
A Gate Resizing Technique for High Reduction
in Power Consumption

P. Girard     C. Landrault     S. Pravossoudovitch     D. Severac

Laboratoire d’Informatique de Robotique et de Microélectronique de Montpellier,
UMR 5506 UNIVERSITE MONTPELLIER II / CNRS
161 rue Ada, 34392 Montpellier Cedex 05, FRANCE.

E–mail: girard@lirmm.fr             Web page: http://www.lirmm.fr/~w3mic

Abstract
With the advent of portable and high density
microelectronic devices, the power dissipation of VLSI
circuits is becoming a critical concern. In this paper, we
propose a post–mapping technique that can reduce the
power dissipation by performing gate resizing. This
technique consists of replacing some gates of the circuit
with devices in a complete cell library having smaller area
and, therefore, smaller gate capacitance with lower power
consumption. The slack time of each gate in the circuit is
first computed to determine the set of gates that can be
down–sized. A global optimization procedure based on
integer linear programming and the simplex method is then
applied to determine the best overall gate resizing solution.
Experimental results on benchmark circuits have shown a
power reduction in the range from 2.8 to 27.9 % compared
to circuits without resizing. The most relevant features of
our technique are that it is applicable to large digital
circuits and gives an optimal resizing solution in a short
computation time (no more than 15.8 seconds).

1. Introduction
Due to the advance of integrated circuit technologies, it

is now possible to integrate several millions of transistors
into a small chip area with high performance. However,
power consumption problem rises owing to the increased
circuit density and speed. Higher power consumption may
reduce circuit reliability, shorten the life time and thus
require extra device to remove heat. Therefore, power
consumption has emerged as an important optimization
goal in the design of VLSI circuits.

Low power consumption can be targeted at various
levels of the design process, i.e. at the system, architectural,
logic and physical levels [1]. Optimization at the logic level

may occur during logic synthesis, structural netlist
optimization,  or gate resizing. Combinational logic
synthesis is usually partitioned into two phases. First, a
boolean network is optimized independently of the chosen
target library [10][11]. Second, functions in the network are
mapped to the library by using an efficient technology
mapping algorithm [15][16]. This phase yields a logic
netlist that can be further optimized by structural
transformations [14]. Another possible solution to reduce
power consumption at the logic level is to applied gate
resizing, that represents an efficient optimization technique
before placement and routing. This technique consists of
replacing some gates on non–critical paths by devices in a
gate library having smaller area and, therefore, smaller
capacitive load. Given that the power dissipated by a gate is
proportional to its load, reducing that load leads to a
reduction of the power dissipated by the circuit as well as a
reduction of the chip area.

In this paper, we address the problem of reducing the
power consumption of a technology mapped circuit under
timing constraints by applying gate resizing. The problem
has been formulated as a descrete, global, constrained
optimization problem, and has been solved by proposing a
fast algorithm based on integer linear programming (ILP)
and the simplex method. Inputs to this algorithm are a
technology mapped circuit, the timing constraints, the
switching activity on each node and a complete cell library.
The output is a circuit with minimum power consumption
that satisfies the given timing constraints. From a practical
point of view, our algorithm works in two steps. In the first
one, it computes the slack time of each gate in the circuit by
using a backward traversal procedure. The slack of a gate is
the amount of delay by which a gate delay may be increased
without affecting the critical delay of the circuit. In the
second step, it starts from the set of all gates in the circuit
that can be resized (gates with a slack time greater than
zero), and searches the global resizing solution that gives
the highest gain in power reduction. The most relevant
feature of our technique is that it can be applied on large
circuits within a short computation time.

Gate resizing is a well known technique for delay–
constrained power optimization, and several approaches



have already been published [1][2][4][12]. Some of them
provide solutions that may not be optimal in terms of power
reduction [1][12]. The others ([2][4]) consider the problem
as a global optimization problem and always yield optimal
gate resizing solutions. However, a common feature of
these existing approaches is that they use iterative
algorithms and, therefore, may not be able to handle very
large circuits in a reasonable CPU time. A comparison
between our approach and the existing methods will be
performed in the fourth part of this paper.

