipartitioning placement. Their
quadrisection algorithm uses an extension of the FM heuris-
tic which also runs in linear time per pass. Since a cell in one
quadrant can be moved to any of the other three quadrants,
there are 12 gain buckets, each corresponding to a pair of

quadrants. At each step, a cell with highest gain is selected.
Suaris and Kedem also apply a more accurate cost function
which considers di�erent horizontal and vertical weights.

2.4. Terminal Propagation

When partitioning a (sub-)circuit into several parts, it is
not su�cient to consider only the netlist induced over the
modules in the subcircuit, i.e., only the internal nets. Nets
connecting to external IO pads or other cells in another
(higher-level) partition must also be considered. Dunlop
and Kernighan [DK85] proposed the terminal propagation
technique which adds to the current netlist dummy cells
that are �xed in the appropriate partitions.
For quadrisection, the terminal propagation technique is

shown in Figure 1. The �gure shows that block B2 is about
to be partitioned into fB20;B21;B22;B23g. Cells C in B02

and E in B3 are connected to cells D and F in B2. It would
be bene�cial to assign D to B20 and F to either B21 or B23.
The terminal propagation is done by inserting dummy cells
�xed in speci�c blocks: in this example, dummy cell G is
�xed in block B20 and dummy cell H is allowed to move
only between B21 and B23.

B02

B1

B2 B3

B00 B 01

B 03C

D EF

standard cell
dummy cell

B21

B 23
B 22

B 20
G

H

Figure 1. Terminal propagation for quadrisec-
tion placement.

3. A GENERAL GAIN UPDATE SCHEME
FOR ITERATIVE PARTITIONING

In this section, we introduce an e�cient, uni�ed approach
to updating gains for arbitrary objective functions during
iterative multi-way partitioning. This technique is general,
and can capture particular placement objectives exactly for
individual nets; it is enabling to the new top-down placer
described in the next section.
Given a k-way partitioning fP0; P1; : : : ; Pk�1g, de�ne the

con�guration of a given net to be the distribution of its cells
into the partitions Pj, j = 0; 1; : : : ; k� 1. Each Pj contains
either zero or a nonzero number of cells in the net. For
each net e, let cj(e) be the number of cells in e that are
distributed in partition Pj, i.e., cj(e) = jfvjv 2 e and v 2
Pjgj. We can use a binary number f0f1 : : : fk�1 to represent
each con�guration, where fj = 1 if cj(e) � 1 and fj = 0 if
cj(e) = 0. There are at most 2k � 1 di�erent con�gurations
for each net in a k-way partitioning. Figure 2 shows the 15
possible con�gurations in a 4-way partitioning.

We use confid(fk�1fk�2 : : : f0) =
Pk�1

j=0
2fj to denote the

con�guration id of a given net. In our new gain update
scheme, each net e has an associated net vector Ve with

length 2k�1. Each entry of the net vector Ve[d] corresponds
to the net cost of the con�guration with con�guration id
d. The net cost can be speci�c to an underlying objective
function, as shown by the following examples.

0001(1) 0010(2) 0100(4) 1000(8)

0011(3) 0101(5) 1100(12) 1010(10)

1001(9) 0110(6) 1101(13) 1110(14)

1011(11) 0111(7) 1111(15)

Figure 2. Fifteen con�gurations for 4-way par-
titioning. Each con�guration is represented by
a 4-bit binary number as shown at the bottom.
The numbers in parentheses are the con�gura-
tion ids.

� Net-cut Cost: Minimize
P

e2E
cost(e), where

cost(e) = 1 if net e distributes cells in more than one
partition; cost(e) = 0 otherwise.

� Absorption Cost [SS93]: Minimize
P

e2E
cost(e),

where cost(e) = k � 1, if net e distributes cells in ex-
actly k partitions.

� Quadratic Cost: Minimize
P

e2E
cost(e), where

cost(e) = k(k�1)

2
, if net e distributes cells in exactly

k partitions.

� Sum-of-degrees Cost: Minimize
P

e2E
cost(e),

where cost(e) = 0, if net e distributes cells in one par-
tition; cost(e) = k, if net e distributes cells in exactly
k partitions.

� MST Cost: This is a special objective for 4-way
partitioning. The hypergraph is partitioned among
the upper-right, upper-left, lower-right and lower-left
quadrants of the layout. Minimize

P
e2E

cost(e),

where cost(e) is the MST routing cost based on the
cell distribution of a net e.

