Re-mapping for low power under tight timing constraints

P. Vuillod L. Benini

(. De Micheli

CSL Stanford University, USA

Abstract

In this paper! we propose a novel approach to synthesis for
low power under tight timing constraints. Starting from a
mapped netlist, we apply a powerful generalized matching
algorithm based on Boolean relations that allows us to find
reduced-power replacements for clusters of more than one
cell. Our approach is robust and scales well with circuit size:
it has been tested on all largest examples of the MCNC91
benchmark suite. In average, power is reduced by more than
17% with no speed penalty compared to minimum delay im-
plementations. Area is virtually unchanged.

1 Introduction

The problem of reducing the power consumption of com-
binational CMOS logic has received considerable atten-
tion in the last few years [1]. The most comprehensive
approach in the literature 1s probably the work pre-
sented in [2, 3, 4] which was integrated in a toolset for
power optimization called POSE [5].

The key idea in POSE is that classic logic optimiza-
tion techniques (e.g. factorization, decomposition and
others) can be modified to take into account power as
a cost function. Unfortunately, in some cases, trans-
formations that minimize power affect adversely area
and timing. The approach taken by POSE is to trade
off some controlled amount of area/speed for a consis-
tent power improvement. In many cases, such trade-off
is not necessary because the power-optimal design is a
good solution even for area and timing. However, there
1s no guarantee that this is always the case.

Speed is the primary concern in state-of-the art dig-
ital systems. The timing budget for a combinational
logic block is specified at the architectural level and be-
comes a constraint for synthesis. In the majority of
the practical cases the designer (and the synthesis tool)
struggles to satisfy the timing constraints. Once timing
constraints are met, secondary cost functions can be
optimized. Power is one of such cost functions. Since
satisfying timing constraints is a primary objective, it
is not possible to trade off performance for power, no
matter how big the power savings may be.

We call this problem power minimization under tight
timing constraints. Such constrained optimization prob-
lem 1s often encountered in the design practice. In this

1L. Benini was supported by NSF under contract MIP-942119.
P. Vuillod was on leave from INPG - CSI, FRANCE.

paper we propose a solution to power minimization un-
der timing constraints, where we minimize power with-
out trading off performance. Moreover, we focus on the
last stages of the synthesis process, namely we target the
power optimization of a mapped netlist. Post-mapping
optimization is often called re-mapping.

Several post-mapping power reduction techniques
have been proposed in the literature [6, 7, 8]. Our
approach differs from previous ones in: type of trans-
formations, re-mapping engine for generating candidate
transformation and starting point for optimization.

Our power optimizer relies on a robust and accu-
rate power estimation engine based on bit-parallel sim-
ulation [10] (BPS) and probabilistic estimation. More
specifically, we rely on bit-parallel simulation for power
estimation of the entire network, while we base our local
estimates on fast probabilistic estimation. Depending
on the efficiency requirements and the degree of confi-
dence on the quality of the results of the tool, we can
specify different estimation modes that test the effec-
tiveness of our transformations with varying degrees of
accuracy.

We tested our re-mapping tool on a large set of
examples, including the largest benchmarks in the
MCNC9I1 [19] suite for which, to our knowledge, no
power optimization results have been presented 1n the
literature. In average, power was reduced by more than
17% with no performance penalty, starting from tightly
timing-constrained mapped networks. Power reductions
are not due to decreases in area since we perform area
recovery on the timing-constrained networks before ap-
plying re-mapping. Indeed, area i1s almost unchanged
(average 0.26% decrease). Run times are in the order
of those required for technology-independent optimiza-
tions and library binding.

2 Background

We assume that the reader i1s familiar with Boolean al-
gebra and BDD based Boolean manipulation (see [13]
for a review). We denote vectors and matrices in bold,
ie,x =[x, Ts,...,2,]".

We use the symbolsV, f = fo-fL and 3, f = fo+ [, to
designate respectively the consensus and the smoothing
of Boolean function f with respect to variable x.