From a general point of view, the main features of the
gate resizing technique are that it does not change the
topology of the circuit under optimization, and that circuits
re–synthesized with this technique are guaranteed to be as
fast as the original implementations, but smaller and less
power–consuming. Another interesting aspect is that it
allows to eliminate undesired spurious transitions in logic
circuits. Spurious transitions account for between 10% and
40% of the switching activity in typical combinational logic
circuits [8]. The well known solution to reduce spurious
switching activity in a design is to complete path balancing
[6]. As the aim in gate resizing is to delayed non critical
paths such that all paths have finally the same delay, it is
obvious that the power saved by this technique also comes
from the decrease of spurious switching activity.

The rest of the paper is organized as follows. In the next
section, we detail the calculation of the slack time on each
gate, which is required to determine the set of gates that can
be resized. Section 3 describes the global optimization
procedure for low power, which is based on integer linear
programming. In Section 4, we compare our approach with
existing gate resizing techniques. Experimental results are
presented in Section 4, and conclusion is given in Section 5.

2. Slack time calculation
This method is an input vector independent approach

that quickly estimates the slack on each gate of a
combinational  circuit. The first step to compute the slack
time on each gate is to calculate the source delay SD of each
lead in the circuit by performing a simple topological delay
analysis. The source delay of a lead is the maximum delay
of a subpath from a primary input to the given lead. Next,
the required time on primary outputs is initialized. The
required time on a lead j, denoted as RT(j), is the time at
which the signal on lead j is required to be stable whatever
the input vector applied to the circuit may be. The required
time on primary ouputs is set to the value of the true delay of
the circuit, and is next computed on each lead by using a
backward traversal procedure and equation (1):

RT(j) � RT(z) � �(G) (1)� j � { inputs to G }

where j is one of the inputs and z the output of gate G
respectively (δ(G) is the propagation delay of gate G). In the
case where line j is a fanout stem, the required time is

evaluated from the required time on the fanout branches, as
expressed in equation (2):

RT(j) � mink { RT(jk) } (2)

where k ranges over all fanout branches jk of stem j. After
the required time has been computed on each line, the slack
time is calculated. The slack time of a gate G, denoted as
slack(G), represents the difference between the required
time and the source delay SD(j) on the output of the gate:

slack(G) � RT(j) � SD(j) (3)

According to the above definition, a circuit is safe, meaning
it satisfies the given timing constraints, if for each gate, the
slack time is greater than or equal to zero.

Example: Consider the example circuit shown in Figure 1
with the gate delays reported inside the gates. Having
determined the source delays in a forward pass of the
circuit, the required time on the primary outputs is
initialized to the value of the longest structural path delay (7
time units) and the slack time on gates G7, G8 and G9 is
calculated. Next, the process continues until the required
times on the primary inputs are calculated. In our example,
only four gates have a slack time greater than zero. These
non–zero slack times are reported on the circuit diagram.

RT=4

ÍÍ
ÍÍ

z1

z2I1

I2

I3

G8

G6

G7

G5

G2

G1

G9

Figure 1: Calculation of the slack times

G4

Í
Í

G3

z3

1

1

1

2

2

3

3

2

2

a

b

c

d

e

f
slack(G 3)=2

slack(G 7)=2slack(G 2)=4

slack(G 5)=1
SD=5

RT=7

SD=7

RT=7

SD=7

RT=7

SD=4
RT=4

SD=1
RT=1

SD=1 RT=5

SD=3
RT=4

SD=2

SD=RT=2

A drawback of this method for slack time calculation is
that it may underestimate the slack time of a gate, because
the path sensitizability is not taken into account. Although it
is possible to solve this problem, this would be too CPU
time consuming compared with the gain in accuracy of the
slack values. Indeed, the calculation of the actual slack time
on each gate would require to consider the longest path
passing through the gate, and verify the existence of an
input vector for this path. Analysing the path sensitizability
also requires the use of a timing analysis that leads to an
increase of the computation time [3]. As the technique we
propose always provides right results (it does not
overestimate the slack time of gates, and hence, the possible
reduction in power consumption), it can be accepted as
solution to our problem. Moreover, it is not the most
significant contribution in this paper (see Section 3 for that).