As noted above, Sanchis [San89] developed a multi-way
gain computation with lookahead for net-cut cost; she also
developed gain computation schemes for absorption cost
and quadratic cost in [San93]. Here, we propose to use
the net vector concept to unify the gain computation for
various objectives. Examples of net vectors with di�erent
values corresponding to di�erent objectives are shown in Ta-
ble 1 for 4-way partitioning. The method can be extended
to any k-way partitioning as long as k is not too large.
A more detailed discussion of the gain computation and

update is now in order. We will center on the MST cost ob-
jective and 4-way partitioning. This is because our place-
ment approach is based on recursive quadrisection. Also,
since the MST is more accurate than net-cut as an esti-
mate of routing cost, our placer uses an MST cost objective
instead of the traditional cut-based objective.

Objective function Net vector Ve[0::15]
Net-cut cost 0,0,0,1,0,1,1,1,0,1,1,1,1,1,1,1
Absorption cost 0,0,0,1,0,1,1,2,0,1,1,2,1,2,2,3
Quadratic cost 0,0,0,1,0,1,1,3,0,1,1,3,1,3,3,6
Sum-of-degrees cost 0,0,0,2,0,2,2,3,0,2,2,3,2,3,3,4
MST cost (4-way) 0,0,0,1,0,1,2,2,0,2,1,2,1,2,2,3

Table 1. Net vector entries according to various
objective functions for 4-way partitioning.

We �rst observe that the net vector given in Table 1
for the MST cost objective assumes unit wire cost in both
the horizontal and vertical directions. In other words, re-
sources, congestions and routing costs are equal in both
directions. In practice, horizontal and vertical wire costs
should be weighted according to the available resource, e.g.,
a three-layer HVH design might be relatively richer in hori-
zontal resources, while a four-layer HVHV design might be
relatively richer in vertical resources. Let h and v respec-
tively be the unit costs of horizontal and vertical wiring.
We can easily create a net vector to capture this kind of
objective function, as shown in Table 2.

i Ve[i] i Ve[i] i Ve[i] i Ve[i]
0 0 1 0 2 0 3 h

4 0 5 v 6 h+ v 7 h+ v

8 0 9 h+ v 10 v 11 h+ v
12 h 13 h+ v 14 h+ v 15 h+ 2v

Table 2. Net vector entries for quadrisection
with di�erent horizontal and vertical weights
(wire costs).

We next observe that our partitioning algorithm will use
the same FM gain bucket data structure as in [FM82]. How-
ever, our gain computation is di�erent from that of previous
works. There are k(k � 1) gain buckets for k-way parti-
tioning. We let
j(v) denote the gain for moving cell v to
partition j. Suppose cell a is moved from partition Ps to
partition Pt. For each net e incident to a, we must update
the gain of each cell b 2 e (b 6= a) as it moves from its cur-
rent partition Px to partition Py, i.e., b 2 Px and y 6= x. To
see how this gain update can be accomplished in constant
time, consider the following four con�gurations:

1. conf0 is the original con�guration for net e (i.e., a 2 Ps
and b 2 Px);

2. conf1 is the con�guration after a is moved to Pt (i.e.,
a 2 Pt and b 2 Px);

3. conf2 is the con�guration after b is moved to Py but
before a is moved (i.e., a 2 Ps and b 2 Py); and

4. conf3 is the con�guration after b is moved to Py and
after a is moved (i.e., a 2 Pt and b 2 Py).

The gain for moving cell b 2 Px to Py before a is moved is

gaina2Ps (b) = Ve[confid(conf0)]� Ve[confid(conf2)]

and this same gain after a is moved is

gaina2Pt (b) = Ve[confid(conf1)]� Ve[confid(conf3)]:

The gain update for moving cell b to Py is

�
y(b) = gaina2Pt (b)� gaina2Ps (b)

and thus computing the gain update for cell b requires look-
ing up only the four con�gurations conf0; : : : ; conf3, inde-
pendent of k.
Figure 3 shows an example of the gain update computa-

tion. In the �gure, the 4-pin net e contains cells fa; b; c; dg:
a is in P1, b is in P0, and c and d are in P2. Cell a is about
to be moved to P0, and we would like to update the gain for
moving cell b to P3. The current con�guration for net e (i.e.,
conf0) is \0111". After a is moved to P3, conf1 is \0101".
The con�guration after moving b to P3 before a is moved
(i.e., conf2) is \1110". The con�guration after moving b to
P0 after a is moved (i.e., conf3) is \1101". Therefore, the
gain update for moving b to P3 is

�
3(b) = (Ve[confid(0101)]� Ve[confid(1101)])

�(Ve[confid(0111)]� Ve[confid(1110)])

= (Ve[5]� Ve[13])� (Ve[7]� Ve[14])

If net cut is our objective function, the gain update is
�
3(b) = (1 � 1) � (1 � 1) = 0. By contrast, if MST
cost is our objective function, the gain update is �
3(b) =
(1�2)�(1�1) = �1. In other words, the net cut cost does
not change when a and b are moved to their new partitions,
while the MST cost is reduced by 1.

a

b

c

d

P0 P1

P2

P3

Figure 3. A gain update example: cell a is
moved from P1 to P3, and we wish to update
the gain of cell b moving from P0 to P3.

