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Abstract

This paper demonstrates the feasibility of a register-
memory addressing mode in microprocessors targeted
for low power applications. Using a high level power
profiling tool that performs software energy evalua-
tion, the major sources of power dissipation in a typ-
ical RISC processor are identified. It is shown that
the addition of a register-memory addressing mode can
target these “hot-spots” and provide power savings.
Two different implementation options are considered
and the power-performance trade-offs are evaluated.
The reduction in performance is cushioned by the re-
duced instruction count, and it is anticipated that the
overall impact on the total execution time of programs
will be acceptable in low power application domains.

1 Introduction

Mobile computing and embedded control applications have led to
the emergence of power consumption as a critical design concern
for VLSI systems. Micro-processors targeted for such application
environments have to be designed with energy consumption as an
important parameter in the design space, in addition to speed, area
and cost which have traditionally been the parameters for trade off.
Circuits that enable a low power implementation of most hardware
primitives in typical microprocessors have been developed. How-
ever, studies have shown that design decisions at the architectural
level can have a significant impact on power consumption.

RISC machines are normally load/store architectures, where all
operands must be brought in from memory and placed in the reg-
ister file before being used in an arithmetic operation. Intuitively,
this appears to be expensive with respect to the energy consumed
in instruction and data fetch, and in the register file. Adding an
addressing mode for ALU instructions to access one operand from
memory, leads to a reduced Instruction Count (IC), and hence lower
instruction fetch energy. It also reduces the number of register file
accesses and leads to a lower register file switching activity.

Hitherto, there has been a lack of effective tools to evaluate a
hypothesis of this nature. Using an in-house instruction level power

profiling tool, that performs software energy evaluation on a DLX
type architecture, we demonstrate that our premise is indeed valid.
The register-memory addressing mode will however, result in an
increase in clock cycle time, or an increase in the number of clocks
per instruction. It is anticipated that this performance loss will be
an acceptable trade off in low power applications.

The rest of the paper is organized as follows. Section 2 dis-
cusses the simulation engine and methodology used in our study.
Section 3 examines power consumption patterns amongst the var-
ious modules of a processor. Based on the quantitative insights
gained from this power profiling, section 4 presents the case for an
extended addressing mode to lower power consumption. Section 5
discusses the implementation and results from our work. Section 6
concludes with further comments on future work.

2 Simulation Framework

The simulation methodology is based on high level power estima-
tion of programs using an instruction level simulator and switched
capacitance models for the hardware modules. Two different types
of switched capacitance models are used : average switched capac-
itance per access and input data dependent switched capacitance
models derived from actual circuit layouts through IRSIM-cap[10]
simulations. Data dependent characterizations may be

� Bit Independent, where the operation does not depend on the
values not in the same bit slice ( Eg: logic operations ). The
total switched capacitance is just the sum of the those for the
individual bits. These are bit characterized models.

� Bit Dependent, where the operation depends on operations
in other bit slices. (Eg: Adders, Decoders ). These are char-
acterized by compressed tables of input vector combinations
and the corresponding switched capacitance.

Each high level activity (micro-instruction) is simulated and the
energy consumed in the activated hardware modules is determined
from the switched capacitance models. The sub tasks performed
in each pipeline stage are simulated, and the energy consumed in
each pipeline stage is determined. Programs can be run on the
simulator and statistics on energy consumption in different mod-
ules, instructions and instruction categories can be obtained. The
simulation framework allows for experimentation with different ar-
chitectures, hardware implementations, instruction sets, software
techniques and capacitance models.

The simulator core is the DLXsim [5], which is instrumented
to include energy profiling and changes to the instruction set archi-
tecture. A detailed discussion of the power profiler can be found in
[1],[2].



3 Energy Consumption Patterns in a
Microprocessor

The first step towards optimizing microprocessor architectures for
power is to identify the modules in which most of the power is con-
sumed. Amdahl’s fundamental law quantifies the principle that the
maximum gains can be achieved by optimizing the most common
case.