3. Global optimization for low power
3.1  Power consumption model

There are three major sources of power dissipation in
digital CMOS circuits: the charging and discharging of load



capacitances during output switchings (dynamic power),
the short circuit current that flows during output transitions,
and the leakage current. Since the last two sources are in the
nanowatt range [17], the dominant source of power
dissipation in a well–designed circuit is the dynamic power
dissipation [1]. The average dynamic power consumption
for a gate G in a synchronous CMOS circuit is therefore:

Pavg(G) �
1
2

. fclk . Cload(G) . V2
DD . D(G) (4)

where fclk is the clock frequency, Cload(G) is the load
capacitance,  Vdd is the supply voltage, and D(G) is the
transition density (the average number of transitions per
clock cycle) at the output of gate G. The load capacitance of
gate G can be expressed as follows [16]:

Cload(G) � �
j � fanout(G)

Cgate(j) � Cwire (5)

where Cgate(j) is the gate capacitance of j, and Cwire is the
wiring capacitance of the output net. Since the gate
capacitance is proportional to the gate area, the traditional
approach for minimizing the power consumption has been
to minimize the total gate area. However, since the power
consumption also depends on the switching activities of the
gates, a more effective solution is to minimize the total
weighted switching activity in the circuit ∑ Cload(j).D(j) .

3.2  Evaluation of the gain function
After the slack time on each gate has been calculated, the

next step in our method is to select a limited number of gates
for resizing since all gates in the circuit cannot be slowed
down. First, only gates with a slack time greater than zero
may be candidates for resizing. Secondly, two or more gates
belonging to the same path cannot be down–sized
simultaneously in order to satisfy the timing constraints. Of
course, it is possible to resize several gates on the same path
by sharing the amount of available slack on each gate, but
slowing down one gate among all provides the same result
when a complete cell library is available. For this assertion
to be valid, we need to consider the transition density
together with the slack time of gates. This point will be
developed subsequently.

In order to select the gates to be slowed down, we have
first to determine the sets of gates that can be resized
simultaneously, and then to select the set that provides the
highest power reduction (the best resizing solution). In
accordance with our assumption that only one gate per path
can be selected for resizing, gates that can be resized
simultaneously are those that belong to disjoint paths in the
circuit. Those sets of gates can be determined very easily.
To determine the set of gates representing the best resizing
solution, we need to use an evaluation or gain function that
allows to evaluate a solution in terms of power reduction.
This power reduction in our technique is due to the decrease
in total load capacitance of the circuit. Since the reduction
in load capacitance is directly linked to the increase in

propagation delay of the resized gates, we define a gain
function Gain in which the slack time of gates is taken as
evaluator. Moreover, the power consumption also depends
on the transition density of gate outputs. Therefore, we need
to consider this value in the expression of the evaluation
function. However, it is well known that the replacement of
a gate by a slower template decreases the load capacitance
of the fanin gates. For this reason, the gain of a set of gates
has been defined according to the following expression:

Gain(seti) � �
G� seti

( slack(G) . �
g � fanin(G)

D(g) ) (6)

where seti  is a set of gates that can be resized simultaneously
and Gain(seti) is the gain of seti . D(g) is the transition
density at the output of gate g, with g being a fanin gate of G.