Figure 4 summarizes our gain update scheme when cell a
is moved from Ps to Pt. We also illustrate how to e�ciently
compute the four con�gurations using bit operations. We
emphasize that this gain update scheme can be used within
almost any iterative partitioning approach, including k-way
FM, 2-phase FM [BCL87], CLIP-FM [DD96a] and multi-
level FM [Alp96].

4. A NEW TOP-DOWN QUADRISECTION
BASED PLACER

We now describe a new top-down quadrisection-based place-
ment algorithm, based on the gain update scheme described
in the previous section along with a multilevel partitioning
engine We also describe meta-heuristic approaches to im-
prove solution quality, as well as means to accommodate
such practical constraints as di�ering vertical and horizon-
tal cut costs.
Our quadrisection-based placement is based on the gain

update scheme of Section 3. The di�erences between our
new placer and previous quadrisection-based placers are as
follows. First, our approach handles instances with mixed

oating and �xed pads, or even without any pads at all.
E.g., if all IO pad locations are �xed, we only partition the
internal (core) standard cells and do not need to partition

Procedure Gain Update: (a is moved from Ps to Pt)
Input: a = the cell to be moved from Ps to Pt

k = number of partitions
Variables:
e ! confid = current con�guration id for net e

before a is moved
b! block = current partition that cell b is located
b! gain[j] = the gain for moving cell b to partition Pj

Constants:
turnOn[0::k � 1], where turnOn[j] = 2j

turnOff [0::k� 1], where turnOff [j] = 2k � 2j � 1
1. for each e incident from a do

// compute two con�gurations before the move
2. confid0 = e! confid
3. for j = 0 to k � 1 do
4. beforeSize[j] = afterSize[j] = cj(e)
5. afterSize[t] + +;
6. afterSize[s] ��;
7. if beforeSize[s] = 1
8. confid1 = confid0 & turnOff [s]
9. if beforeSize[t] = 0
10 confid1 = confid1 j turnOn[t]
11. e! confid = confid1

// compute two con�gurations after the move
12. for each b 2 e do
13. from = b! block
14. for to = 0 to k � 1 do
15. if to = from
16. continue
17. if beforeSize[from] = 1
18. confid2 = confid0 & turnOff [from]
19. if beforeSize[to] = 0
20. confid2 = confid2 j turnOn[to]
21. if afterSize[from] = 1
22. confid3 = confid1 & turnOff [from]
23. if afterSize[to] = 0
24. confid3 = confid3 j turnOn[to]
25. gain = (Ve[confid1]� Ve[confid3])�

(Ve[confid0]� Ve[confid2])
26. b! gain[to] + = gain;
27. endfor
28. endfor
29. for j = 0 to k � 1 do
30. cj(e) = afterSize[j]
31.endfor

Figure 4. Template for gain update procedure.

the �xed IO pads. (Quadratic placement approaches such as
PROUD [TKH88] [TK91] and GORDIAN [KSJ91] will de-
grade when there are no �xed pads to anchor the placement
and spread out the locations of the core cells.) Second, our
placer does not require terminal propagation, but still con-
siders the exact connectivity from external blocks, as well
as its exact impact on placement objectives such as MST or
HP cost; the exact capture of arbitrary detailed objectives
is enabled by the net cost vector concept. Traditional cut-
based placement requires terminal propagation and cannot
capture the placement objective. Finally, our placer inte-
grates a number of practical extensions, including control
of area utilization, timing-driven capability, capability to
honor a given hierarchical netlist clustering, and control of
relative routing resource demands in the horizontal and ver-
tical wiring directions.