We consider Boolean functions that model a portion
(or cluster) of the circuit. They are called cluster func-
tions. We denote by f=[f1, f2, ..., fa]" a generic multi-
output cluster function. We call pattern function a com-
binational function modeling a library cell, and we use
¢ to represent a generic single-output pattern function.

In [11] we introduced the concept of generalized
matching (GM). Generalized matching extends the
Boolean relation-based approach [9, 16] to the technol-
ogy dependent part of the synthesis flow. GM has two
key advantages with respect to traditional single-output
Boolean matching techniques, namely (i) expressing the

degrees of freedom for matching with a Boolean rela-
tion which is more powerful than don’t cares [9]; (ii)
concurrently matching multiple single-output cells. As
a result, GM finds matchings that cannot be found with
any traditional Boolean matching technique.

} a©x

h(x)

Figure 1: A multi-output cluster (f) function and its neighbor-
hood h.

Let us consider a multi-output cluster function f em-
bedded in a logic network as shown in Figure 1. We
adopt a formalism similar to that used by Watanabe
and co-authors [16]. We can compute a Boolean relation
representing the complete set of compatible functions of
f, 1.e. functions that can implement f without changing
the input-output behavior of h. Watanabe et al. showed
that the characteristic function F of the Boolean rela-
tion can be obtained with the following formula [16]:

F(i,0) = Vxz[(P(x,1) - Q(0,x,2)) = H(z,%)] (1)

where P,) and H are the characteristic functions of
P, q and h.

The GM problem consists in finding all possible sets
of n library cells that can implement one of the func-
tions represented by F [11]. To accomplish this task
we define the concept of quotient function L(i,c) for
our technology library. The pictorial representation of
the quotient function is shown in Figure 2 for a simple
library with Ny, = 3 cells, g1, g2 and gs.

CeC

O

051(3‘2 ‘3‘304(35

Ein

—

Figure 2: Quotient function of the target library.

In the figure, the blocks M1, M2, M3 and
M out represent multiplexers, with control inputs ¢ =
[co, et ..oy ¢7]T. The first three multiplexers control the
mmput pin assignments. By changing the control inputs
we can control how the external inputs are connected to
the pins of the cells. Multiplexer M out controls cell se-
lection: it selects which cell is connected to the output.

In order to perform generalized matching, we need to
check if a n-output cluster function (i) can be replaced
by n library cells. For the sake of simplicity, we restrict
to n = 2. We can express GM with a Boolean formula

in L and F [11]:

M(c) = V3o (F(i,0)(L(i,c1) & 01)(L(i, c2) B 02)) (2)

Where F is the Boolean relation for the cluster, L is
the quotient function. Notice that for each output, we
have distinct sets of control variables, hence ¢ = [e1, ¢2].
This is because each output of f can be matched by a
different cell with different input assignments. M (c) is
called matching function; its ON-set denotes all possi-
ble assignments of the cluster to two library cells with
the property that the new implementation of the cluster
function can replace the old one without changing the
behavior observed at the output of h.

2.1 The re-mapping approach

Our power optimization strategy is based on a re-
mapping approach. Starting from a mapped circuit,
we apply our optimization engine to specific regions of
the mapped netlist where local improvements are more
likely. Once a target region is selected, it is optimized
and, if optimization is successful, one or more cells are
replaced with lower cost alternatives. Moreover, local
wiring can be changed: the new cells may have different
inputs.

A good choice of the target regions in the mapped
netlist 1s paramount for the success of the re-mapping
strategy. We focus on multiple fanout points (MFPs).
The enumeration of the MFPs is done by traversing
the network in a backward breadth-first fashion starting
from the output and moving toward the inputs. When-
ever a MFP is found, a set of cluster functions is gen-
erated by taking (i) sets of gates in the fanout of the
MFP, (ii) the gate in the fanin of the MFP and sets of
gates in its fanout. When all MFPs in the network have
been explored, the process is restarted and new passes
through the network are made until no further improve-
ment can be achieved. Although the algorithm can gen-
erate cluster functions with more than two outputs, we
will consider here only two-output clusters for the sake
of explanation. Once a cluster has been generated, its
neighborhood (i.e., function h) is constructed by taking
a subset of its transitive fanin and fanout up to a user-
defined depth. The algorithms for cluster generation
and neighborhood construction are described in a com-
panion paper [15]. For the remainder of this work, we
assume that a multi-output cluster function is selected,
its neighborhood has been generated and Boolean re-
lation F representing the degrees of freedom available
for generalized matching has been extracted from the
neighborhood (using Equation 1).