As the aim in gate resizing is to minimize the total
weighted switching activity in the circuit, a more accurate
evaluation function would be a function based on the
difference in capacitance of the gate to be resized. However,
using this information still requires that the slack time on
each gate has been determined. Although the use of such
information requires additional computation time, we have
made experiments with the following evaluation function:

Gain2(seti) � �
G� seti

( �
g � fanin(G)

Cload(g) . D(g) ) (7)

The result of these experiments is that we have obtained
nearly the same solution (the same set of gates to be resized)
than that provided by the first evaluation function, but in a
CPU time significantly increased. We have therefore
retained the first function in the final algorithm.

Before calculating the gain values for each gate that can
be down–sized, an important task is to determine the
transition density (also called the switching activity) on
each line of the circuit. This task is performed in a
preprocessing step by using a simple and straightforward
simulation–based estimation technique. Input patterns
applied to the circuit are randomly generated, and a
statistical mean estimation technique is used to decide when
to stop. The main advantage of this technique is that it
provides a way to quickly estimate the average number of
transitions on each line of the circuit. Of course, this
technique to determine the transition density could be
replaced by an existing probabilistic technique [13].

3.3  A solution based on ILP
The solution we propose to determine the best set of

simultaneously resizable gates is based on the integer linear
programming (ILP). This technique is often selected in the
general problem of allocating limited resources among
competing activities in the best possible way [9]. Linear
programming uses a mathematical model to describe the
problem of concern. To formulate the mathematical model,
let xi represent a decision variable having the binary form:

xi � (8)1 if decision i is yes
0 if decision i is no

�



The linear programming model is then to select the values
for x1, x2, ..., xn so as to maximize:

Z � c1. x1 � c2. x2 � ��� � cn. xn (9)

subject to the restrictions:

a21 x1 � a22 x2 � ��� � a2n xn � b2

a11 x1 � a12 x2 � ��� � a1n xn � b1

am1 x1 � am2 x2 � ��� � amn xn � bm

(10)
...

ci represents the coefficient of xi in the objective function,
aji  takes the value 1 if the variable xi appears in constraint j
and 0 otherwise, n is the number of decision variables, m the
number of constraints.

In our problem, a decision variable xi is associated to
each resizable gate Gi of the circuit, and has the value 1 or 0
depending on whether the gate must be chosen to be resized
or not. As no more than one gate per path can be selected for
gate resizing, some decisions represent mutually exclusive
alternatives such that only one decision among several must
be selected. These mutually exclusive alternatives are
called constraints in our problem, and have the form:

...
a21 xG1

� a22 xG2
� ��� � a2n xGn

� 1

a11 xG1
� a12 xG2

� ��� � a1n xGn
� 1

am1 xG1
� am2 xG2

� ��� � amn xGn
� 1

(11)

where xGi is the decision variable corresponding to gate Gi , n
the number of resizable gates and m the number of
constraints. In the example circuit of figure 1, there is a
constraint between gates G2 and G7, which belong to the
same path. Similarly, another constraint exists between G5
and G7. The overall set of constraints is therefore:

xG2
� xG7

� 1 xG5
� xG7

� 1

As the best set of simultaneously resizable gates is the one
having the highest gain value (thus leading to the highest
power reduction), the objective function Z we have to
maximize can be formulated as described below:

Z � Gain(G1). xG1
� Gain(G2). xG2

� ��� � Gain(Gn). xGn

(12)Gain(Gi) � slack(Gi) . �
g � fanin (Gi)

D(g)����

Again consider the circuit of Figure 1, the problem is to
select the values for xG2, xG3, xG5 and xG7 so as to maximize:

Z � Gain(G2). xG2
� Gain(G3). xG3

� Gain(G5). xG5

with the constraints xG2
� xG7

� 1

xG5
� xG7

� 1

� Gain(G7). xG7
� 4.xG2

� 2.xG3
� 1.xG5

� 2.xG7

Remark: For the sake of simplicity in our example, we took
ΣD(g) equal to 1 for each Gain(Gi) in the objective function.
Results different from those given here for this example
may therefore be obtained when one considers ΣD(g) � 1.

