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Abstract

The energy consumption of a system depends upon the hard-
ware and software component of a system. Since it is the soft-
ware which drives the hardware in most systems, decisions
taken during software design has significant impact on the
energy consumption of the processor. The paper focuses on
decreasing energy consumption of a processor using software
techniques. A novel compiler technique is proposed which
reduces energy consumption by proper register labeling dur-
ing the compilation phase. The idea behind this technique
is to reduce the energy of the processor by reducing the en-
ergy of the instruction register (also the instruction data bus)
and the register file decoder by encoding the register labels
such that the sum of the switching costs between all the reg-
ister labels in the transition graph is minimized. There is no
hardware penalty since this is purely a compiler optimization.
Results on benchmarks show that the energy consumption of
the DLX processor can be reduced by 9.82% (maximum) and
4.25% (average) (as measured by DLX energy simulator). In
addition several compiler techniques such as loop unrolling,
software pipelining, recursion elimination and of effects of
different algorithms on power and energy consumption are
studied. This evaluation methodology is useful for computer
architects to evaluate energy improvements of their hardware,
compiler writers to evaluate energy of the compiled code and
program writers to evaluate energy of data structures and al-
gorithms.

1 Introduction

Today’s RISC processors rely on compilers to perform key optimizations
to improve performance. The ability of compilers to manage these tasks
effectively has given computer architects greater flexibility in making ar-
chitectural design decisions. Battery energy has become a key commodity
in recent years with the widespread use of portable computing. A lot of re-
search has been done, focusing on power consumption analysis and finding
ideas and solutions to decrease power dissipation in a processor. All lev-
els (circuit and systems) of design now increasingly stress reducing power
consumption. A good survey of work done at the technology level, circuit,
architecture and system is given in [2]. It has been only recently that work
has been initiated at the system (software) level. This is because most effort
had been concentrated on building the right hardware models and tools for

analysis. Power analysis at the system level requires accurate energy models
of the hardware modules used in the design. Power analysis work is done at
the architecture or system level Tiwari et al. [15] perform energy analysis of
programs by direct simulation using instruction level power models. Mehta
et al. [10] perform direct energy simulation and profiling of the program
using high level power models of modules. Other analysis of programs in-
clude one by Monterio and Devadas [12]. The authors describe an approach
to estimate the average power dissipation in sequential logic circuits under
user specified input sequences or programs.

A lot of work has been done to build accurate high level power mod-
els (instruction or module level). Tiwari et al. [15] build the instruction
level power models after the design has been completed using actual cur-
rent measurements of the processor chip as it executes instruction patterns.
Landman et al. [6, 7, 4, 5] build power models of hardware units by us-
ing statistical analysis. Mehta et al. [11] build energy models of hardware
modules by clustering energy patterns under a given error margin. Benini
et al. [1] develop optimal linear power models are obtained with methods
of least squares fitting and its generalization to a recursive procedure called
tree regression. Most of the work revolves around characterization of to-
tal input-output activity with the energy dissipation. These results although
valid for a large class of circuits it is not a general result.

High-level power/energy modeling has been a key facilitator for system
level design issues. Work has been done by Tiwari et al. [15, 14, 16, 8,
9] to reduce the energy consumption of the processor by doing instruction
level optimizations. These optimizations include efficient usage of memory
banks, reordering instructions to reduce switching, reduction of memory
operands, operand swapping in the Booth multiplier. Su and Despain try
to minimize energy by rescheduling the instructions and using Gray code
addressing [13].

The register relabeling technique concentrates on optimization of the
switching in the instruction registers and the register file decoder by reorder-
ing the register labels of the generated code. A sample trace of the code is
obtain the transition frequencies between register ids in the instruction reg-
ister and the decoder. This is used to obtain new labels which minimize
the switching cost in the instruction register and the decoder. This opti-
mization can done however on intermediate code also. This work although
demonstrated on DLX is directly applicable to compilers on other machines
for minimization of power. Energy experiments with other software tech-
niques are demonstrated using the simulator. This evaluation methodology
is useful for computer architects to evaluate energy improvements of their
hardware, compiler writers to evaluate energy of the compiled code and
program writers to evaluate energy of data structures and algorithms.

