
Synthesis of Low-Power Asynchronous Circuits in a Specified Environment�

Steven M. Nowick Michael Theobald
Department of Computer Science
Columbia University, New York

Abstract — We introduce a new method for the synthesis of power-
optimal asynchronous control circuits. The method includes two
steps: (i) an exact algorithm for 2-level synthesis, and (ii) heuris-
tic algorithms for multi-level synthesis. Unlike most existing syn-
chronous algorithms, we incorporate bothtemporal dependence
andglitch activity in our model to guide synthesis. Results, using
only our 2-level minimization, show power reduction up to 33%.

1 INTRODUCTION
Interest in low-power design has grown considerably in recent
years. The increasing market for battery-powered portable devices
has made low power a critical concern. Low-power operation can
reduce the need for expensive packaging, and can extend the life-
time of components by providing a less stressful operating environ-
ment.

In this paper, we focus onasynchronous circuitsfor low power.
Asynchronous systems have the potential for low power operation
for two reasons [3]. First, these systems have no global clock; in
contrast, clock distribution is a major source of power consumption
in synchronous systems. Second, asynchronous circuits have an
inherentautomatic power-down operation: modules are activated
only when their operations are needed. Low-power design is a ma-
jor focus of recent asynchronous design, including a low-power in-
frared communications chip, an asynchronous implementation of
the ARM microprocessor, and an asynchronous error corrector for
a DCC player [3].

Many techniques have been developed to reduce power con-
sumption insynchronous circuits. These methods approach the
problem at different levels of synthesis, including algorithmic, ar-
chitectural or structural, logic synthesis, and IC device technology
(see [4, 6]). Other techniques include “precomputation”, “guarded
evaluation” and “gated clocking” at the logic level (see [6]) and
“voltage scaling” at the system level [4]. At the logic synthesis
level, in particular, a number of power-optimization methods have
been proposed. These include 2-level logic minimization [9], multi-
level (extraction and factorization) [8], Boolean re-synthesis [1],
clustering [16], and technology mapping and post-mapping opti-
mization [6, 5].

These methods have been effective; however, they have two sig-
nificant drawbacks in their power model:

temporal independence assumption:Each of these meth-
ods assumes that primary inputs are temporally indepen-
dent [11]. In reality, inputs are often correlated. For ex-
ample, in controllers, input sequences (and resulting state
sequences) are often known [2]. Monteiro and Devadas [10]
show that the assumption of temporal independence may re-
sult in errors in power estimation up to 44%.

0-delay assumption:Most of the above methods assume a
0-delay model, where glitch power dissipation is ignored. In
fact, glitch power dissipation may contribute 15-20% of to-
tal power consumption in control circuits (in some datapath
circuits, a much higher contribution is possible) [7].

� This work was supported by NSF under Grant no. MIP-9501880 and
by an Alfred P. Sloan Research Fellowship.

0

Of the above logic synthesis methods, only Bahar and
Somenzi [1] consider glitch power dissipation, but restricted to the
context of a mapped circuit during resynthesis.

Contributions. This paper makes two contributions.
First, we introduce a power model which incorporates bothtem-

poral dependenceand glitch activity. That is, we use a more
accurate model than nearly all existing synchronous approaches.
Temporal dependence and glitch activity are incorporated analyti-
cally, and are used in both technology-independent and dependent
synthesis steps. Temporal dependence is naturally given in asyn-
chronous controller specifications, such as burst-mode specifica-
tions [13, 12, 17], where theinput- and state-sequencingare spec-
ified. Glitch activity is determined analytically, at the logic level.
Our goal is to synthesis power-optimal circuitswith respect toa
given environment,while consideringglitching activity. We call
our synthesis approachenvironment-driven.

Second, we apply this model to a new synthesis method, for
power-optimalasynchronous control circuits. We present a syn-
thesis path consisting of (i) a technology-independent and (ii) a
technology-dependent step. First, we present an exact 2-level min-
imization algorithm targeting low power for asynchronous circuits,
i.e. where temporal dependence is provided by sequencing informa-
tion. Second, we present power-optimal (a)clusteringand (b)de-
compositionalgorithms, targeted to CMOS complex gates. The
complex gates are generally AOI-type, and are used to cluster prod-
ucts to further reduce power.

While our focus is on asynchronous circuits, we believe our tech-
niques can be applied to synchronous circuits in the future.