Since there is no constraint on the variable xG3, a solution to
maximize the objective function Z is to select xG3=1. Then,

we can see that the solution is to select xG2=1, xG5=1 and
xG7=0, producing the optimal value Zmax=7. Several
techniques exist to solve ILP problems, such as the
branch–and–bound technique, the simplex method, etc..
The simplex method has been used in this work.

4. Comparison with existing techniques
Several approaches have already been proposed for gate

resizing. In [1], a heuristic approach is presented to deal
with this problem. The gates of a circuit are processed from
the primary outputs in a depth–first search manner. When a
gate with a positive slack is found, the algorithm tries to
replace it by a slower template extracted from the cell
library. Once the gate is replaced, the new gate delay is
updated, and the slacks for its fanin gates are re–computed.
In [12], the power reduction algorithm proceeds in two
phases. Phase one performs single gate resizing iteratively,
until down–sizing a gate causes violation of the timing
constraints. Phase two performs multiple gate resizing also
iteratively, until no more improvement can be made.

Figure 2: The corresponding graph of an example circuit

2

2

1

2
2

I3

I2

I1

O1

O2

G1

G2

G3

G4

G5

G6

G7

1/0/1

0/1/1

1/2/3

3/0/3

2/1/3

2/2/4

5/0/5

4/2/6

7/0/7

7/1/8
2

2

A common drawback of these two approaches is that
they yield solutions that may not be optimal in terms of
power reduction. This is due to the fact that down–sizing a
gate at the early stage of the optimization process may
prevent further power reduction [2][5]. For example, let us
consider in Figure 2 the corresponding graph of an example
circuit. The triplet shown next to each node j denotes
SD(j)/Slack(G)/RT(j) where line j is the output of G. Now,
consider Figure 3.a given below, which shows the result of
applying the algorithm presented in [1] to the circuit graph
of Figure 2. In this case, the delay of gate G5 and gate G7
increases by one unit each, thus leading to a reduction in
power dissipation. However, we can see that it is not the
optimal solution for gate resizing. Figure 3.b shows the
result of using the approach in [2], where the total increase
in delay units is 3 (the delay of gates G2, G3 and G7 is
increased by one unit each) instead of 2 in the previous case.
Figure 3.c shows the result of using our approach, that
provides the same increase in delay units (the delay of gates
G2 and G3 is increased by one and two units respectively).
In the latter two cases, a better solution has been obtained
without violating the timing constraints, proving that the
approaches in [1] and [12] may not be optimal. Another
drawback of the approach in [1] is that ADDs (Algebraic
Decision Diagrams) are used to determine the slack time on
each gate, thus preventing large circuits to be handled due to
high memory requirements of the ADD data structure.



The most recent approaches dedicated to gate resizing
([2][4]) are efficient in the sense that they always yield
globally optimal solutions to the gate resizing problem.
Moreover, the approach in [4] may handle fairly large
circuits in a reasonable CPU time in spite of the fact that it is
based on an iterative algorithm (concerning the approach in
[2], no result is given about the CPU time taken by the
iterative process, and only small circuits have been
experimented).  However, results given in the last section of
this paper demonstrate that our approach can provide
globally optimal solution for large circuits in a CPU time
that is five times lower than those given in [4]. The main
reason for this result is that our approach is based on a non–
iterative algorithm (in the case of a complete cell library)
that does not need to compute the slack time and solve the
ILP problem several times before obtaining a solution.