The rest of the paper is organized as follows. Section 2 discusses the
simulation methodology. Section 3 discusses the register labeling technique



which can be used to reduce switching in the instruction register and de-
coder. In section 4 we demonstrate several other software and compiler
techniques. Section 5 concludes with summary and comments on future
work.

2 Simulation methodology

Each access to a module consumes different amount of energy and so in-
stead of modeling the ’average energy’ we model the energy per access of
the module or the switched capacitance per access. IRSIM-CAP is used to
obtained the switched capacitances from layout netlists. IRSIM-CAP is an
enhanced version of IRSIM and has been calibrated to within10� 15% of
SPICE [6].

2.1 Energy characterization of modules
For the energy simulation/profiling methodology to be successful it is nec-
essary to estimate accurately and quickly the energy dissipation of a module
per input transition. Each of the modules are generated using the Octtools
suite with 1.2u technology. The energy tables are generated using IRSIM-
CAP. The following are the different types of characterization.

� Bit independent: Modules such as logic operations in the ALU and
bit shifters arebit-independentsince the operation does not depend
on the values not in the same bit-slice. The total sum of the energy
for the components can be summed up by adding the energy dissipa-
tion by individual bits.

� Bit dependent: Arithmetic operations in the ALU, decoders, multi-
pliers, adders, multiplexers arebit-dependentsince each operation
depends upon the bit values in other bit-slices. Clustering is used for
the transition vectors for each of these modules and an energy table
is obtained. The compressed energy tables generated by clustering
algorithms presented in [11] is used for the simulator.

2.2 Simulator engine
The approach adopted for this research is to apply empirical methods to low
power software and hardware research. This entails a series of experiments
in which a set of chosen applications can be used to expose the high energy
consumers of the architecture and vice-versa. By studying the breakdown
of energy consumption in different components, algorithms can exploit or
get around certain features of an architecture. The base architecture in this
case is chosen to be DLX. Although we have fixed the basic machine, it
may also be feasible to find an appropriate architectural change to improve
the energy. The accuracy of estimation by estimating the energy of each
micro-instruction is about 8% when compared to IRSIM-CAP [10]. Each
instruction pipeline stage of DLX is modeled and depending on each ac-
tivity the control steps are activated for that state. The DLX simulator core
was obtained from Stanford [3]. This is an interactive simulator which loads
DLX assembly programs and simulates the operation of a DLX computer
on those programs. The main simulation loop of the simulator has been
instrumented such that the energy expenditure of the micro-operations of
each instruction can be accounted for.

3 Register relabeling

Naive register labeling can incur significant bit changes in consecutive source
and destination fields of the instruction words. Register switching is di-
rectly proportional to the number of bits switched in the register. Register
labeling is a phase where variables are assigned their register ids during
the register graph coloring of register allocation. This process is simple
and allocates the first available unique id (or may depend upon the pecu-
liarities of the implementation). With the view of the emphasis towards
low power/energy it is necessary to assign register labels which minimizes
switching in the instruction register. To provide motivation we present a
kernel used in SAXPY in figure 1, which shows the initial unoptimized la-
beling and the final optimized labeling. The optimized labeling has a total
improvement of 15.60% where the variable mapping ofz[i] andy[i] are
swapped. This kernel is a tight loop executing several times and hence op-
timizing these loops could result in significant reduction in switching in the
registers.

Figure 1: SAXPY kernel (z[i] = a*x[i] + y[i];)

Unoptimized Optimized

MULTF F0 F1 F2 MULTF F0 F1 F2
ADDF F3 F0 F4 ADDF F4 F0 F3

Reg improv=15.54%
Dec improv=21.71%
Total improv=15.60%

3.1 Switching cost calculation
We describe in detail our instruction register energy model and the register
file decoder model since this information is used as switching cost in the
compiler.