4.1. Multilevel FM-Based Partitioning

Our top-down quadrisection based placement (QUAD) is
based on a multilevel iterative partitioner (ML) by Alpert
et al. and the general gain update scheme of Section 3..
The basic multilevel algorithm consists of two phases,

bottom-up matching (or clustering) and top-down parti-
tioning. Given a netlist N0, the matching phase of [Alp96]
[AHK96] uses a matching-based clustering scheme for each
level of the netlist. A clustering of N0 is used to in-

duce the coarser netlist N1, then a clustering of N1 in-
duces N2, etc. until the most coarsened netlist Nm is
constructed. During the partitioning phase, a 2-way FM-
based partitioning algorithm (e.g., LIFO FM [HHK95] or
CLIP-FM [DD96b] [DD96a]) is applied at each level of the
netlist. When a bipartitioning solution Pm = fXm; Ymg
is found for Nm, this solution is projected (unclustered)
into Pm�1 = fXm�1; Ym�1g, where it serves as the initial
partitioning solution of Nm�1 and is re�ned by the FM-
based partitioner. The unclustering and re�nement proce-
dure continues until the original netlist N0 is partitioned. A
similar approach can be applied to multi-way partitioning.
ML is e�cient (an untuned implementation performs 4-way
partitioning of a 25; 000-cell design in 32 CPU seconds on a
SUN Ultra 1 (140 MHz)), and yields excellent results when
compared against the best known methods from the litera-
ture [Alp96] [AHK96].

4.2. Net Vector Computation

During each stage of quadrisection, only the cells located
in the current partition are movable; cells outside the cur-
rent partition are �xed. We �rst compute the center co-
ordinates of the four quadrants in the current partition.
For each net e, we compute the number of pins located
in the current partition, as well as all possible con�gura-
tions with respect to the net e. Next, we evaluate the user-
speci�ed cost function (e.g., MST cost or half-perimeter)
for the net e according to the pin distributions of all pos-
sible con�gurations, and normalize the costs so that the
lowest cost is zero (this reduces the index of the highest-
gain bucket, i.e., the maximum possible gain, and improves
runtime e�ciency). Finally, we assign the net costs to their
corresponding net vector entries. Figure 5 shows a snap-
shot of the top-down quadrisection process, with the north-
east quadrant as the current partition. In the �gure, the
northwest quadrant has already been quadrisected and the
northeast quadrant will be processed next. Consider a 5-
pin net with two pins located in the current partition and
three pins �xed outside the partition, with one of the �xed
pins an IO pad. There are 10 di�erent con�gurations. Fig-
ure 5 illustrates the con�guration id, MST cost and half-
perimeter cost for each con�guration. If the MST cost
function is selected, the net cost ordered by the con�gura-
tion id is [�;5; 7; 6; 7; 6; 9;�; 8; 7; 8;�; 8;�;�;�], and the
resulting net vector is [0; 0; 2; 1; 2; 1; 4; 0; 3; 2; 3; 0; 3; 0; 0; 0].
When this quadrant is partitioned, the hypergraph instance
contains a 2-pin net which has the above net vector. Again,
our approach does not require terminal propagation, and
exactly captures the placement cost function during parti-
tioning. Figure 6 shows the algorithm template for QUAD.

4.3. Meta-Heuristic Improvements

We can further improve the placement quality by the fol-
lowing two operations.

� Cycling: At each level of quadrisection, we may cy-
cle the partitioning process. Figure 7(a)-(d) illustrate
the �rst iteration of the second level of quadrisection,
where B0, B1, B2 and B3 are partitioned. After this
�rst iteration, the cells of each net have been dis-
tributed to the centers of 16 blocks. In cycling, we
begin the next iteration by repartitioning B0 based on
the new cell distribution as shown in Figure 7(e). When
each iteration is �nished, we compute the placement
cost based on the new cell locations. This cycling pro-
cess of Figure 7(e)-(h) is repeated until no further cost
improvement is possible.

Quadrisection Based Placement (QUAD)
Input: Netlist N with �xed IO locations
Output: cell location cellLoc[]
Variables:

Q = queue storing the subnetlists to be partitioned
N ! nRows = number of rows to be placed in netlist N
N ! nCells = number of cells in netlist N
N ! center = center location of netlist N

newN = removeIOPad(N);
Q.push(newN);
while Q is not empty do

currN = Q.pop();
if (currN ! nRows > 1)

compute4WayNetVector(currN);
(P0; P1; P2; P3) = Quadrisection(currN);
for each i = 0 to 3 do

/* create a subnetlist according to Pi. */
Ni = formSubNetlist(Pi; currN);
forall cell 2 Ni do

cellLoc[cell] = Ni ! center;
if (Ni ! nCells > 1)

Q.push(Ni);
endfor

else
compute2WayNetVector(currN);
(P0; P1) = Bisection(currN);
for each i = 0 to 1 do

/* create a subnetlist according to Pi. */
Ni = formSubNetlist(Pi; currN);
forall cell 2 Ni do

cellLoc[cell] = Ni ! center;
if (Ni ! nCells > 1)

Q.push(Ni);
endfor

endif
endwhile
return cellLoc;

Figure 6. Quadrisection-based placement algo-
rithm (QUAD) template.