A variety of programs with different characteristics were ex-
ecuted on the simulator. The architecture considered was a sim-
ple 5 stage pipeline DLX processor. The energy consumption in
each module was determined. The switched capacitance models
for the ALU, instruction decoder, register file and pipeline registers
were obtained from layout netlists ( 2 micron technology ) using
IRSIM-cap [10] simulations. The instruction and data caches were
modeled with an average switched capacitance of 4.5 pf per access,
which is fairly typical relative to our implementation of the other
modules. A 100% hit rate was assumed for the caches. Note that
this provides a best case estimate of the instruction and data transfer
energy, and realistic hit rates will lead to higher energy consump-
tion for the memory modules. The instruction decoder used was
a full 6-bit decoder, which represents a worst case estimate of in-
struction decode energy, since the actual size of the instruction set
does not require the full decoder. However, the energy consumed
in generating specific control signals after instruction decode were
not modeled, since they depend very heavily on the low level im-
plementation details not typically available at an architectural level
power estimation stage. Sample results from this energy profiling
are shown in Figure 1.

It was observed that the highest energy consumers were the in-
struction and data caches, pipeline registers and the register file .
More energy is consumed in fetching and moving instructions and
data, than in performing the actual operations on the data. Hence,
the design of an architecture for low power should attempt to min-
imize this component of energy consumption. An implementa-
tion of this principle can be seen in Thumb, a low power micro-
controller from ARM Ltd, that uses a compressor-decompresser in
its instruction fetch path[6]. The advantages of a 16-bit encoding
of the 32-bit DLX instruction set have also been demonstrated [3].
The high levels of switching activity in the pipeline latches causes
them to be major consumers of power. This is a strong motivation
for research in the design of low power latches and flip-flops, such
as those used in the Strong-ARM processor [9].

4 An Extended Addressing Mode for Low Power

As seen in the previous section, moving instructions and data be-
tween the processor core and memory is expensive with respect to
power consumption.

Typically, in a load/store architecture, data is brought in from
memory into a register file before being used in an ALU operation.
From the perspective of power consumption, data is moved from a
region where it is sparsely distributed ( due to large size of memory
) to a region where it is densely packed ( due to the relative small
size of the register file ). It is operated upon in this region and the
results are sent back to the memory. This leads to a very high level
of switching activity in the register file and the internal busses. This
architecture achieves high performance because registers are faster
than memory and are easier to address.

Advances in semiconductor technology such as decreasing fea-
ture sizes and increasing die sizes, have provided designers with the
capability of providing large amounts of memory on the same chip
as the processor core. This significantly narrows the speed gap be-
tween registers and memory. In addition, new architectures are be-
ing proposed that tightly integrate processing power with advanced
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Figure 1: Energy Consumption in the Modules of a Processor

memory technologies. These architectures address the shortcom-
ings of the CPU-centric design philosophy [7], [8]. In this context,
bridging the memory gap may not be such a critical design concern
in the future.

If the speed of memory and registers are comparable, and mem-
ories are more tightly coupled with processing core, it maybe fea-
sible to examine a register memory architecture for low power ap-
plications. These architectures provide higher code density, which
leads to lower instruction fetch energy. They also lead to reduced
register file usage, leading to power savings in the register file.

We take a step in this direction by augmenting the DLX with a
register-memory addressing mode and examining its implications
on power consumption.

Consider the assembly code for the operation a = a + b, with and
without the register-memory addressing mode. The comparison is
shown in Figure 2.

It is generally accepted that the addition of register-memory
instructions will lead to a loss in performance. We believe that
this will be an acceptable trade off in low power applications. It
may also make the control unit more complex, and hence more
power consuming. However, the results from section 3 on major
consumers of energy indicate that instruction fetch energy domi-
nates, and reasonable decrease in this would outweigh any increase
in control unit energy consumption.