Figure 3: Comparison between gate resizing approaches

2

2

1

2

3

2

3

I3

I2

I1

O1

O2

G1

G2

G3

G4

G5

G6

G7

1/0/1

0/0/0

1/0/1

3/0/3

2/0/2

2/0/2

5/0/5

5/0/5

7/0/7

8/0/8

2

3

2

2

2

2

3

I3

I2

I1

O1

O2

G1

G2

G3

G4

G5

G6

G7

1/0/1

0/0/0

1/0/1

3/0/3

3/0/3

3/0/3

5/0/5

5/0/5

7/0/7

8/0/8

2

3

3

2

2

2

2

I3

I2

I1

O1

O2

G1

G2

G3

G4

G5

G6

G7

1/0/1

0/0/0

1/0/1

3/0/3

3/0/3

4/0/4

5/0/5

6/0/6

7/0/7

8/0/8

��

��

��

The algorithm described in the previous section, that
always find a globally optimal solution, is based on the
assumption that a complete cell library is available.
However, this assumption is not always true in real designs,
where the number of logically equivalent cells in a library
may be limited. In such a case, a simple solution consists in
applying iteratively the algorithm described in section 3
until there is no available slack. Although our algorithm still
yields an optimal solution in this case, it is obvious that our
approach is less attractive in such situation.

5. Experimental results
The complete algorithm has been implemented in C++

language on a SUNSPARC_5 workstation. Benchmarking
process was performed on combinational circuits from the
ISCAS’85 and MCNC’91 benchmark sets. Experiments
performed on each circuit have been done with gate delays

and load capacitances obtained after technology mapping
from a standard cell library (library of ES2: “European
Silicon Structures” company) [7]. Circuits were mapped
with CADENCE tools in the 0.7µm standard digital CMOS
technology. In the first step, the slack time of each gate has
been computed using the method described in Section 2,
with the delay constraint set to the length of the longest
structural path in the circuit. The number of gates to be
considered for down–sizing at the end of this step (gates
with a non–zero slack time) is reported for each circuit in
column 3 of Table 1. The number of gates chosen to be
actually resized after the optimization procedure described
in Section 3 is given in the fourth column of Table 1.

�� �#�" � ��"�!
�

 �!�'����
��"�!

� ��"�!
��"#���&
 �!�'��

∆��$� 
��� ��

���
"���

��� !���

�%�� ��� �� �� 	
�� ��	��

��
	 ��� �� 
 ���� ��
��

���� 	�� � 	� 	��� ��
�

 ��
 	�� 	�
 �� 	��� ����

���� 
�
 
� ��� ���	 ����

���� ��� �	 �� �� ���



��
�� �� �	
 � 
�� ����


��	 ��� ��� 
� 	��� ��
��

����� ��
 ��� ��� ���� 	�



"��� ���� ��� ��� ��	 ��	��

�	�� �	�� ���� 	
� ���� ����

�
��� ���� ��� 		� ��� ���

��
�� 	
�� 		�� ��
 �
�� ����


��#� 	
�� 	
�� �
�� 	�� ����

�	�� 	�� 	

� ��� 	�� ����

���%	 
��� 
��� �	�� 	��� ���

����	 
	� 
	� �	 ���� ���

Table 1: Results of power reduction by gate resizing

The column ∆Power reports the percentage of power
reduction obtained for each circuit. This percentage
represents the ratio between the total weighted switching
activity after and before resizing (see Equation (14), in
which n is the total number of gates in the circuit, and i
ranges over all the gates of the circuit). The last column in
Table 1 reports the CPU time taken by the overall gate
resizing process. For each circuit, this time includes:
calculation of the slack time on each gate, determination of
the best set of gates to be resized (from the simplex method),
computation of the new parameters (Cload) on the down–
sized gates, and calculation of the percentage of power
reduction ∆Power(%). The computation of the transition
density on each line is performed in a preprocessing step.

From an experimental point of view, the way to compute
∆Power has been the following. Before resizing, the values



of the wiring capacitance on each line and the gate
capacitances are known from the standard cell library of
ES2, as well as the actual delays on each gate. After resizing
of one gate g, the load capacitances of the fanin gates of g
are re–computed from the new value of the gate capacitance
of g. This step is repeated after each gate resizing, such that
we can finally obtained the weighted switching activity on
the output of each down–sized gate. By computing the ratio
between those values and the same quantity before resizing,
we can obtain the power saved ∆P in each circuit.