Given a library and a Boolean relation F, GM can be
solved in principle by applying Equation 2 and comput-
ing M(c). There are two fundamental problems with
this straightforward approach. First, computing Equa-
tion 2 by simply composing BDD operators is extremely
inefficient. Memory blowup is very common during con-
junction of the quotient functions with F and during
quantification. Second, even if we succeed in comput-
ing M (c) we have simply solved a decision problem (i.e.
found all matching assignments). We actually need to
solve an optimization problem, 1.e. finding among the
matching assignments the ones that minimize power
and respect the constraints. We could solve the opti-
mization problem by enumerating the ON-set of M(c¢)
and by evaluating constraint and cost function for each
minterm. It is easy to see that this solution is not prac-
tical, since the ON-set of M (c) can be very large.

To address both these problems we have implemented
an optimized matching procedure, based on two impor-
tant concepts, namely symbolic representation of cost

function and constraints and compression of the quo-
tient functions through bounding. The complete algo-
rithm for GM is quite involved and it 1s described else-

where [15].

=
v

Figure 3: High-level flow of the re-mapping procedure

Compute Bounds

Quot. Fun. compres

Compute M(c)
Build Cost & Constrairjt

Prune and Minimize

The high level flow diagram of the re-mapping proce-
dure is shown in Figure 3. An initial global power esti-
mation is performed (using BPS), then the breadth first
iteration on MFPs is started. From each MFPs, candi-
date multi-output clusters are generated and the neigh-
borhood is constructed (Boolean relation F is computed
in this step). Matching starts by computing bounds to
eliminate cells that are certainly sub-optimal, then the
compressed quotient functions are built. The match-
ing assignments are computed using Equation 2. The
symbolic representation of timing constraint and power
cost are built and the ON-set of M(c) is first pruned
by the constraint, then the minimume-cost minterms of
the pruned M are selected. Replacement is performed
if there is improvement with respect to the initial map-
ping. After each replacement, fast probabilistic simu-
lation is applied to check the power savings. Finally,
BPS-based power estimation is run every few replace-
ments to check for global improvement. The breadth-
first iteration is repeated until no further improvements
are achieved.

3 Power minimization

This section presents the algorithmic details of GM for
minimum power under delay constraints, 1.e. the se-
quence of steps shown in the dark box of Figure 3. It
can be skipped without compromising the high level un-
derstanding of our approach. The section is structured
as follows. We first present a simplified symbolic power
model. The second subsection shows how we bound
the search space using the cost function. In the third
subsection we address the computation of the timing
constraints.

3.1 Symbolic Power Model

Remember that the ON-set of M in Equation 2 repre-
sents all possible matching assignments for the cluster
function. We are interested in the ones that minimize
power. In order to get the minimum power assignments
in the ON-set of M(c), we need to compute the power
cost of each minterm. This task is efficiently carried
out by ADD-based symbolic techniques. We consider
in the following discussion only the power due to out-
put switching activity (also known as ezternal power or

switching power). Internal power is not discussed for
space reasons.

External power at a node o of a Boolean network is
given by:

Pewt(0) = K Pi(0)C(0) Vf;d (3)

Where Py(0) is the transition probability of node o,
C'(0) the capacitance at node o, Vg4 the supply voltage,
and K a constant factor.