� Register energy model:
Significant energy is consumed in the instruction register and the in-
struction data bus. During the execution of a program the instruction
register undergoes changes in state due to loading of new instruction
words. Instruction words which have fixed source and destination
fields can be minimized for bit switching. When the memory ac-
cess paths (data and instruction) are separate, the switching on the
instruction bus is also reduced when the switching in the instruction
word is reduced. Although minimizing the switching inside the reg-
isters, decreases the switched capacitance, it is interesting to note
that even a 0 to 0 transition consumes substantial energy. This is
because of the switching of the clock transistors. This can be taken
care of by ’guarding’ the clock at the inputs of the registers.

� Decoder energy model:
The register file decode logic which drives the word lines in the reg-
ister file consumes significant energy. Modeling energy transitions
in the decode logic is tricky since ’less bit switching’ at the input
does not imply ’less switching energy’. The energy transition in the
decode logic is characterized for certain switching patterns by clus-
tering technique shown in [11].

� Putting it all together:
This switching cost function represents the energy consumption in
the instruction registers and decoders for a specific labeling. This
includes all switching in the instruction register and decoder due to
changes in encoding.

3.2 Encoding algorithm
The easiest option to encode is to assign an initial labeling and then ex-
change labels if the cost function (total switching) of the graph decreases.
The problem with this approach is that there arenC2 choices for each
swap. Exploring all the possible choices is combinatorially explosive prob-
lem. The other option is to find disjoint edges with maximum costs (max-
imum weight matching problem). These disjoint edges can then ’greedily’
be coded using swaps and the problem reiterated till no swaps can be per-
formed. Our approach is to greedily carry out ’maximum cost decrease’
exchanges till no further exchanges are possible. The algorithm performs
the most greedy swap at every step. The reason why a greedy algorithm
is chosen it gives sufficiently good results in a very quick time. Also, the
intent of this work is to show the applicability of the method and result
(not the optimization algorithm). For better mapping a more sophisticated
optimization algorithm can be used.

A register transition graph is built from this trace of the registers. The
graph is populated with unused labels. This adds additional nodes to the
graph, however this step ensures that all possible labels of widthlog(n) are
explored. Then a new graph is created with edge weights equal to switching
cost of the edge. The pair of nodes are selected whose encodings when
swapped result in the maximum decrease in switching cost. The identified
nodes are swapped if the switching cost reduces and relevant other weights
in the graph are updated. This continues till there is no additional reduction
in total switching. Constructing a graph with modified weights takesO(n2)
time. Hence the total time for each swap iteration isO(n3).



Table 1: Results of relabeling optimization on DLX (number of
registers = 32)

Code Time Optimization % improvement
(secs) Optimizer DLX energy simulation

reg reg total
(15 bits) (32 bits)

+dec +dec

best 1.1 23.54 21.53 9.82
average 3.42 18.15 13.26 4.25

3.3 Implementation and results
A register trace (extracted from the instruction trace) is generated dlxsim by
running the program through sample data. This is necessary since in control
dominated programs the instruction trace is strongly dependent on data,
and hence it is not possible to know the exact instruction sequences just by
looking at the program. Loop variables in certain applications (signal and
image processing) are known and hence only in these applications can the
instruction trace be extracted statically. This register trace lists the source
and the destination register operands as executed by the program. Several
benchmark kernels are evaluated for optimized energy. These kernels are
excerpts from large FORTRAN programs that have been judged to provide
a good measure of large scale computer performance. These kernels are
recoded in C and are run independently. None of the benchmarks required
more than nine iterations to converge to a locally optimum labeling. The
total energy reduction of the processor is hence 9.82% maximum to 4.25%
average. The algorithm takesO(n3) per swap. All the benchmarks take
less than 5.5 CPU secs and 3.42 CPU secs on average.

4 Other compiler/software techniques

In the following subsections we investigate the effects of different com-
pilation techniques and algorithm and benchmarks on power and energy
consumption. Some compiler optimizations which are done are loop un-
rolling and software pipelining to increase instruction level parallelism. We
investigate their effects with respect to power/energy consumption.

