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ABSTRACT

This paper presents a new two-gate-delay implementation
of the Booth encoder and partial product generator, which
eliminates the unnecessary glitches associated with the
Booth multiplier. In addition, a modified signed/unsigned
(MSU) and modified sign-generate (MSG) algorithms, suit-
able especially for signed/unsigned multipliers, were devel-
oped in order to reduce the compression level needed in the
Wallace tree, and hence reduce the multiplier hardware.
Using these features reduces the multiplier array energy
dissipation by about 30% and increases speed by about
10%.

1. INTRODUCTION

Currently, it become imperative for reduced instruction set
computers (RISC) and digital signal processors (DSP) to
use less energy without sacrificing their computation
throughput. Hence, the parallel multiplier as one of the key
building blocks of RISC and DSP, must address simulta-
neously the low-power and high-speed design issues.
In general there are two basic approaches to enhance the
speed of parallel multipliers, one is the Booth algorithm
and the other is the Wallace tree compressors or counters.
However, both typically lead to excessive energy dissipa-
tion [1].
When only Wallace tree is used to compress the number of
partial products [2], the multiplier array becomes very large
due to the large number of gates and the interconnect wires.
This leads to high energy dissipation. On the other hand,
when the Booth algorithm is used [3][4][5], a lot of unnec-
essary glitches occur in the multiplier array as a result of
the race condition between the multiplicand and the multi-
plier, due to the Booth encoder and the partial product gen-
erator. This again leads to high energy dissipation.
Furthermore, when not optimizing the Booth algorithm, to
match the special conditions of the array, both in terms of
operands sizes and in terms of sign extension bits (as for
example when signed/unsigned multipliers are used), the
result is a large increase in the number of full adders (FA)
needed for the Wallace tree compressors.

In this work a new implementation of the Booth encoder
and partial product generator is presented, that eliminates
the unnecessary glitches associated with the modified
Booth algorithm. In addition, it exhibit a very short delay
time, only two gates, from the input operands to the partial
products. Combining this Booth encoder with the MSG
algorithm, the MSU algorithm, and the 4-2 based Wallace
tree compressors [3][4][6], leads to the fastest possible
multiplier array with reduced energy dissipation.

2. THE MSU ALGORITHM

The operands of the multiplier presented here have two
basic operation modes: 16-bit unsigned numbers and 16-bit
signed numbers, as shown in Fig. 1, whereSE is the sign
extension bit. The additional bit (17th) is needed to repre-
sent the operands in both modes in two’s complement.

The range of the unsigned operands is
and of the signed operands . The result
is in the range , and it can be
represented in two’s complement using 33 bits.
In general, the modified Booth algorithm is applicable only
for two’s complement operands. The bit-pair Booth algo-
rithm is based on partitioning the multiplier into overlap-
ping groups of 3 bits. Each group is then encoded to
generate a correct partial product. The n-bit multiplierY is
written in two’s complement as:

(1)

It can be rewritten as:

Fig. 1 Signed and unsigned 16-bit operands:
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(2)

where the term in brackets, in (2), has values in the set
. Each recoded value performs a certain

operation on the multiplicandX (and accordingly adds‘0’
or ‘1’  to the LSB) as illustrated in Table I.

This algorithm is suitable only for operands with even
number of bits. Hence, in our case an additional bit is
needed forY. The result is a 17 x 18-b multiplier array (X
has 17 bits andY has 18 bits). In this case a maximal num-
ber of 10 bits can be added in the same bit position (column
number 16).

In order to achieve the fastest multiply operation, using the
Wallace tree compression, two rows of 4-2 compressors
and one row of 6-2 compressors should be used, resulting
in an equivalent delay of 8 XOR gates [6].
A modified signed/unsigned Booth algorithm is proposed
next in order to reduce the number of rows in the array, and
hence reduce hardware and increases speed. Since the oper-
andY in the signed mode can be represented by using only
16-bits, a solution must be given for the unsigned operand
mode. In this case (2) can be rewritten as:

(3)

The last term in brackets, in (3), has values in the set
, and must be separated into two terms:

(4)

Eq. (4) is the modified signed/unsigned version of the
Booth algorithm. Using it enables to have a 17 x 16-b mul-
tiplier array.