2 PRELIMINARIES
2.1 Specified Environment
Our synthesis approach for a Boolean functionf is based on a given
specified environment(T; P), whereT is the set of possible multi-
input changes (also known as input transitions, i.e. “a change from
one input vector to another”) andP is the probability distribution of
T . The assumption of a specified environment is very appropriate
for asynchronous circuits [13, 12, 17].
2.2 Synthesis Techniques and their Power Models
There are three major sources of power consumption in CMOS cir-
cuits [3, 11].Switching energyis associated with transitions on gate
outputs.Short circuit energyconsumption is caused by simultane-
ous conduction ofpull-up andpull-downstacks, allowing current
flow directly from the power supply to ground. Finally,leakage
energyoccurs in standby mode, and is determined by technology
factors. In most CMOS circuits, switching power dominates the
other two. Therefore, total energy consumption can usually be ap-
proximated by switching energy.

In synchronous circuits, power consumption of an AND-gateqi,
considering both input and output switching, is given by the follow-
ing formula [9]:

W (qi) =
VDD

2

2�Tcycle
� (CAND ��(qi) +

P
lb2lit(qi)

(CIN ��(lb)));

where�(qi) and�(lb) are the number of transitions onqi and
lb, respectively, during the clock cycle timeTcycle; lit(qi) is the set
of literals of implicantqi; CAND is the load seen by the AND-gate
output; andCIN is the load on each of its inputs.

This notion of power consumption is a poor match for asyn-
chronous design, since an asynchronous circuit has no clock period
Tcycle. A more appropriate metric isenergy per input transition[2].
Thus, energy can be quantified over the sequence of input changes
driven by the environment.

Energy consumption of a static CMOS gate, for a given com-
putation, is often reasonably approximated byE = 1

2
C VDD

2
N ,

whereC is the load capacitance of the gate, andN is the number of
output transitions for a given computation. Assuming uniform gate
capacitances, the energy consumption can be normalized toN , the
number of output transitions [3].

The amount of energy dissipated by a 2-level circuitf = p1 +
p2 + : : : + pn, with respect to a specified input transitiont, is ex-
pressed as follows:E(pi; t) = N(pi; t)+

P
x2lit(pi)

N(x; t), and

E(f; t) = N(f; t) +
P

1�i�n
E(pi; t).

Here,N(x; t) is the number of transitions on inputx during tran-
sition t, N(pi; t) is the number of gate output transitions on AND-
gatepi, andN(f; t) is the number of gate output transitions on
OR-gatef .

Given a setT of input transitions, thetotal energy,consumed by
a 2-level circuit, is therefore:E(pi) =

P
t2T

E(pi; t), and
E(f) =

P
t2T

N(f; t) +
P

1�i�n
E(pi).

E(pi) is the power cost of an implicantpi, over all input transitions.
The average power cost per transition is thereforeE(pi)

jT j
.

In general, in this paper, our goal is to produce a circuit withmin-
imum energy consumption per input transition. Although there is
no clock period, it should be clear that low-energy optimization will
result directly in a low-power design. The “time unit” of compu-
tation is an input transition. Therefore, we will sometimes loosely
interchange the terms “energy of a transition” and “power consump-
tion of a transition”.

3 BACKGROUND ON HAZARD-FREE SYNTHESIS
3.1 Combinational Hazards
For the following discussion, a combinational circuit model is as-
sumed where gates and wires may have arbitrary finite delays.
Since we are concerned with the dynamic behavior of a combina-
tional circuit as its inputs change value, we need to formalize the
notion of a “multiple-input change”, or “input transition”.

A transition cube[14] is a cube with astart pointand anend
point. Given input statesA andB, the transition cube [A;B]
has start (end) pointA (B) and contains all minterms that can be
reached during a transition fromA to B. The cube describes a
multiple-input changeor input transitionfrom A to B. Inputs are
assumed to change monotonically (i.e., at most once) in any order
and at any time. Once a multiple-input change occurs, no further
inputs may change until the circuit has stabilized.

A function f which does not change monotonically during an
input transition is said to have afunction hazard in the transition.

If a transition has a function hazard,no implementation of the
function is guaranteed to avoid glitches during the transition (as-
suming our circuit model of arbitrary gate and wire delays) [14].