We consider a cluster with two outputs. The two
outputs are bound by the Boolean relation F. A target
library function can be placed at one of the outputs o if
it satisfies F(i,0). The same holds for the other output.
We want to analyze the gain in power of the replacement
at one of the outputs o of the cluster. External power
can change at the node o, because the transition proba-
bility P;(0) depends on the function at 0. Observe that
the variation is possible because, by exploiting the de-
grees of freedom expressed by F, we may modify the
function at o, and consequently the transition proba-
bility. The capacitance (o) is independent from the
function at output o, because it depends only on the
fanouts of o which are not modified by matching.

The computation of the transition probability i1s done
symbolically as follows. Output node o is represented
by the function o = f(i). We call i and it two consecu-
tive input patterns, their response at the output being
o= f(i) and ot = f(it). The transition probability of
o0, Pi(0), is the probability that o switches, therefore it
is P(o # o). Consider now two consecutive input pat-
terns i and iT. If the responses to these patterns o and
ot are different, we observe a transition at the outputs.
This event contributes to P(o # o%). It happens with
a probability P(i,it). The formula for the transition
probability is the sum of all such events at the inputs.
We obtain the following formula:

Plo# o) =3; 1+ (f() B F()P(L,i*) (1)

If we assume spatial independence of the inputs and
we neglect high order temporal correlations (i.e. corre-
lations between patterns with more than one cycle time
difference), the probability of two consecutive input vec-
tors P(i,i%) is the product of the probability of each bit
sequence of the vector.

The consequence of the transition probability change
is the modification of power consumption at o, but at
the fanout nodes of o as well. If the transition probabil-
ity changes at o, its fanout nodes will have a new transi-
tion probability. However, we know from Section 2 that
the output nodes z of the neighborhood have the same
behavior regardless the matching. Therefore they have
a constant transition probability and consequently, all
the nodes in their fanout have a constant probability for
this given matching. So the impact in the fanout nodes
does not go further than z. The impact of the change
on the fanout nodes has to be taken in consideration,
but it has only a limited scope in the circuit, namely,
the nodes inside the neighborhood. We will discuss this
issue in Section 4. For now, we assume that changes in
transition activity of o do not sensibly affect the transi-
tion activity even for nodes within the neighborhood.

We analyzed the impact of a replacement at the out-
puts of the cluster. However, external power is modified
at the inputs as well. Consider i, one of the inputs i.

)

@? % library cell
é & 8 a”
i i2 i i2 i i2 i i2 pina
(b)

Figure 4: (a) Library cells (b) ADD of the capacitance at i; for

any selection.

1
2
1
2
(@

The power variation at the input is not due to the tran-
sition probability, because this latter may change only
at the gate output. It is caused instead by the variations
of the load C(¢) at the input when we change cell and
pin assignment during re-mapping. The load at input ¢
can be expressed as:

C(iy =™ + ¢ + CF (5)

Where C} (C?) is the input capacitance of the cell
whose output will be connected to o1 (02) and to input
i. (If i is not connected to the cell at o1 (02), C} = 0
(C? = 0)). C2™er is a constant, but C} and C? depend
on the cell selection and the pin assignments.

To evaluate the power cost we need to compute the
input capacitance and the output transition probabil-
ity for each cell and pin assignment. Power cost 1s a
function of the variables ¢. For each minterm of the
Boolean space of ¢, we compute a power value. This
can be easily and compactly handled by Algebraic De-
cision Diagrams [14] (ADDs). As we have shown before,
we need to find the output transition probability for any
cell configuration, and the capacitance at each input for
any input assignment.

For a particular value of the control variables ¢ = c*,
the restriction of the quotient function L(i,c*) repre-
sents a Boolean function of the inputs i alone: 1t is the
function implemented by the library cell and the input
pin assignment expressed by c¢*. For such function, we
can compute P;. Thus, we can extend the formula in
Equation 3 and compute P; for any possible value of ¢
in a symbolic fashion using ADDs:

Pye,0) =3 1+ ((L(i,¢)) & LT, ¢)) P(1,17) (6)

With P(i,it) being the ADD computing the proba-
bilities of (1,i%), and L the BDD of the quotient func-
tion. Pi(c, 0%1 represents how the transition probability
of output o changes as a function of the control variables
(that select different implementations for o).