� Overlapping: While cycling the partitioning proce-
dure at each level, a second performance improvement
is possible by performing the quadrisection on over-
lapped regions. Figure 8 shows nine overlapped regions
that are quadrisected at the second level. In general,
there are (2k�1)2 overlapped regions at the kth quadri-
section level.

5. EXPERIMENTAL RESULTS

Our experiments were run on a Sun Ultra 1 (140 Mhz)
with 192 MB RAM, and all runtimes reported (mm:ss) are
for this machine. Our versions of the test cases were im-
ported in PROUD [TK91] or timingPROUD format gener-
ated by colleagues at TU Munich (<http://www.regent.e-
technik.tu-muenchen.de/>), and have up to 25; 000 cells.

(a) (b)

B0 B1

IO pads (c) (d)

B2 B3

(e) (f)

B0 B1

(g) (h)

B2 B3

Figure 7. (a){(d) The �rst iteration of the sec-
ond level of quadrisection; (e){(h) successive
iterations of the second level of quadrisection.

confid = 1
MSTCost= 5
HPCost = 5

confid = 2
MSTCost= 7
HPCost = 6

confid = 4
MSTCost= 7
HPCost = 5

confid = 8
MSTCost= 8
HPCost = 6

confid = 3
MSTCost= 6
HPCost = 6

confid = 6
MSTCost= 9
HPCost = 6

confid = 9
MSTCost= 7
HPCost = 6

confid = 10
MSTCost= 8
HPCost = 6

confid = 12
MSTCost= 8
HPCost = 6

confid = 5
MSTCost= 6
HPCost = 5

Figure 5. Ten con�gurations for a net with two
pins in the current partition.

(a) (b)

B0

(c)

(d) (e) (f)

(g) (h)

B2

(i)

B3

B1

Figure 8. (a){(i) Nine overlapped regions that
are partitioned in the second level of quadri-
section.

Our �rst experiment compares QUAD without cy-
cling/overlapping (QUAD w/o CO), QUAD without over-
lapping (QUAD w/o O) and QUAD. All test cases were
placed with 100% area utilization. The results are shown in
Table 3. QUAD w/o CO averages 10% greater wirelength
but can require as little as 17% of the runtime of QUAD
for large benchmarks.
Our second experiment compares our quadrisection re-

sults with GORDIAN-L [SDJ91] and the post-processing
detailed placer DOMINO [DJA94] on 18 benchmarks with
100% area utilization (results for GORDIAN-L/DOMINO
were provided by Guenter Stenz [Ste97] at TU Munich).
Note that GORDIAN-L is a global quadratic placement
tool, while DOMINO is a detailed placer; QUAD should be
considered as a global placer. The MST wirelength results
are shown in Table 4. QUAD outperforms GORDIAN-L
on 15 benchmarks, and performs about 1% worse on three
benchmarks. The average MST wirelength improvement
over GORDIAN-L is 4:8%. QUAD also performs slightly
better than DOMINO. Table 5 compares QUAD against
GORDIAN-L/DOMINO on the same set of benchmarks us-
ing the half-perimeter (HP) objective; this is the measure
used by the authors of GORDIAN-L and DOMINO. QUAD
has an average of 4:4% improvement over GORDIAN-L, but

Impr.
QUAD w/o CO Q w/o O QUAD vs. Q

Case MSTx100(time) w/o CO

prim1 11432(01:02) 11196 10208(02:50) 10.7%
prim2 48674(06:31) 45736 44478(23:50) 8.6%
ind2 420299(33:52) 395434 380194(144:30) 9.5%
ind3 1070927(48:12) 1042366 970068(168:46) 9.4%
fract 410(00:05) 402 380(00:08) 7.3%
C1908 1963(00:21) 1925 1830(01:46) 6.8%
C5315 6887(00:58) 6421 6185(07:02) 10.2%
C6288 10285(03:05) 9004 8312(26:17) 19.2%
s1423 2456(00:27) 2384 2265(02:57) 7.8%
s1488 2684(00:36) 2539 2470(02:27) 8.0%
s5378 8807(01:26) 8640 8208(12:13) 6.2%
s9234 15229(02:41) 14782 13848(19:57) 9.1%
s13207 30733(04:23) 29236 28161(20:07) 8.4%
s15850 36478(05:32) 35002 33625(30:54) 7.8%
struct 5050(03:31) 4644 4296(09:55) 14.9%
biomed 38792(13:31) 36074 33787(64:35) 12.9%
avq s 108266(45:38) 103862 95867(235:04) 11.5%
avq l 114408(53:50) 110197 101930(315:50) 10.9%
Impr. 9.9%