Load/Store                               Load/Store + Register-Memory 

LW r1, d1(r30)                        LW r1, d1(r30)
LW r2, d2(r30)                        ADDM r1, d2(r30)
ADD r1, r1, r2                         SW d3(r30), r1
SW d3(r30), r1

4 instr memory accesses               3 instr memory accesses - 25% decrease
3 data memory accesses               3 data memory accesses - no change
9 register file accesses                  6 register file accesses - 33% decrease

Figure 2: Comparison of Load/Store with Load/Store + Register-
Memory

Instruction Instruction meaning
ADDM Rd,d(Rs) Rd<- Rd + Mem(d + Rs)
SUBM Rd,d(Rs) Rd<- Rd - Mem(d + Rs)
ANDM Rd,d(Rs) Rd<- Rd AND Mem(d + Rs)
ORM Rd,d(Rs) Rd<- Rd OR Mem(d + Rs)
XORM Rd,d(Rs) Rd<- Rd XOR Mem(d+Rs)
S M Rd,d(Rs) Set conditional:

“ ” maybe
GT, GE, EQ, NE, LE, LT
Store Result in R1

MUTLM Rd,d(Rs) Rd<- Rd X Mem(d + Rs)

Table 1: New Instructions Added to the Instruction Set

5 Implementation and Results

The instruction set of the DLX processor was augmented with 12
new register-memory instructions. Table 1 shows the instructions
that were added and the functions they perform. The choice was
dictated by the number of available op-codes in the I-format in our
version of DLXsim. A complete redesign and re-encoding of the
instruction set will be considered for future studies.

Two different implementation options were considered to in-
clude register-memory instructions - a 5 stage pipeline and a 6 stage
pipeline. The 5 stage pipeline, shown in Figure 3, has an adder
to compute the effective address before memory is accessed. This
adder maybe in the MEM stage or in the ID stage. In either case, the
Clock Cycle (CC) time of the processor will have to be increased
to perform this addition. The 6 stage pipe, shown in Figure 3, pro-
vides for a separate pipeline stage to compute the effective address.
This will enable the same clock cycle time to be maintained as the
original load-store machine, but the Clocks Per Instruction (CPI)
will increase due to the additional pipeline stage.

Instruction and data memory was assumed to be on-chip caches
with 100% hit rate. Average switching capacitance models were
used for the caches. The register file was implemented using SRAM
type storage elements. Data-dependent models were used for ALU
components, instruction decoder, register file decoder and pipeline
registers. Average switched capacitance models were used for reg-
ister file SRAM cell array and caches.

Since the study involved modifications to the instruction set ar-
chitecture, the use of a standard benchmark suite would involve
writing a new compiler. Hence, the feasibility of the architecture
was studied with hand-coded assembly programs, before a major
task such as the redesign of the compiler is undertaken. Table 2
shows some characteristics of the benchmarks used.

IF ID MEM EX WB
ADDER &

IF ID ADD MEM EX WB

IF ID EX MEM WB

ORIGINAL    DLX    PIPELINE

5   STAGE   REG-MEM   PIPELINE 

6   STAGE   REG-MEM   PIPELINE

Figure 3: Pipeline Structures for Register-Memory Addressing
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Figure 4: Switched Capacitance for Different Architectures
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Figure 5: Reduction in Instruction Fetch Energy

A 30% reduction in switching capacitance was observed when
a load-load-alu sequence was replaced by a load-alumemory se-
quence, as shown in Figure 2. Figure 4 shows the some the results
obtained by running the hand-coded assembly programs shown in
Table 2 with the different architectures.

It is observed that the 6 stage pipeline often consumes as much
or more energy than the original DLX, even with the use of register-
memory instructions. This is partly because the high switching
activity in the additional pipeline stage offsets the decrease in in-
struction fetch and register file energy with the register-memory
instructions. Another reason is that, in order to implement register-
memory instructions, we place the ALU stage later in the pipeline,
causing the source registers and immediate field to be held for ad-
ditional stages. This increases the bitwidth of some pipeline latches
when compared with the original DLX, resulting in a higher contri-
bution from pipeline latches towards the total energy consumption.
For the 5 stage pipeline, the overall reduction in switched capaci-
tance ranged from 5% to 13% ( Figure 4).