The the function must take into account the effect
of input capacitance. The ADD formulation has the
same form as Equation 5, but C}! and C? are ADDs
function of ¢. The ADD of the capacitance 1s then
Ci(e) = Cl(e) + C¥e) + Cfher. To compute Cji(c),
we need to build an ADD with the leaves containing
the input capacitances of the pin selected by each ADD
path.

Example 1 Consider cells AND2 and NAND2 Figure 4 (a).
To simplify, we consider a cluster with one output and only two
inputs {71,72}. We need three control variables per output, c1
controlling the pin a of the cells, ¢z the pin b, and ¢3 making
the library cell selection. We consider that input 71 has no other

fanout in the circuit. The ADD of the capacitance at input 7 is
represented on Figure 4 (b). We see on this add when ¢; is 0 or
(c2 i1s 0) we select 71 on the pin a (pin b), and when c3 is 0 (1), we
select AND2 (NAND2). For example, with the selection c¢qca¢éa,
the capacitance at input 71 is 2, because in this case, 71 will have
one single connection to pin b of AND2.

The ADD computing symbolically the power is given
by the Equation 7. The first sum of the equation is
the power consumed at the outputs of the cluster, the
second sum at the inputs of the cluster.

Ple)= Y Pdc,0)C(0) + > Pi(i)(Ci(c)) (7)

o€Qut i€In

3.2 Bounding the Cost

Building the quotient function for the entire glarge) li-
brary is expensive, and most of the time useless. Re-
member that we are performing re-mapping and re-
optimization. It is not necessary to include in the quo-
tient function cells and assignments for which we are
certain that the global costs will be higher than those
of the original implementation.

To suppress assignments that have a cost higher than
the original implementation, we compute a power bound
for each cell. This bound is the minimum possible cost
that this cell has in any implementation in the cluster.
If the bound is higher than the original cost in power,
we discard the cell.

As for the cost function, we have to analyze two fac-
tors, the probability of transition at the outputs, and
the capacitance at the inputs. The value of the proba-
bility of transition is not completely free at the outputs.
The outputs are bound by the Boolean relation F (4, o).
This relation defines a range on the transition probabil-
ity at one of the outputs o;. Given F and P(i,i') it is
possible to compute the minimum transition probability
P;. (01) at o7 satisfying the constraint that the func-
tions implementing o7 is compatible with F (the same
holds for 02). We do not discuss this topic in detail be-
cause of space limitations [15]. Py, _,, is a bound on the
transition probability at the outputs, regardless the cell
representatives.

To compute an effective bound, we must account for
the input capacitance as well. Without considering the
functionality of the cell, we want to express a lower
bound on the power consumed to drive the inputs of any
cell in the library. We consider a cell g with inputs ca-
pacitances sorted in decreasing order {C4,Cs, ..., Cy}.
If we could connect the cell pins with any cluster in-
put, the least input power would be consumed would be
ClPt1+02Pt2+03Pt3+"', where {PtlaPt2a~~~aPtk}
are the transition probabilities of the inputs sorted in
wncreasing order. This is the minimum possible power
consumed at the inputs of this cell for any input per-
mutation.

We add to this bound the minimum power at both
outputs. We do not know what is the other cell se-
lected for the cluster, and therefore what is the power
consumed at its inputs. So we sum to the bound the
best case, usually an inverter because it has only one
connection, and 1ts power contribution is very low. If
this bound is greater than the original power value, i.e.
the power of the original implementation, we can dis-
card the cell. We see here that the effectiveness of the
bound depends highly of the quality of the original im-
plementation. However, if the original implementation

is of bad quality, we can use a tighter value as the origi-
nal value 1n a first pass, get a sub optimal solution, and
run again by releasing the tighter value. Notice that
our bound is very conservative, because we guarantee
that no potentially optimal solution is eliminated. The
bound discards on average 38% of the cells in the library,
at a very low computational cost.