Therefore, we consider only input transitions which arefunction-
hazard-free1. For such transitions, a circuit forf may still glitch
due to delays in the actual gates and wires. In this case, the circuit
is said to have alogic hazard for the input transition. Thelogic
hazardis staticfor an input transition fromA toB if f(A) = f(B)
anddynamicif f(A) 6= f(B).
3.2 Conditions for a Hazard-Free Transition
We now describe conditions to avoid logic hazards in a sum-of-
products implementation (for details, see [14]).

For the1! 1 case, the transition cube is called arequired cube,
which must be completely contained in some product to insure no
hazards. For the1 ! 0 case, first, each1 ! 1 sub-transition
must be hazard-free, so the corresponding required cubes must each
be contained in some product. Second, no product in the cover
may illegally intersectthe1 ! 0 transition, i.e. intersect, but not
contain the transition’s start point, otherwise a dynamic hazard will
result. Satisfying these conditions may require the use of redundant
and non-prime implicants. There are two remaining transitions to
consider. A0! 1 transition may be regarded as a1! 0 transition
in reverse, and the same conditions apply. Finally, for a0 ! 0
transition, there are no additional constraints.
3.3 Hazard-Free Covers
A hazard-free coveris a cover of a function which is hazard-free
for a setof specified input transitions. The following theorem for-
mulates the hazard-free covering problem [14].
Theorem 3.1.A set of implicantsC is a hazard-free cover for func-
tion f with respect to a specified set of input transitions if and only

1Sequential synthesis methods, which use hazard-free minimization as a
substep, include constraints in their algorithms such that no transitions with
function hazards are generated [13, 17].

if: (a) eachrequired cubeof f is contained in some implicant inC;
and (b) no implicant ofC illegally intersectsany specified dynamic
transition.

An implicant which does not illegally intersect any dynamic
transition is called adynamic-hazard-free implicant (or dhf-
implicant). Only dhf-implicants may appear in a hazard-free cover.
A dhf-prime implicantis a dhf-implicant contained in no other dhf-
implicant. Using the above theorem, thetwo-level hazard-free logic
minimization problemis to find a minimum-cost cover of a function
using only dhf-prime implicants where every required cube is cov-
ered. This unate covering problem is a variant of the classic two-
level minimization problem, where each ON-set minterm of a func-
tion must be covered by a prime implicant. An exact hazard-free
two-level minimizer has been developed [14], based on the above
theorem.

4 A COMPLETE SYNTHESIS PATH: OVERVIEW
Synthesis of combinational circuits is usually performed in two
steps: technology-independent logic minimizationfollowed by a
technology-mappingstep. This approach is aimed at reducing the
complexity of the problem. We propose an approach to synthesis
for low power in a specified environment (i.e. assuming complete
knowledge about possible input transitions) that follows the same
paradigm. An outline of our synthesis path for a functionf and a
specified environment(P; T) is as follows:

1. Exact two-level hazard-free logic minimization targeting
low-power consumption;

2. Technology mapping of the obtained sum of products to
complex CMOS gates.

(a) Step #1: 2−level logic

(c) Step #2b: Logic Decomposition

(b) Step #2a: Clustering into Complex Gates

Figure 1: Overview of synthesis path
Our approach is illustrated in Figure 1. The first step produces

a two-level logic representation off that has minimum power (for
the specified set of transitionsT) among all hazard-free implemen-
tations.

The second step is a mapping step that combines products into
complex gates to exploit technology-dependent properties to reduce
the amount of dissipated power (clusteringmay “hide” transitions).
Finally, since complex CMOS gates usually have a limited stack
size, products containing more thank literals (k is usually 3 or 4)
need to be split into several levels of CMOS gates.

The next two sections explain the steps in detail.
5 STEP #1: TWO-LEVEL HAZARD-FREE

MINIMIZATION FOR LOW POWER
The first step of the synthesis path is a technology-independent two-
level hazard-free minimization for low power. As is standard in
many asynchronous sequential synthesis methods [12, 17], the in-
puts to this step are: (i) an incompletely-specified Boolean function,
and (ii) a set of specified input transitions. The input transitions typ-
ically are chained in aninput sequence, specifying primary-input
changes and present-state changes, in order. The goal of this syn-
thesis step is to produce a hazard-free two-level circuit consuming
minimum energy per input transition.