Table I: Modified Booth algorithm: recoding scheme.
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32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

i=0 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0
a0

i=1 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0
a1

i=2 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0
a2

i=3 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0
a3

i=4 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0
a4

i=5 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0
a5

i=6 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0
a6

i=7 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0
a7

i=8 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0
/0 /0 /0 /0 /0 /0 /0 /0 /0 /0 /0 /0 /0 /0 /0 /0 /0 /0

Fig. 2: 17 x 16-b multiplier array after the modified Booth partial product compression.
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When working in the signed mode the “regular” Booth
algorithm (2) is used. In the unsigned mode, bityn-1 in the
last Booth encoder (y15 in the case of 16-bit) should be
replaced by‘0’ , this satisfies the term
in (4). An additional partial product should be generated
according to the real value ofyn-1, in order to satisfy the
last term in (4) .
The multiplier array, after using the MSU algorithm is
depicted in Fig. 2. The pi

j are the partial products, andai
are the bits added to the LSB. The first seven rows(i = 0 -
6) are yielded from the “regular” Booth algorithm. The
partial products in the eighth row(i = 7)  are yielded either
from the “regular” term given in (2), or the modified second
term given in (4). The last partial product(i = 8)  is either
all zeroes, when using the signed mode, or the partial prod-
uct given by theAND function betweeny15 and theX oper-
and.
In this array maximum of only 9 bits are added in the same
bit position. Hence, in order to achieve the fastest multiplier
operation, only one row of 9-2 compressors should be used,
resulting in a delay equivalent to only 7 XOR gates [6].

3. MSG ALGORITHM

In some cases, when Wallace tree compression is used, the
partial products are signed extended till the MSB of the
array. The result is a large power and area waste due to the
unnecessary compressors used for the extended sign bits.
In order to reduce the array to a rectangle two basic sign
extension methods are typically used, namely the sign-
propagate and the sign-generate [1][7]. The sign-propagate
algorithm is useless in fast multiplier arrays due to its large
delay time as a result of the series dependence of the sign
extension of each partial product on that of the previous
one.
According to the sign-generate algorithm [7] the result of
adding all the sign extension bits of a 17 x 16-b multiplier
can be written as:

(5)

wheresi is the sign bit of the partial product in the ith row.

Using the two equivalences:

(6)

(7)

Sgn becomes:

(8)

The first term in (8) affects only the bits 34 and above and
can be omitted. When using (8) all the sign extension bits,
of all partial products, can be replaced by the following
steps:
• Inverting the MSB of all the partial product (p17)
• Adding ‘1’  to the left of each partial product
• Adding ‘1’  in bit column number 17
Although this algorithm reduces significantly the number
of unnecessary FA used to compress the sign extension bits
when signed operands are used, the total result is a very
small reduction in the overall number of FA needed for the
multiplier array when unsigned operands are also used. The
reason for that is the increase in the number of bits in col-
umn numbern+1 (column 17 in the 16-bit multiplier,
depicted in Fig. 2, will have 10 bits).
In order to achieve the most economical array a modified
sign-generate algorithm is presented hereafter.
To eliminate the‘1’  in column number 17, (8) is rewritten
as:

(9)

where the first term of (8) was omitted.
The last term in (9) has the value 3 or 4, depending on the
value ofs0. Whens0 = ‘0’  the last term is‘011’ or ‘s0 s0 s0’
and whens0 = ‘1’  this term equals‘100’ or again ‘s0 s0 s0’.
Fig. 3 depicts the final optimized multiplier array with both
modified signed/unsigned Booth algorithm and the modi-
fied sign-generate algorithm. A maximum number of 9 bits
is added in a column (columns 14-19).
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To compress this array only one row of 9-2 compressors is
needed. This results in a delay time equivalent to 7XOR
gates, with a total number of 170 FA. On the other hand
when not using the MSU and MSG the array compression
time is equivalent to 8 XOR gates and 210 FA are used.
The final adder is a 27-bit fast adder for the higher bits [8]-
[10], while the lower 7 bits of the final result can be com-
puted simultaneously to the array compression.

4. BOOTH ENCODER AND PARTIAL PRODUCT
GENERATOR

The implementation of the modified Booth algorithm, is
typically a major cause of energy dissipation, due to the
race condition between theX andY operands.
The most common implementation of the Booth encoder
and the partial product generator is depicted in Table II and
Fig. 4.

This implementation has large encoders and small partial
product generators (only 8 transistors), resulting is a small

array area. This is due to the fact that in a n x n multiplier
the partial product generator is placed
times while the encoder only  times. Furthermore,
the encoder’s load is comparatively small since only one
NMOS is used for each column in each row, for each
encoder’s control line.
A more compact implementation is presented in Table III
and Fig. 5 [4][5]. In this case more transistors are used for
the partial product generator, but on the other hand the
encoder is much simpler, and only three control lines are

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

i=0 p17 p17 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0
a0

i=1 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0
‘1’ a1

i=2 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0
‘1’ a2

i=3 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0
‘1’ a3

i=4 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0
‘1’ a4

i=5 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0
‘1’ a5

i=6 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0
‘1’ a6

i=7 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0
‘1’ a7

i=8 p17 p16 p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0

Fig. 3: 17 x 16-b optimized multiplier array with modified sign-generation.

Table II: Standard encoding of Booth algorithm.

y2i+1 y2i y2i-1 P1 P2 Z M1 M2

0 0 0 0 0 1 0 0
0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 1 1 0 1 0 0 0
1 0 0 0 0 0 0 1
1 0 1 0 0 0 1 0
1 1 0 0 0 0 1 0
1 1 1 0 0 1 0 0

Fig. 4 Standard encoding of Booth algorithm.
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passed for each row. A similar implementation that is used
to optimize the dimensions of the array slice can be found
in [6].
The drawback of all these implementations is the unneces-
sary glitches caused on the partial product. This problem is
best demonstrated by an example using the implementation
presented in Fig. 5.