3.3 Timing constraints

Minimizing power is the optimization objective, but we
need also to respect the timing constraints. Constraints
can be manipulated in a symbolic fashion as well. Before
describing their ADD-based representation, we describe
how timing constraints are computed.

For each cluster output, arrival time and required
time are computed. We can replace a cluster by an al-
ternative implementation if the new arrival times at all
cluster outputs do not exceed the required times. For
timing constraints, we use the critical path of the cir-
cuit as the maximum delay acceptable from the primary
inputs to the primary outputs. We compute the arrival
and required times for all nodes by taking this constraint
in account.

The ADD representing the arrival time at a node for
all possible cell assignments and input pin assignments
is computed using the following symbolic formula:

Turr(€) = max (Turr,(c) +alc) x C 4 filc) (8)

tEInputs

Where Tyr,, @ and 3 are ADDs in the control vari-
ables, and all operators involved in the computation are
standard ADD operators. The leaves of Tg,,, contain
all possible arrival times for the input 7. The leaves of «
contain all possible driving resistances of the cells. The
leaves of 3; contain all possible intrinsic delays from in-
put pins to the outputs of the cells. The algorithm for
building the ADD for the timing constraint is similar
to the one used for the construction of the power cost
function. Once the ADD of the arrival times has been
built, it can be used to prune the matching function.
All the assignments of ¢ that leads to leaves with value
of the arrival time larger than the required violate the
timing constraint and are discarded from the ON-set of

M(c).

4 The Power Estimation Engine

The computation of signal probabilities and transition
activities for the entire network is performed using a
Montecarlo approach [17] based on bit-parallel simula-

tion [10]. The efficiency of BPS is high: we could sim-
ulate thousands of patterns for our largest benchmarks
in a few seconds. Simulation time grows linearly with
network size. Patterns or, alternatively, probabilities
and transition activities can be specified for the inputs.
The Montecarlo stopping criterion can be overridden by
the user and full simulation of a pattern file can be per-
formed.

Whenever the network is modified, the effect of
the change must be evaluated. We call this step
re-simulation. Re-simulation was implemented using
BDD-based probabilistic techniques. The functionality
of the network is unchanged outside the neighborhood
of a cluster when a re-mapping has been performed.
Hence, we can re-simulate the neighborhood alone, to
check that the power saved in the re-mapping is not

swamped by the effect of re-mapping on fanout gates
within the neighborhood. Since the neighborhood is a
small fraction of entire network, BDD-based probabilis-
tic power estimation is performed in a very short time.
It 1s important to notice that re-simulation does not
take into account the correlation at the inputs of the
neighborhood, thus it is not as accurate a global simu-
lation in estimating the effects of a re-mapping (but it
is much faster).

After implementing the re-simulation engine, our ex-
periments revealed that the estimated power savings
computed by the cost function were extremely close to
those given by re-simulation. This conclusion is quite
unexpected. It appears that the cost function is very
accurate in estimating power savings and losses, and
re-simulation is actually not needed. Although it 1s im-
plemented and functional, 1t was not used in our runs.
Nevertheless, to protect ourselves against pathological
cases, we perform global BPS simulation every few re-
mappings (usually 10). If power is increased the re-
mappings can be undone. We conjecture that this event
is extremely rare: it never happened in our tests.

5 Experimental Results

We have implemented a post-mapping power optimiza-
tion tool based on generalized matching. The tool reads
a mapped circuit described in blif (or slif) and a
library file, and runs the optimization. Several user-
controlled parameters can be specified. The depth of
the neighborhood can range from 0 to infinity. The
number of outputs of a cluster can be also controlled.
We made experiments with up to four outputs. The
number of inputs 1 of a cluster can be controlled as
well. Usually they are assumed to be the inputs of the
cells implementing the cluster in the original mapped
netlist. However, additional inputs can be added taken
from nodes in the neighborhood. With this simple mod-
ification, we can exploit the power of generalized match-
ing to perform local re-wiring.