Table 3. MST cost comparison of QUAD w/o
CO, QUAD w/o O and QUAD.

uses 1:2% more wirelength than DOMINO.
We have also compared 2-D congestions as measured by

a simple supply and demand model, where \supply" is the
available horizontal and vertical routing tracks and \de-
mand" is the MST routing edge for the net. We did this
to verify that our wirelength improvements did not come
at the cost of routing hotspots. Figure 9 depicts the over-
congested areas of the avq small placements generated by
QUAD and DOMINO; overcongested resources are those for
which the sum of vertical and horizontal demands exceeds
the sum of supplies (for space reasons, we dispense with
the details of these measurements). The QUAD placement
has 0:8% overcongested area while the DOMINO placement
has 1:2% overcongested area. Thus, although QUAD uses
1% more wirelength for this case, it has better congestion
distribution than DOMINO.

6. EXTENSIONS TO TIMING-DRIVEN
PLACEMENT

We have extended our basic quadrisection-based global
placement engine in a number of directions. One direc-
tion of interest is timing-driven placement, where simple
extensions allow the top-down quadrisection to be driven
by net cost vectors that capture both timing and wire-
length aspects of the circuit layout. Our timing-driven im-

GORD-L DOMINO QUAD Impr. Impr.
Case MSTx100 GOR-L DOMI
prim1 10500 10059 10208 2.8% -1.5%
prim2 45994 43705 44478 3.3% -1.8%
ind2 436300 417264 380194 12.9% 8.9%
ind3 1121000 1048673 970068 13.5% 7.5%
fract 400 383 380 5.0% 0.8%
C1908 1858 1767 1830 1.5% -3.6%
C5315 6220 5922 6185 0.6% -4.4%
C6288 8794 8339 8312 5.5% 0.3%
s1423 2334 2208 2265 3.0% -2.6%
s1488 2680 2558 2470 7.8% 3.4%
s5378 8609 8182 8208 4.7% -0.3%
s9234 14848 14023 13848 6.7% 1.3%
s13207 31284 29995 28161 9.9% 6.1%
s15850 37020 35591 33625 9.2% 5.5%
struct 4160 3967 4196 -0.9% -5.8%
biomed 34677 33712 33787 2.6% -0.2%
avq s 95648 92355 95867 -0.2% -3.8%
avq l 100650 97825 101930 -1.3% -4.2%
Impr. 4.8% 0.3%

Table 4. MST cost comparison of GORDIAN-
L, DOMINO and QUAD.

GORD-L DOMINO QUAD Impr. Impr.
Case HPx100 GOR-L DOMI
prim1 9171 8900 8972 2.2% -0.8%
prim2 38702 36542 36824 4.9% -0.8%
ind2 354850 333019 332318 6.3% 0.2%
ind3 1040444 974327 938682 9.8% 3.7%
fract 360 339 337 6.4% 0.6%
C1908 1568 1497 1520 3.1% -1.5%
C5315 5612 5344 5466 2.6% -2.3%
C6288 7084 6690 6663 5.9% 0.4%
s1423 2140 2025 2075 3.0% -2.5%
s1488 1813 1639 1623 10.5% 0.9%
s5378 7908 7522 7578 4.2% -0.7%
s9234 12975 12321 12217 5.8% 0.8%
s13207 27547 26559 26234 4.8% 1.2%
s15850 33132 31946 31647 4.5% 0.9%
struct 3816 3499 3780 0.9% -8.0%
biomed 25170 23697 23765 5.6% -0.3%
avq s 62824 59075 62890 -0.2% -6.4%
avq l 65894 61966 65906 -0.0% -6.4%
Impr. 4.4% -1.2%

Table 5. Half perimeter cost comparison of
GORDIAN-L, DOMINO and QUAD.

plementations update net cost vectors according to various
schemes, e.g., based on timing analysis that is interleaved
with the partitioning. Table 6 shows results comparing
our timing-driven placement results with those of SPEED
[RE95]. Here, \Delay" (a sort of \cycle time") is the maxi-
mum path delay between any pair of sequentially adjacent
storage elements (
ip-
ops). Path delays are computed us-
ing pin parasitics and cell intrinsic delays from the timing-
PROUD library data, along with a centroid-star net model
and Elmore delay for the interconnect. This is the same de-
lay evaluation (with the same interconnect parasitics) used
in [RE95], except that we apply factors of 1/2 in the Elmore
delay expressions that were not applied in [RE95]. We see
that timing-driven QUAD (\Timing-QUAD") outperforms
SPEED by an average of 3% in terms of delay while main-
taining an average of 4:7% less MST cost.
We have also compared Timing-QUAD with the Tim-

berWolf simulated annealing based timing-driven placement
package (results obtained from Swartz [Swa96]) on the three
test cases fract, struct and avq small using the same tech-
nology parameters as in the previous experiment. For each
test case, TimberWolf uses di�erent IO locations, number
of rows and row locations. Thus, comparisons with Tim-
berWolf involve completely di�erent QUAD results from
those of Table 6. The TimberWolf comparison with Timing-
QUAD is shown in Table 7; the two packages seem very
comparable.