Assuming the multiplier is a 4 x 4-b, the current operands
areX = Y= 0101 and they are changed toX = 1111 and
Y = 1001. In the current cycle the two 3-bit sub-strings of
the multiplierY are:

(10)

According to Table III the encoded bits are:X1 = ’1’  and
X2 = NEG = ’0’ . Hence, the fourth partial product in the
second column (i = 1, j = 3 ) is PP1

3 = ’0’ . In the next cycle
the operands are changed. The left sub-string(i = 1)  is:

(11)

and the new encoded bits areX1 = ’0’  andX2 = NEG = ’1’.
It is seen from Fig. 5, that theNEG signal propagates to the
partial product generator without any gate delay, and hence
the value of the new partial product, after one gate delay

 will be PP1
3 = ’1’ . After additional gate delay

, the partial product will be inverted,
P P1

3 = ’ 0 ,’ due to  the  change  o f  the  operandX
(x3 = x2 = ‘1’) . The third time the partial product will be
inverted,PP1

3 = ’1’ , is after additional one gate delay
, due to the change of the

encoded signalX1. Finally, the partial product will gain its
s teady  va lue , P P1

3 = ’ 0 ’ ,  a t
, due to the change of

X2. For this analysis it was assumed that all gates have
approximately the same propagation delay time. This is
especially true if pass-logic families are used.
It should be mentioned that any change in the value of the
partial products causes also a change all along the multi-
plier array, and the final adder. Thus, in the example pre-
sented above some parts of the array will exhibit four logic
state changes when no change was actually needed at all.
This energy dissipation associated with the glitches in the
modified Booth algorithm is an important portion of the
total energy dissipation of the whole multiplier [1].
The problem of spurious transitions is not unique for the
implementation presented in Fig. 5, it can be verified that it
appears in all the previously reported Booth encoders.
Two basic approaches can be used in order to eliminate the
unnecessary glitches in the Booth algorithm. One is to latch
all the partial products and allow them to change only after
steady-state was reached in the encoder and the partial
product generator. This can be done by using a clock deriv-
ative from the global clock, whose duty cycle is defined
according to the slowest path in the Booth implementation.
However, this approach requires large area and dissipates a
lot of energy by itself.

The second approach is to synchronize all the path in the
encoder and the partial product generator. It can be imple-
mented by using a different recoding scheme as presented

Table III: Compact encoding of Booth algorithm.

y2i+1 y2i y2i-1 X1 X2 NEG

0 0 0 0 0 0
0 0 1 1 0 0
0 1 0 1 0 0
0 1 1 0 1 0
1 0 0 0 1 1
1 0 1 1 0 1
1 1 0 1 0 1
1 1 1 0 0 1

Fig. 5 Compact encoding of Booth algorithm.
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in Table IV and Fig. 6. The principle here is to achieve the
fastest possible equal path for all signals emerging from the
X andY operand latches. It can be verified that the unneces-
sary glitch problem demonstrated above does not occur in
this implementation.

The following properties should be noted:
• The circuit uses only XOR and NXOR gates till the last

stage of the partial product generator. It means that all
the path can be equalized to have exactly the same prop-
agation delay.

• The delay fromX andY to PP is only two gates, one
XOR/NXOR and the output complex gate.

• The encoder is very compact.
• Four control lines are used for each row.
• The load, for each column in each row, onX1 andX2P is

one gate, andNEG is loaded with two gates. This is the
same as in the compact encoder. The additional control
line ZP is loaded with one gate.

• Complementary inputs are not needed.

The penalty for this fast and race-free implementation is the
larger area used for the partial product generators [11]. The
full CMOS implementation of the partial product generator
consists of 24 transistors, compared to only 15 that are
needed for the compact implementation presented in Fig. 5.
As a result, the area that is spared by reducing the number
of FA that are needed to compress the array, is used for the
larger partial product generators.

5. SUMMARY

Glitch-free Booth encoder and partial product generator
were presented, together with two algorithms: MSU and
MSG. Using all those features yields on one hand the fast-
est signed/unsigned multiplier array, while on the other
hand decreases significantly its energy dissipation.

The speed enhancement is due to the reduction of the com-
pression level in the multiplier array. Without using the
MSG and MSU algorithms the compression time is equiva-
lent to 8 XOR gates (3 at the 4-2 first compression level and
5 more at the 6-2 second compression level). When using
the MSG and MSU only one compression level 9-2 is used,
with a delay equivalent to 7 XOR gates. Energy dissipation
is reduced due to the elimination of the glitches associated
with the Booth algorithm, and the reduction of the number
of FA needed to compress the multiplier array.
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