We can also change the cluster selection algorithm
to select arbitrary sets of nodes as clusters. Experi-
mentally, we observed that this is much less effective
than starting from multiple fanout points, mainly be-
cause traditional logic optimization is already effective
on fanout-free trees. Although some incremental opti-
mization could be achieved (between 1% and 2% with
respect with the results presented later), the run time
cost was remarkable (between a factor of three and five).

Memory optimization is the primary concern in the
software implementation. The tools uses the Cudd BDD
package [18] which provides a rich set of operators on
BDDs and ADDs and powerful memory management
and caching features. We set up a memory himit of
1,000,000 BDD and ADD nodes. When this limit is
reached, the matching is aborted and the traversal con-
tinues. Thus, when the BDDs exceed the memory limit
the program simply frees the memory and moves on to
new matchings.

We have tested our tool with a set of combinational
MCNC benchmarks [19]. The benchmarks are opti-
mized with SIS [12] for minimum delay with area recov-
ery, with script script.delay followed by the mapping
command map -n 1 -AFG. We used the critical path
delay of the circuit synthesized for maximum speed as
timing constraint for the optimization. Notice that we
synthesized with area recovery because we wanted to

measure the effect of power optimization alone. Ob-
viously, if the circuit is not area-minimal, some power
reduction can be achieved just by reducing area, and
this effect would inflate the power savings. Moreover,
we could not compare fairly with the mapper for low
power of POSE because it performs trade-offs between
power and speed, and we could not guarantee that the
tight delay constraints would have been satisfied.

Our tool was run with the same parameter settings
on all benchmarks, in an effort to demonstrate robust-
ness and generality. We ran the matching algorithm on
clusters of two outputs, with the neighborhood search
limited to a depth of 3. We used a library based on
an industrial technology file, with 75 cells, with up to
five inputs. The number of inputs of the cluster was
limited to 10. Table 1 shows the benchmarks, their

Bench Size T Aa % Ap CPU
z4ml 48 0.32 1377 75
b9 112 0.39 18.37 293
terml 180 -1.60 10.24 391
C432 183 -0.36 9.85 559
9symml 204 1.86 15.17 394
alu?2 349 -0.19 13.97 1260
C499 365 4.25 26.82 1943
x4 365 -0.54 3.03 575
C880 379 0.51 9.99 1388
C1908 508 0.58 11.50 1503
C1355 524 -1.81 13.02 883
toolarge 573 -0.79 11.30 1432
x3 640 -0.90 6.64 723
rot 677 -0.55 12.90 4519
apex6 694 -1.56 11.70 1126
alu4 699 0.26 16.07 3766
frg2 785 3.20 19.77 974
vda 785 3.46 24.25 3906
t481 863 -0.07 13.55 3779
dalu 966 0.29 18.39 5977
C2670 966 -0.06 12.08 1457
k2 1221 -1.83 7.42 4029
C3540 1352 -0.33 15.56 2971
pair 1484 -0.24 16.35 3739
C5315 2055 -1.40 13.97 20763
des 3621 -1.26 9.75 44842
C7552 3728 9.49 29.66 169634
C6288 4373 5.87 23.28 9470
Total 0.26 1757

Table 1: Results of power optimization on MCNC benchmarks.

gate count, the percentage area gain, the percentage
power gain and the run time in seconds. We observe
an average gain of more than 17% in power while the
critical path of the circuit has been constrained to re-
main the same as the original circuit. The average is
weighted: the power savings are weighted with the gate
counts. Notice that the weighted average is higher than
the arithmetic one. This can be explained by the fact
that larger benchmarks have more MFPs and more in-
ternal degrees of freedom for mapping. It is important
to notice that our power optimization is decoupled from
area. In many cases we have marginal area savings, and
the area losses are always within 2%.