To simplify the presentation, we make two restrictions. First, we
assume that each specified input transitiont 2 T occurs with equal

probability, i.e. we assume a uniform distribution of input transi-
tions2. Second, we use a cost function for products that is an upper
bound for its switching activity for the given set of specified transi-
tions. Both restrictions can easily be relaxed: the first one by sim-
ply rewriting the expressions for energy consumption (E(pi) and
E(f)) so that they take non-uniform distributions into account, and
the second by considering Boolean walks for one of the subcases
(for details, see [15]). Thus, it is possible to allow for arbitrary dis-
tributions and also to capture the exact cost of an implicant. That is,
if the relative frequencies of input changes are given (see [2]), the
result is exactly power-optimal for the given environment.
5.1 Problem Statement
The hazard-free minimization problem for low power can be stated
as follows. Given a functionf , and a set,T , of specifiedfunction-
hazard-free input transitions off , each of which occurs with uni-
form probability 1

jT j
, find a power-minimum hazard-free cover of

f . (The size of a cover is incorporated as a secondary cost function,
i.e. among all solutions of minimum power a solution of minimum
size is selected.) We show that the problem can be reduced to a
weighted unate covering problem.
5.2 Intuition
Before we move on to the formal description of the problem and its
solution, an example gives some intuition of the subtle and some-
what counter-intuitive issues that are introduced by targeting low
power. Note that, in order to simplify the intuitive ideas in the ex-
amples in this section, we do not consider the amount of power
dissipated by gate inputs – the actual algorithm does.

Hazard-free minimization computes a cover of dhf-primes of
minimum cardinality. The following example shows that a cover
of dhf-primes ofminimumcardinality may consume more power
than a cover of dhf-primes ofhighercardinality.

00 01 11 10

00

01

11

10

a b

cd

1

1 1

1 1

0

0

0

0

0

(a)

0 0 −−

10 −−

00 01 11 10

00

01

11

10

a b

cd

1

1 1

1 1

0

0

0

0

0

0 0 −−

10 −−

(b)

t1

t2

t3

t2

t1

t3

Figure 2: 2-level implementation: cardinality vs. power
Example.Consider the Boolean function in Figure 2. The left

cover contains 2 dhf-prime-implicants while the right cover con-
tains 3 dhf-prime-implicants. Consider the specified 2 dynamic
transitions (1 ! 0 and0 ! 1) and 1 static1 ! 1 transition.3

In both covers, each dynamic transition causes exactly one prod-
uct to make a transition. However, for the static1 ! 1 transition,
productAB in the left cover makes a transition, while no product
in the right cover makes a transition. Therefore, the cover of greater
cardinality has less power consumption. This example shows that a
different cost function for dhf-prime-implicants is needed.2

Similarly, one can show that it is not sufficient to consider dhf-
prime-implicants only. A function may have a power-minimum
cover that also includes non-dhf-prime implicants [15].

The main idea can now be summarized as follows: We generate
the set of “interesting” implicants, which we calldhf-power-prime-
implicantsto follow the terminology of Iman and Pedram. We as-
sign them a specific cost function and then solve the corresponding
weighted unate covering problem. Although this is related to Iman
and Pedram’s underlying idea, our approach is different, since we
model both glitching energy and temporal dependence, while they
do not. Furthermore, we additionally have to impose constraints to
ensure that the generated dhf-power-prime-implicants are also dhf-
implicants (i.e. do not cause glitches at the function output).

2It is important to note that we arenot assuming a uniform distribution
of inputchanges: westill observe temporal dependence, since an input tran-
sition is acorrelatedchange from one input vector to another.

3Note that the input transitions are not “chained” in a connected se-
quence in this example. In reality, they would be, but we ignore this to
simplify the exposition.

5.3 Cost of an Implicant
Unlike the 2-level logic minimization problem targeting area where
each product is assigned the cost 1 (or a cost according to its literal
count), in logic minimization for low power, the cost of a prod-
uct must be computed from its behavior in the specified environ-
ment. Our analysis considers both glitching activity4 and input de-
pendence (i.e.,specified multiple input changes).