� Loop unrolling: Loop unrolling is one of the techniques to increase
instruction level parallelism by decreasing the number of control
statements which execute in one loop by creating longer sequences
of straightline code. Energy of the loop is proportional toa+ b

(n+1)

wherea andb are constants (corresponding to energy of straightline
and control code) andn is the loop unrolling factor. By increasing
the loop unrolling the contribution of the second term decreases and
the first term dominates. Figures 2(a)(b) shows the average switch-
ing energy per cycle (power) and the total switching energy versus
the loop unrolling factor
Loop unrolling decreases the number control operations and over-
head instructions. The overhead is code space. There is a diminish-
ing return, however from excess unrolling. (Other issues concerning
register file size and instruction buffer size have not been evaluated).
As the loop unrolling factor increases, the average switching energy
per cycle increases while the total energy of the program decreases.

� Software pipelining: Software pipelining is a technique for re-organizing
loops such that each iteration in the software-pipelined loop is formed
from instruction sequences chosen from different iterations in the
original code segment. The major advantage of software pipelin-
ing over straight loop unrolling is that software pipelining consumes
less code space. Figures 3(a)(b) shows the original and software
pipelined code for some examples.
Software pipelining decreases the number of stalls by fetching in-
structions from different iterations. Hence, total energy consump-
tion reduces due to this reduction in stalls and furthermore the pro-
gram takes fewer cycles to finish (hence average energy per cycle is
greater).

� Eliminating recursion: Compilers usually execute recursive proce-
dures by using a stack that contains pertinent information, including
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Figure 2: Loop unrolling (100 iterations)
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Figure 3: Software pipelining
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Figure 4: Recursion elimination (quicksort)
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Figure 5: Sorting algorithms (100 random integer numbers)
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the parameter values, for each recursive call. Good compilers usu-
ally provide a feature called tail recursion in which the recursion
occuring at the end (which is not usually necessary) can be elimi-
nated. Figures 4(a)(b) shows energy evaluation with the number of
recursion calls for the sorting program quicksort (full, tail and no
recursion).
Recursion elimination saves much of the overhead usually associ-
ated with calls (saving register, manipulating displays, pushing ac-
tivation records and so forth). This is also true for inline expansion
of a subprogram. In fact, other optimizations become possible be-
cause the actual parameters used in a call become visible in the
subprogram body. Especially in the case of actual parameters that
are literals, opportunities for folding and deleting of unreachable
code can be expected. The total switched capacitance drops signifi-
cantly as recursion decreases however the switched capacitance per
cycle (power) increases because the number of expensive memory
and register overhead operations (push, pop) decreases and hence
the number of cycles which use the stack decreases.

� Algorithm evaluation: In a manner similar to profiling for perfor-
mance, simulation and profiling for energy is important to evaluate
algorithms and optimize code writing. Several sorting algorithms
were evaluated: Quicksort, heapsort and bubblesort (Figures 5(a)(b)).
We observe that quicksort has less total capacitance than heapsort be-
cause heapsort uses more pointer arithmetic to manipulate the heap
than quicksort, which uses more ‘neighboring’ operations to incre-
ment indexes. Other benchmark algorithms are also run on the sim-
ulator (Figures 6(a)(b)).
Algorithms can be evaluated by evaluating their energy breakdowns.
Analyzing the benchmark algorithms can expose some of the hot
spots in the architecture and failings of an architecture.

5 Conclusions

We have identified one important technique (strategy and algorithm) for
software level energy optimization. It is important to note that there is no
hardware penalty since this is totally a compiler optimization. Other com-
piler techniques and algorithm and benchmarks and effects on power and
energy have been evaluated.

The total energy reduction of the processor is 9.82% maximum to 4.25%
average. The algorithm takesO(n3) per swap and for most of the bench-
marks take less than 5.5 CPU secs and 3.42 CPU secs on average.

The optimizer is a post-pass, however this phase can be taken care of on
intermediate code. An important thing to note is that we have used a naive
greedy algorithm. This is because our aim is to demonstrate significant im-
provements can be achieved due to this technique. A more sophisticated
algorithm can be used to obtain better improvements in energy at the ex-
pense of higher running time.

We have experimented with a few compiler optimization techniques
such as loop unrolling, software pipelining and recursion elimination and
some algorithms and benchmark programs. Direct extensions to this evalu-
ation methodology include:

� Energy characterization of different data structures and algorithms

� Considering energy characterization of caches

� Considering effects of register file and instruction buffer size on loop
unrolling
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