The run times range from one minute to several hours
for the biggest benchmark on a SGI Indy workstation
with 96Mb of RAM, the exception being for one bench-
mark which ran for 48 hours. This is explained by the
fact that the degrees of freedom for this benchmark were
very big and the bound was less effective than for the
other benchmarks (on the other hand, we achieved al-
most 30% power saving). These run times are of the
same order than those spent by SIS in technology inde-
pendent and technology dependent optimization. Most
of the time is spend in building the matching function
and in universal quantification of the variables in Equa-
tion 2.

6 Conclusions

In this paper we presented a novel technique for power
optimization of mapped netlist under tight timing con-
straints. Our tool exploits the power of Boolean rela-
tions and symbolic cost function manipulation for find-
ing power-optimal replacements for groups of cells. An
essential component of the tool 1s a powerful and effi-
cient power estimation engine based on bit-parallel sim-
ulation and incremental probabilistic estimation. We
took special care in building an implementation that is
robust enough to deal with large circuits in a reason-
able time. As a result, we have presented (for the first
time in the literature) power optimization results for the
largest benchmarks in the MCNC91 suite.

Differently from numerous other approaches, we do
not trade off speed for power. Our tool reduces power
by 17% in average. Area is almost unchanged (0.26%
reduction). The run time for re-mapping is of the same
order as the time spent in optimization and mapping.

References

[1] M. Pedram, “Power minimization in IC design: principles
and applications,” ACM TODAES vol. 1, n. 1, pp. 1-54,
1996.

[2] C. Tsui et al., “Power efficient technology decomposition

and mapping under an extended power consumption model,”
IEEE TCAD, vol. 13, n. 9, pp. 1110-1122, 1994.

[3] S. Iman et al, “Multi-level nework optimization for low
power,” in ICCAD, pp. 372-377,1994.

[4] S. Iman et al., “Logic extraction and factorization for low
power,” in DAC, pp. 248-253, 1995.

[5] S. Iman et al.,, “POSE: Power optimization and synthesis
environment,” in DAC, pp. 21-26, 1996.

[6] B. Rohfleisch et al., “Reducing power dissipation after map-
ping by structural transformations,” in DAC, pp. 789-794,
1996.

[7] R. Babhar et al., “Symbolic computation of logic implications

for technology-dependent low-power synthesis,” in ISLPED,
pp. 163-168, 1996.

[8] Q. Wang et al., “Multi-level logic optimization for low power
using logic transformations,” in ICCAD, pp. 270-277, 1996.

[9] F. Somenzi et al., “Minimization of Boolean relations,” in
ISCAS, pp. T38-473, 1989.

[10] P.Schneider, “PAPSAS: A fast switching activity simulator,”
in PATMOS, pp. 350-360, 1995.

[11] L. Benini et al., “Generalized matching, a new approach
to concurrent logic optimization and library binding,” ACM

TODAES, 1997.

12] E. Sentovich et al., “Sequential Circuits Design Using Syn-
g g
thesis and Optimization,” in 7ICCD, pp. 328-333, Oct. 1992.

[13] G.De Micheli. Synthesis and optimization of digital circuits.
McGraw-Hill, 1994.

14] R. Bahar et al., “Algebraic Decision Diagrams and their Ap-
g g
plications,” in ICCAD, pp. 188-191, 1993.

[15] P. Vuillod et al., “Generalized matching from theory to prac-
tice,” in preparation.

[16] Y. Watanabe et al., “Permissible functions for multiout-
put components in combinational logic optimization,” IEEE
TCAD vol. 15, no. 7, pp. 734-744, 1996.

[17] R. Burch et al., “A Monte Carlo approach for power estima-
tion,” IEEE TVLSI vol. 1, n. 1, pp. 63-71, 1993.

[18] F.Somenzi. The CUDD package User’s guide. Version 1.0.5
1995.

[19] S. Yang, “Logic Synthesis and Optimization Benchmarks
User Guide Version 3.0,” Technical report, MCNC, Research
Triangle Park, NC, 1991.

	CD-ROM Home Page
	ISLPED97
	Front Matter
	Table of Contents
	Session Index
	Author Index