Figure 5 shows the change in instruction fetch energy for dif-
ferent programs. Reduction in instruction fetch energy ranges from
9% to 20%. Figure 6 shows the reduction in register file energy,
which ranges from 10% to 18%. The energy consumption of the
pipeline latches and the instruction decoder usually increase. While
the reasons for increased pipeline energy have been discussed ear-
lier, the instruction decode energy increases due to the increased
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Figure 6: Reduction in Register File Energy

size and complexity of the instruction set. Instruction decode en-
ergy increases by up to 12% (Figure 7) . However, considering the
relative weights of instruction fetch energy and instruction decode
energy in the overall power consumption equation, the increase in
instruction decode energy will have a very marginal effect.

The major limitation is the increase in pipeline energy (Fig-
ure 8). When regular D latches were used, pipeline energy for
the register-memory architecture increased on the average, by 3.3%
for the 5 stage implementation, and by 44.8% for the 6 stage ver-
sion. The large increase for the 6 stage pipeline is due to the extra
pipeline register. When low power latches such as those used in the
Strong-ARM were used, the average increase in pipeline energy
was 2.6% for the 5 stage pipe and 42.6% for the 6 stage pipe.



Program IC old IC new % Reduction in IC % Register-Memory Instrs
Vector Addition 1099 1000 9.01 10
Bubble Sort 84121 66644 20.8 8
MAC Loop 1415 1315 7.1 7.6
Linear Search 409 358 12.5 14
Moving Ave Filter 40714 36618 10.1 11.2
Mean 2316 2060 11.1 12.4

Table 2: Statistics of Sample Benchmarks Used
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Figure 7: Change in Instruction Decode Energy
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Figure 8: Change in Pipeline Energy
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Figure 9: Effect of Pipeline Latch Capacitance on Power Savings

Figure 9 shows how the percentage savings in total energy de-
pends on the energy consumption of the pipeline latch. It is ob-
served that the energy saving drops very sharply with increase in
pipeline latch switched capacitance.

The performance trade-off involved in using an extended ad-
dressing mode depends on the method of implementation. Consider
the example of the moving average filter program. In the original
load-store machine,

CPU time= IC * CPI *CC
= 40714 *CPIold * CCold

For the machine with register-memory instructions added, if we use
a 5 stage pipeline,

CPU time= 36618 *CPIold * CCnew

The CPI does not change, and we note thatCCnew can be 10%
slower without any performance degradation.

If we use a 6 stage pipeline,

CPU time= 36618 *CPInew * CCold

In this case the clock cycle time does not change andCPInew can
be 10% greater with no performance loss. A similar analysis can
be performed for the other programs.

Since, the power savings achieved with the 6 stage pipe are
much smaller, the 5 stage pipe is likely to a better choice in the
power-performance trade-off.

6 Concluding Remarks and Future Work

Movement of instructions and data between memory and proces-
sor core is shown to be a major source of power consumption in
a microprocessor. A small complex instruction set maybe compet-
itive in the low power application domain, since it offers higher
code density and lower levels of register file activity. We have
augmented the DLX with a small number of register-memory in-
structions and used a simulation based methodology to show that
power savings can be achieved with this extended addressing mode.
There is, however, a power versus performance trade off involved
that needs to be evaluated based on the performance constraints of
a particular application environment. We have evaluated two dif-
ferent implementation options and shown that fine grain pipelining
is not suitable for low power system design. It is also to be noted,
that as the instruction set becomes more complex, so does the con-
trol unit, and the power it consumes would increase as a result.

The power consumption in the control unit is a function of the size
and complexity of the instruction set, and the optimal point beyond
which control unit power dominates over instruction fetch energy
needs to be investigated.
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