In Section 2 we expressed the energy consumption of products
E(pi), and sum of productsE(f), in terms of transitions (Nterms).
We now define the computation of theN terms.
N(f; t) = 1(0) if t is a dynamic (static) transition. In a hazard-

free implementation, the function outputf (i.e. OR-gate) changes
at most once per transition. It changes if and only ift is a dynamic
transition.
N(x; t) = 1(0) if literal x changes (does not change) in transi-

tion t. Each inputx changes at most once during an input transition
(see Section 3).
N(p; t) represents the number of switches on productp during

transitiont. The switching activity on gatep depends onhow, or
whether, p intersects the transitiont. There are 5 cases – interest-
ingly, since the cover must be hazard-free, the analysis is simplified
since only certain intersections may occur.

1. p does not intersectt, thenN(p; t) = 0. In this case,p never
turns on during transitiont.

2. t is a dynamic transition andp intersectst, thenN(p; t) = 1.
This simple result is due to the hazard-free covering require-
ment. From Section 3, no productp can intersectt unless it
intersects the start point oft. Other intersections are illegal.
As a result,p will switch only once.

3. t is a static1 ! 1 transition andp coverst, thenN(p; t) =
0. In this case,p remains at 1 throughout the transition; it
does not switch.

4. t is a static1 ! 1 transition andp covers either its start
or endpoint but not both, thenN(p; t) = 1. In this case,p
is 1 initially (0), and goes to 0 eventually (1). It therefore
switches once.

5. t is a static1 ! 1 transition andp intersectst but intersects
neither its start point nor end point, thenN(p; t) = 2 (p
couldswitch twice.)

Note that above cost functions can be extended to multi-output
implicants, by weighting the gate transitions by the gate’s fanout.
5.4 Implicant Generation
The set of dhf-power-prime implicants (dhf-PPI’s) can now be de-
fined as:
dhf(p) ^ (8q : dhf(q) ^ p � q) E(p) < E(q))
^ (8r : dhf(r) ^ p � r) E(p) � E(r) _ req(p) � req(r))

Here, req(p) represents the set of required cubes covered byp,
anddhf(p) is a predicate which is true if and only ifp is a dhf-
implicant.

Our approach is related to that of Iman and Pedram [9], but with
several important differences. First, not every product contained in
a dhf-implicant is a dhf-implicant: further reduction may be needed
to reach the next dhf-implicant. Therefore, the early cutoff criterion
of Iman and Pedram cannot be used. Second, the cost function used
is different from [9], since ours is environment-driven (i.e.,driven
by specified input transitions and considering glitching behavior).
Finally, we “skip over” a dhf-implicant (e.g., p), during dhf-PPI
generation, if it has a sub-dhf-implicant (e.g., r) that covers the
same required cubes but has less power cost (E(r)). As a result,
the initial dhf-primes are not all dhf-PPI’s. (In contrast, in [9], all
primes are PPI’s.) A recursive generation algorithm can be found
in [15].
5.5 2-Level Power Minimization
The exact hazard-free minimization problem for low power can now
be summarized as follows. Given a function-hazard free Boolean
functionf , and a specified environment(T; P):

1. Compute the set of dhf-power-prime-implicantsdhf -PPIs.
2. Find a coverfp1; : : : ; png of f such that

P
1�i�n

E(pi) is
minimal by solving the weighted covering problem (set of
required cubes, dhf-PPIs, E(.)).

4Note that in a hazard-free 2-level circuit, individual products may
glitch. However, the function output may not glitch.

6 STEP #2: CLUSTERING AND TECHNOLOGY
MAPPING TOCOMPLEX CMOS GATES

The technology-mapping step starts from a given sum of products
generated by Step #1. The main idea is that a good packing of
products into complex CMOS gates may hide transitions at AND-
gate outputs. (AOI-type complex gates are used to combine the
products.) For example, assume two products switch from 0 to 1
for a certain transition. Placing them into the same complex gate
means that only one output transition occurs for the input transition,
i.e. the amount of energy is reduced.