�P �

Pafter resizing

Pbefore resizing
�

1
2 . fclk . V2

dd
.�

n

i�1

Cload�(i) . D(i)

1
2 . fclk . V2

dd
.�

n

i�1

Cload(i) . D(i)

(13)

�Power (%) � 100 �

�
n

i�1

Cload�(i) . D(i)

�
n

i�1

Cload(i) . D(i)

. 100 (14)

From the results given in Table 1, we can see that about
15.52 % reduction in power consumption has been obtained
on the average, with a maximum of 27.9 % for circuit rd73.
These results demonstrate the effectiveness of the proposed
technique, although they can not be compared with those
presented in [1], [2], [4] and [12] (the cell library and the
technology mapper are not the same). Another important
point is that the CPU time required to find the gate resizing
solution is very short for all circuits, and can be neglected in
comparison to the total design time, thus increasing the
interest of using our method as a postprocessing optimizer.
The transition densities were computed with a statistical
mean estimation technique as described in Section 3.2. For
each circuit, one thousand of input patterns were randomly
generated to compute the transition density on each line.

6. Conclusion
In this paper, a power reduction algorithm by gate

resizing is presented. A slack time calculation algorithm is
first proposed. A gain function that considers the fanin
transition density of gates is then defined to guide the gate
selection for resizing. A global optimization procedure for
low power, which is based on ILP and the simplex method,
is finally presented. Experimental results on benchmark
circuits showed a power reduction in the range from 2.8 to
27.9 % compared to circuits without resizing. Compared
with existing gate resizing techniques, our method is able to
deal with real size circuits, and provides globally optimal
solutions in a short computation time (less than 15.8s).

Acknowledgements
The authors would like to thank B. Rouzeyre for

interesting discussions on combinatorial optimization, and
G. Cathebras for his help on technology mapping of
experimented circuits.

References
)	* #��� �+2+;� ���� �+-2=/6� �� �+-33 +8. �� $97/8B3� C�
�."�$!�� ��)�$� )$ ���*�� �$,�' �$#(*"%)�$# $� ��'�*�)(

�$#)��#�#� 
�!(� ��)�(�� ���� �8=/;8+=398+6 �980/;/8-/ 98
�97:>=/;��3./.�/<318� ::� ������	� �>8/ 	����

)	* ��"� �2+8.;+5+<+8� $�$2/81 +8. #�'� �;9./;</8�
0$,��$,�' ���� ����)�! ��(��#�� ���� �9>;8+6 90
$963.�$=+=/ �3;->3=<� ?96� 
�� 89� �� ::� �������� �:;36 	��
�

)
* ��$� �2/8 +8. �� $+;;+0B+./2� 0�# 	-��) �!�$'�)�" �$' $,

�$,�' ��'�'.��%������ ��)� �����/�#��� ��� � ���� �/<318
�>=97+=398�980/;/8-/� ::� �������� �>8/ 	����

)�* ���� �2/8 +8. �� �>81��2+81 �>� 0��)� ��#(�)�/�)�$# �#

�'�)���! ��)� �'$�!�"�� ����%;+8<+-=398<98���90�8=/1;+=/.
�3;->3=< +8. $A<=/7<� ?96� 	
� 89� 
� �/,;>+;A 	����

)�* !� �9>./;=� 0��)� ��/�#�� � ��#�'�! �*'%$(� �%)�"�/�)�$#

�%%'$���� � ���� �>;9:/+8 �/<318 � %/<= �980/;/8-/� ::�

	��
	�� �+;-2 	����

)* !� �9>./;=� #� �+..+. +8. $� �+88/� 0��, �!�$'�)�"( �$'