(a) QUAD (b) DOMINO

Figure 9. Map of avq small placement overcon-
gestions with respect to sum of horizontal and
vertical demands, for (a) QUAD (0:8% over-
congested), and (b) DOMINO (1:2% overcon-
gested).

Test Timing- Impr. vs.

Case Measure QUAD SPEED QUAD SPEED

fract Delay 18.8 18.4 18.4 0 %
MSTx100 380 433 442 -2.1%

C1908 Delay 19.8 19.9 18.4 7.9%
MSTx100 1830 2291 1792 21.8%

C5315 Delay 23.9 21.6 22.1 -2.3%
MSTx100 6185 6763 6454 4.6%

C6288 Delay 64.5 61.4 61.6 -0.3%
MSTx100 8312 13891 9564 31.1%

s1423 Delay 36.4 33.0 33.5 -1.4%
MSTx100 2265 2907 3114 -7.1%

s1488 Delay 9.5 11.9 9.2 22.3%
MSTx100 2470 4235 2593 38.8%

struct Delay 82.0 77.7 79.3 -2.1%
MSTx100 4296 5521 5244 5.0%

biomed Delay 30.7 29.7 29.3 1.4%
MSTx100 33787 40892 39935 2.3%

avq s Delay 75.3 75.0 71.1 5.2%
MSTx100 95867 98094 102435 -4.4%

avq l Delay 93.3 76.7 76.9 -0.3%
MSTx100 101930 110034 115234 -4.7%

Avg. Delay 3.0%
Improv. MST 4.7%

Table 6. Comparison of timing-driven QUAD
and SPEED.

REFERENCES

[AHK96] C. J. Alpert, L. W. Hagen, and A. B. Kahng. \A
Hybrid Multilevel/Genetic Approach for Circuit
Partitioning." In Proc. ACM/SIGDA Physical
Design Workshop, pp. 100{105, 1996.

[Alp96] C. J. Alpert. Multi-way Graph and Hypergraph
Partitioning. PhD thesis, University of California,
Los Angeles, 1996.

[BCL87] T. Bui, S. Chaudhuri, T. Leighton, and M. Sipser.
\Graph Bisection Algorithms with Good Average
Case Behavior." Combinatorica, 7(2):171{191,
1987.

[Bre76] M. A. Breuer. \Min-cut Placement." De-
sign Automation and Fault-Tolerant Computing,
1(4):343{362, 1976.

[Bre77] M. A. Breuer. \A Class of Min-cut Placement Al-
gorithm for the Placement of Standard Cells." In
Proceedings of the ACM/IEEE Design Automa-
tion Conference, pp. 284{290, 1977.

[DD96a] S. Dutt and W. Deng. \VLSI Circuit Partitioning
by Cluster-Removal Using Iterative Improvement
Techniques." In Proceedings of the IEEE/ACM
International Conference on Computer-Aided De-
sign, pp. 194{200, 1996.

[DD96b] S. Dutt and W. Deng. \VLSI Circuit Partitioning
by Cluster-Removal Using Iterative Improvement

Max Intrinsic Timing-
Case Measure Path Delay TW7.0 QUAD
fract Delay 10.6 17.9 18.1

MSTx100 349 347
struct Delay 40.0 78.8 79.3

MSTx100 5130 5103
avq s Delay 37.3 61.4 60.9

MSTx100 46763 47153

Table 7. Comparison of timing-driven QUAD
and TimberWolf7.0.

Techniques." In Proc. ACM/SIGDA Physical De-
sign Workshop, pp. 92{99, 1996. Also see cor-
responding Technical Report, Dept. of Electrical
Engineering, U. Minnesota.

[DJA94] K. Doll, F. M. Johannes, and K. J. Antreich. \It-
erative Placement Improvement by Network Flow
Methods." IEEE Transactions on Computer-
Aided Design, 13:1189{1200, 1994.

[DJS94] K. Doll, F. M. Johannes, and G. Sigl. \Itera-
tive Placement Improvement by Network Flow
Methods." IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems,
13(10):1189{1199, 1994.