This step is composed of two substeps. The first substep is
aimed at clustering the products (with possible overlap) into com-
plex gates. Given a hazard-free 2-level implementation off =
p1+ � � �+pn, and the maximal number of products placeable into a
clustermax, we compute a power-minimal clusteringC1; : : : Cl of
f , i.e. [iCi = fp1; : : : ; png and8i : jCij � max. An algorithm
that generates all possible clusters is given in [15]. In general, the
cost of a cluster may be significantly lower than the sum of costs of
the products which it contains (as pointed out above). In particular,
thecostE(C; t) of C with respect to input transitiont is defined as
follows: E(C; t) = N(C; t) +

P
pi2C

P
x2lit(pi)

N(x; t). Here,
N(C; t) represents the number of switches of C for transitiont.
N(C; t) is given as follows (4 different cases): If no productp 2 C

intersectst, thenN(C; t) = 0. If t is a dynamic transition and
some productp 2 C intersectst, thenN(C; t) = 1. If t is a static
1! 1 transition and there exists a productpi 2 C that completely
containst, thenN(C; t) = 0. If t is a static1! 1 transition and no
productpi 2 C completely coverst, thenN(C; t) = k1+k2+k3.
Here,k1(k2) is 1 if at least one product covers the start (end) point,
and otherwise 0.k3 =

P
pj2C

N(pj ; t) such thatpj intersectst,

but contains neither the start point nor end point. The clustering
problem can therefore also be reduced to a weighted unate covering
problem, where each product must be covered.

The second substep is a simple (heuristic) decomposition to ac-
tual gates, which takes into account that the stack size of a complex
gate is bounded, by splitting products with more than a technology-
dependent constant of inputs. The goal of this step is to perform the
decomposition in a power-optimal way (for details, see [15]). The
result is a low-power hazard-free circuit mapped to complex gates.

7 EXPERIMENTAL RESULTS
Table 3 comparesBase2-level circuits with circuits obtained from
our synthesis method, usingStep #1(2-level) andStep #2a(clus-
tering). The Base circuits were synthesized using an existing exact
(non-power-optimal) hazard-free 2-level algorithm [14]. The cir-
cuits are optimized for both product count and literal count. That
is, the Base circuits are already area-optimal, which is known to
often have a positive impact on power reduction.

ColumnStep #1shows power consumption of the circuits syn-
thesized using our new power-optimal 2-level algorithm. Column
Step #1 + #2ashows power consumption using both our 2-level al-
gorithm and clustering algorithm. In each case, only single-output
optimization is performed. Energy is estimated by counting the
transitions on primary inputs, as well as transitions on AND-gate
(Step #1) and AOI-Gate (Step #2a) outputs,over the specified set
of multiple-input changes(both state and input changes, which are
provided by the FSM specification). These transition counts are
added up over all the individual outputs of the circuit. a% reports
the percentage of the average power consumption with respect to
Base. b% reports the percentage of power consumption (wrt. Base)
for an output where power was reduced most. The reduction in
power dissipation of circuits after Step #1 is up to 33%, and up to
38% after Steps #1 and #2a.

Although we cannot compare directly with Pedram’s non-
hazard-free benchmarks [9], our results are still promising. For a
single-output function, our best power reduction is 33% (stetson-
p1), while their best reduction for single-output functions was 11%
(averaged over 63 functions with same on-set ratio).

Our results after the combined Steps #1 and #2a (2-level mini-
mization and clustering for low power) cannot easily be compared
with the Base case of column 1 (2-level logic minimization for
area). However, the reduction in power from column 4 to 5 still
shows the benefits of our method. Power consumption is very of-

ten dominated byinput switching, rather thangate output switching
(this was observed while running the benchmarks shown in the ta-
ble). Our savings are especially promising, sinceStep #2a only
affects gate output switching.In addition, Step #2a (and #2b) are
limited tosingle-outputoptimization.

Base Our Method
name in out #1/ a%/ b% #1+#2a/a%/b%
*#cache-ctrl 20 23 15315 14837/ 97/ 93 13914/ 91/ 80
dram-ctrl 9 8 362 350/ 97/ 88 290/ 80/ 63
pe-send-ifc 12 10 927 888/ 96/ 91 793/ 86/ 78
*#stetson-p1 32 33 3204 2852/ 89/ 67 2546/ 79/ 62
stetson-p2 18 22 1143 1066/ 93/ 85 952/ 83/ 73
stetson-p3 6 4 83 83/100/100 71/ 86/ 76
pscsi-ircv 8 7 156 156/100/100 132/ 85/ 75
pscsi-isend 11 10 501 489/ 98/ 89 423/ 84/ 76
*pscsi-pscsi 16 11 8004 7596/ 95/ 84 7429/ 93/ 81
pscsi-tsend 11 10 519 501/ 97/ 83 433/ 83/ 82
pscsi-tsend-bm 11 11 521 507/ 97/ 83 450/ 86/ 82
sd-control 18 22 1312 1270/ 97/ 86 1131/ 86/ 78
sscsi-isend-bm 10 9 559 555/ 99/ 95 479/ 86/ 77
sscsi-trcv-bm 10 9 531 516/ 97/ 93 444/ 84/ 78
sscsi-tsend-bm 11 10 413 383/ 93/ 82 328/ 79/ 71