��)� ��/�#�� � �$"%�'�)�+� �)*�.�� ��� � ���� �/<318
�>=97+=398�980/;/8-/� ::� �������� �>8/ 	����

)�* $��/?+.+< +8. $��+635� 0� �*'+�. $� �%)�"�/�)�$# ����#�&*�(

��'��)�#� $, �$,�' ��� ��'�*�)(�� ��� � ���� �/<318
�>=97+=398�980/;/8-/� ::� 
�
�
��� �>8/ 	���

)�* �>;9:/+8 $363-98 $=;>-=>;/< �$
� :;9-/<< ��"���� 63,;+;A
.+=+,995

)�*���29<2�$��/?+.+<����/>=B/;+8.��'23=/� 0	()�"�)�$# $�

�+�'��� �,�)���#� ��)�+�). �# �$"��#�)�$#�! �#� ��&*�#)��!

��'�*�)(�� ��� � ���� �/<318 �>=97+=398 �980/;/8-/� ::�

��
�� �>8/ 	��
�

)�* ��$� �3663/; +8. ���� �3/,/;7+8� 0�#)'$�*�)�$# )$ �%�'�)�$#(

��(��'���� �96./8��+A� �8-�� !+56+8.� 	����

)	�* $� �7+8 +8.�� "/.;+7� 0�*!)��!�+�! ��),$' �%)�"�/�)�$#

�$' $, �$,�'�� ��� � ���� �8=/;8+=398+6 �980/;/8-/ 98
�97:>=/;��3./.�/<318� ::� ��
�����  9?/7,/; 	����

)		* $� �7+8 +8.�� "/.;+7� 0$��� 	-)'��)�$# �#� 
��)$'�(�)�$#

�$' $, �$,�'�� ��� � ���� �/<318 �>=97+=398�980/;/8-/�
::� 
���
�� �>8/ 	���

)	
*��#��38+8.%��@+81� 0�$,�' ���*�)�$# �. ��)� ��/�#� ,�)�

��)���'��#)�� �!�� ��!�*!�)�$#�� ���� �$"������ �
������ � &�$���� ::� ��	
� �>8/ 	���

)	�* �� � +47� 0� �*'+�. $� �$,�' 	()�"�)�$# ����#�&*�( �# ���

��'�*�)(�� ���� %;+8<+-=398< 98 &�$� <A<=/7<� ?96� 
� 89� �� ::�
������ �/-/7,/; 	����

)	�* �� #9206/3<-2� �� �96,6 +8. �� '>;=2� 0���*��#� �$,�'

��((�%�)�$# ��)�' ����#$!$�. ��%%�#� �. �)'*�)*'�!

�'�#(�$'"�)�$#(� � ��� � ���� �/<318 �>=97+=398
�980/;/8-/� :� �������� �>8/ 	����

)	* &� %3@+;3� "� �<2+; +8. $� �+635� 0����#$!$�. ��%%�#� �$'

$,��$,�'�� ��� � �����/<318�>=97+=398�980/;/8-/�::�
������ �>8/ 	����

)	�* ��(� %<>3� �� "/.;+7 +8. ���� �/<:+38� 0�$,�' 	������#)

����#$!$�. ���$"%$(�)�$# �#� ��%%�#� �#��' �# 	-)�#��� �$,�'

�$#(*"%)�$# �$��!�� ���� %;+8<+-=398< 98���90 �8=/1;+=/.
�3;->3=< +8. $A<=/7<� ?96� 	�� 89� �� $/:=/7,/; 	����

)	�*  � '/<=/ +8. �� �<2;+123+8� 0�'�#��%!�( $� ���� ���

��(��#� � �.()�"( ��'(%��)�+��� #/+.381 ��� �..3<98�'/<6/A
">,63<2381�97:+8A� 	����


	CD-ROM Home Page
	ISLPED97
	Front Matter
	Table of Contents
	Session Index
	Author Index