[DK85] A. E. Dunlop and B. W. Kernighan. \A Proce-
dure for Placement of Standard Cell VLSI Cir-
cuits." IEEE Transactions on Computer-Aided
Design, 4(1):92{98, 1985.

[FM82] C. M. Fiduccia and R. M. Mattheyses. \A Lin-
ear Time Heuristic for Improving Network Parti-
tions." In Proceedings of the ACM/IEEE Design
Automation Conference, pp. 175{181, 1982.

[HHK95] L. W. Hagen, D. J.-H. Huang, and A. B. Kahng.
\On Implementation Choices for Iterative Im-
provement Partitioning Algorithms." In Pro-
ceedings European Design Automation Conf., pp.
144{149, 1995.

[KL70] B. W. Kernighan and S. Lin. \An E�cient
Heuristic Procedure for Partitioning Graphs."
Bell Syst. Tech. J., 49(2):291{307, 1970.

[KSJ91] J. M. Kleinhans, G. Sigl, F. M. Johannes, and
K. J. Antreich. \GORDIAN: VLSI Placement by
Quadratic Programming and Slicing Optimiza-
tion." IEEE Transactions on Computer-Aided
Design, 10(3):356{365, 1991.

[Lau79] U. Lauther. \A Min-cut Placement Algorithm for
General Cell Assemblies Based on a Graph Rep-
resentation." In Proceedings of the 16th Design
Automation Conference, pp. 1{10, 1979.

[Len90] T. Lengauer. Combinatorial Algorithms for Inte-
grated Circuit Layout. Wiley-Teubner, 1990.

[RE95] B. M. Riess and G. G. Ettelt. \SPEED: Fast
and E�cient Timing Driven Placement." In Pro-
ceedings of the IEEE International Symposium
on Circuits and Systems, pp. 377{380, 1995.

[San89] L. A. Sanchis. \Multiple-Way Network Par-
titioning." IEEE Transactions on Computers,
38(1):62{81, 1989.

[San93] L. A. Sanchis. \Multiple-Way Network Partition-
ing with Di�erent Cost Functions." IEEE Trans-
actions on Computers, 42(22):1500{1504, 1993.

[SDJ91] G. Sigl, K. Doll, and F. M. Johannes. \An-
alytical Placement: A Linear or a Quadratic
Objective Function?" In Proceedings of the
ACM/IEEE Design Automation Conference, pp.
427{432, 1991.

[SK87a] P. R. Suaris and G. Kedem. \Quadrisection: A
New Approach to Standard Cell Layout." In Pro-
ceedings of the IEEE/ACM International Con-
ference on Computer-Aided Design, pp. 474{477,
1987.

[SK87b] P. R. Suaris and G. Kedem. \Standard Cell Place-
ment by Quadrisection." In Proceedings IEEE
Intl. Conf. Computer Design, pp. 612{615, 1987.

[SK88] P. R. Suaris and G. Kedem. \An Algorithm for
Quadrisection and Its Application to Standard
Cell Placement." IEEE Transactions on Circuits
and Systems, 35(3):294{303, 1988.

[SK89] P. R. Suaris and G. Kedem. \A Quadrisection-
based Combined Place and Route Scheme
for Standard Cells." IEEE Transactions on
Computer-Aided Design, 8(3):234{244, 1989.

[SM91] K. Shahookar and P. Mazumder. \VLSI Cell
Placement Techniques." Computing Surveys,
23(2):143{220, 1991.

[SS93] W-J. Sun and C. Sechen. \E�cient and E�ective
Placements for Very Large Circuits." In Proceed-
ings of the IEEE/ACM International Conference
on Computer-Aided Design, pp. 170{177, 1993.

[SS95] W. Swartz and C. Sechen. \Timing Driven Place-
ment for Large Standard Cell Circuits." In Pro-
ceedings of the ACM/IEEE Design Automation
Conference, pp. 211{215, 1995.

[Ste97] G. Stenz. 1997. Personal communication.

[Swa96] W. Swartz, 1996. Personal communication.

[TK91] R.-S. Tsay and E. S. Kuh. \A Uni�ed Approach
to Partitioning and Placement." IEEE Trans-
actions on Circuits and Systems, 38(5):521{533,
1991.

[TKH88] R.-S. Tsay, E. S. Kuh, and C.-P. Hsu. \PROUD:
A Sea-of-Gates Placement Algorithm." IEEE De-
sign & Test of Computers, 5(6):44{56, 1988.

	CD-ROM Home Page
	ISPD97
	Front Matter
	Table of Contents
	Session Index
	Author Index

