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Abstract— This paper describes a new model for the stability anal-
ysis of low-pass Sigma-Delta modulators (Σ∆Ms) using the describing
function method. The transfer of a single-bit quantizer is represented
by a global signal gain and a phase uncertainty. This phase uncertainty
arises from the limited accuracy in time with which the quantizer can
detect the quantization-level crossings. This new model allows for a
better prediction of possible idle patterns (important for the in-band
signal-to-quantization error ratio), and calculation of zero-input sta-
bility boundaries for loop-filter parameters in higher order low-pass
Σ∆Ms.

I. I NTRODUCTION

Sigma-Delta (Σ∆) modulation [1] has become a very use-
ful and popular technique for high-precision A/D conversion
of narrow-band signals. As with other systems based onneg-
ative error feedback, one of the basic methods of improv-
ing the resulting (in-band) signal-to-error ratio is to increase
the order of the loop-filter. Higher order, high-gain filters
in feedback-loops can however lead to instability of the sys-
tem. Instability in sampled systems usually manifests itself
in the occurrence of limit cycles. Some of these limit cycles
(called idle patterns) are imperative for the correct operation
of the system. In practice we distinguish idle patterns and
large signal limit cycles:
Idle patterns: Limit cycles with a small resulting (stable)

amplitude, that are easily disturbed by applying an input
to the system. The frequencies of these cycles usually are
located far away from the signal-band, in which the loop-
gain usually is very high, rendering small amplitude sig-
nals impossible.

Large signal limit cycles:Limit cycles with a large result-
ing (stable or even continuously growing) amplitude, that
therefore are hard (or impossible) to disturb. The frequen-
cies of these cycles are often located near the signal-band.

To analyze the stability of sigma-delta modulators (Σ∆Ms)
we will consider the general discrete-time model as depicted
in Figure 1, consisting of loop-filterG and quantizerQ.
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Fig. 1. Block diagram of a general Sigma-Delta modulator.

A well-known and commonly used method to analyze the
stability of non-linear feedback systems is thedescribing
function method[2]. Examples of the application of this
method toΣ∆Ms can be found in [3] and [4]. The main prob-
lem using this method is the ability to adequately model the
non-linear elementQ. Generally the quantizer is modeled as
a global signal gain (which we will callλ). For a single-bit
quantizer this (real-valued) gain can range fromλ = 0 if the
input signal is extremely large toλ = ∞ if the input signal
is zero. A sampled quantizer (and a single-bit quantizer in
particular) introduces a phase uncertainty [5] that can have a
considerable influence on the overall stability of the system.
Modeling of this phase uncertainty allows for a better pre-
diction of possible idle patterns (important for the in-band
signal-to-quantization error ratio), and calculation of zero-
input stability boundaries for loop-filter parameters. This
will be shown in the following sections.

II. PHASE UNCERTAINTY

Phase uncertainty in the signal-transfer of sampled quan-
tizers arises from the limited accuracy in time with which a
quantizer can detect the quantization-level crossings of the
input signal. The phase uncertainty of the single-bit quan-
tizer does not depend on the amplitude of the input-signal as
there is only one quantization level. This allows us to model
the gain and the phase uncertainty in the quantizer indepen-
dently.

The maximum absolute inaccuracy in time with which a
single-bit quantizer can detect the zero-crossings of an in-
put sine-wave with periodT, is equal to half the minimum
distance in time between these zero-crossings occuring atl T

2
and the sampling times occuring atkTs= k= fs not coinciding
with the zero-crossings:

1
2

min
k;l

j kTs� l
T
2
j; with: kTs 6= l

T
2

which can be simplified to:12 min(Ts;
T
2 �Ts). As shown in
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Fig. 2. Phase uncertainty of a single-bit quantized and sampled sine-wave
with frequency fs

4

Figure 2, an input signal (solid line) can be shifted in time,
without changing the output of the quantizer (impulses). For
an input frequency offs4 , as shown here, the maximum shift
in time equals�Ts

2 , corresponding to a phaseshift of�π
4. As

a result of this maximum shift in time, the maximum phase
uncertainty between input and output of the quantizer can be
written as function of the normalized frequencyθ= 2π f Ts=

2πTs=T of the input signal (Fig. 3):