Figure 3: Comparison of power consumption of area-minimized
circuits with power consumption of circuits synthesized using our
synthesis path. *Due to size, only dhf-pi’s (not dhf-ppi’s) were gen-
erated for some outputs (power reduction using dhf-ppi’s should be
better). #Due to size, mincov’s heuristic-mode was used.

8 CONCLUSIONS ANDFUTURE WORK
This paper has made two contributions. First, we have defined a
power model which incorporates both (i)temporal dependence, and
(ii) glitching activity. This model can be used in both technology-
independent and technology-dependent synthesis. Second, we
have incorporated this model into a new synthesis method, for
power-optimal asynchronous control circuits. The method in-
cludes an exact 2-level minimization step (technology-independent)
and a heuristic clustering and decomposition step (technology-
dependent). Initial results appear quite promising.

In the future, we believe that ourenvironment-drivenapproach
can easily be extended tomulti-level/multi-outputoptimization al-
gorithms such as cube- and kernel-extraction [8]. These algorithms
should have further impact on both (i) area and (ii) input switching,
since these algorithms significantly reduce primary input fanout and
load.

REFERENCES
[1] I. Bahar and F. Somenzi. Boolean techniques for low power driven re-synthesis.

In ICCAD, pages 428–432, November 1995.
[2] P.A. Beerel, K.Y.Yun, S.M. Nowick, and P.-C. Yeh. Estimation and bounding of

energy consumption in burst-mode control circuits. InICCAD, 1995.
[3] G. Birtwistle and A. Davis, editors. Asynchronous Digital Circuit Design.

Springer-Verlag, 1995.
[4] A.P. Chandrakasan, S. Sheng, and R.W. Brodersen. Low-power CMOS digital

design.IEEE Journal of Solid-State Circuits, 27(4):473–484, April 1992.
[5] O. Coudert and R. Haddad. Integrated resynthesis for low power. InInt. Symp.

on Low-Power Design, pages 169–174, August 1996.
[6] S. Devadas and S. Malik. A survey of optimization techniques targeting low

power VLSI circuits. In32nd DAC, pages 242–247, June 1995.
[7] M. Favalli and L. Benini. Analysis of glitch power dissipation in CMOS IC’s. In

Int. Symp. on Low-Power Design, pages 123–128, April 1995.
[8] S. Iman and M. Pedram. Logic extraction and factorization for low power. In

32nd DAC, pages 248–253, June 1995.
[9] S. Iman and M. Pedram. Two-level logic minimization for low power. InICCAD,

pages 433–438, November 1995.
[10] J. Monteiro and S. Devadas. Techniques for the power estimation of sequential

logic circuits under user-specified input sequences and programs. InInt. Symp.
on Low-Power Design, pages 33–38, April 1995.

[11] F. Najm. Power estimation techniques in integrated circuits. InICCAD, pages
492–499, November 1995.

[12] S.M. Nowick and B. Coates. Uclock: Automated design of high-performance
unclocked state machines. InICCD, October 1994.

[13] S.M. Nowick and D.L. Dill. Synthesis of asynchronous state machines using a
local clock. InICCD, pages 192–197, October 1991.

[14] S.M. Nowick and D.L. Dill. Exact two-level minimization of hazard-free logic
with multiple-input changes.IEEE Transactions on CAD, 14(8):986–997, 1995.

[15] S.M. Nowick and M. Theobald. Synthesis of low-power asynchronous circuits in
a specified environment. Technical Report CUCS-020-97, Columbia University,
1997.

[16] H. Vaishnav and M. Pedram. Delay optimzal partitioning targeting low power
VLSI circuits. In ICCAD, pages 638–643, November 1995.

[17] K.Y. Yun and D.L. Dill. Automatic synthesis of 3D asynchronous finite-state
machines. InICCAD, November 1992.

	CD-ROM Home Page
	ISLPED97
	Front Matter
	Table of Contents
	Session Index
	Author Index