∆φ(θ)max=�
1
2

min(θ;π�θ): (1)

In order to model this phase uncertainty of which the
rangedepends on the input signal frequency (Fig. 3), we in-
troduce a new function using a dimensionless variableα:

∆φα(θ) = α ( j θ+
π
2
j � j θ�

π
2
j � θ ): (2)

When usingα, the linearized global transferQ̃(z) can
be described by the global gainλ and this phase uncer-
tainty ∆φα(θ) with 0< λ < ∞ and�1

2 < α < 1
2:

Q̃(z) = λ �ej∆φα(θ); with: z= r �ejθ: (3)

Choosingα = 0 reduces (3) to the commonly used model of
a (real-valued) global gainλ.

As the phase uncertainty becomes very small for smallθ
and the global transfer then approximatesλ, one might ex-
pect this extension to have very little influence on the sta-
bility criteria of low-passΣ∆Ms. However, in the follow-
ing section we will show that this extended model allows for
a better prediction of idle patterns and calculation of zero-
input stability boundaries for loop-filter parameters.

III. STABILITY

When using the model for the quantizer derived in the
previous section, thelinearizedsignal transfer of the system
(Fig. 1) is written as

g�So

Si

�
(z) =

λej∆φα(θ)G(z)

1+λej∆φα(θ)G(z)
; with: z= rejθ: (4)

0 π=2 π

�
π
4

0

π
4

Phase uncertainty

P
h

a
se

(r
a

d
)

Normalized Frequencyθ !

Fig. 3. Phase uncertainty of a single-bit quantizer.

The poles of the system, determining the stability of the sys-
tem, are equal to the solutions of thestability equation

1+λej∆φα(θ)G(z) = 0; with: z= rejθ: (5)

The solutions of this equation are categorized by their posi-
tions in the complex plane:
� All poles of the system are inside the unit circle in the

complexz-plane: The system is stable.
� One or more poles are on the unit circle, and the poles will

be moved towards the origin by applying or increasing an
input: The system contains idle patterns.

� One or more poles are on the unit circle, and poles will be
moved away from the origin by increasing the input: The
system is on the verge of instability.

� One or more poles are outside the unit circle: The system
is unstable.

A. Idle patterns

Prediction of idle patterns is important, because if small
inputs disturb the idle pattern this will result in the coding of
the signal with an idle frequency. In the case that the actual
idle frequency is lower, this effectively results in a lower cod-
ing frequency, a lower oversampling ratio, and thus in higher
in-band quantization errors.

In the case of idle patterns, one or more poles are on the
unit circle (z= ejθ) and can be calculated by reducing (5)
to:

1+λej∆φα(θ)G(ejθ
) = 0: (6)

In order to determine which idlefrequenciesare possible,
this equation can be reduced to a phase criterion, asλ is pos-
itively real-valued:

∆φα(θ)+ArgfG(ejθ)g�π= 0: (7)

Graphically, this corresponds to drawing the phase shift of
the loop-filter ArgfG(ejθ)g minus π , applying the phase
uncertainty from Figure 3 as an error-band, and verifying
whether the zero phase shift falls within the error-band. For
example, for a second order low-passΣ∆M with loop-filter

G(z) = (2z�1
�z�2)=(1�2z�1+z�2); (8)
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Fig. 4. Phasecriterion of a second order low-passΣ∆ (8).

idle frequencies fromθ � π
3 to θ = π are possible (Fig. 4).

As the output of the single-bit quantizer can only have two
values, idle frequencies equal to a sub-multiple of the sample
frequencyfs are possible. In the case of a low-passΣ∆M odd
sub-multiples are not allowed, because the idle patterns can-
not contain a DC-value. For the second-order low-passΣ∆M
described here, idle frequencies offs

2 and fs
4 are possible.

The latter frequency is not predicted without modeling the
phase uncertainty. Both idle patterns were observed in both
simulations and experiments using the test set-up described
in section IV.

B. Zero-input stability

A basic method to overview the behaviour of the system
is to draw the poles of the system (i.e. the roots of (5)) in
the complex plane, as a function the global gainλ. Modeling
the phase uncertainty with a second parameter converts pole
trajectories into a continuous set of trajectories (an area),
making the root locus plot hard to evaluate. Therefore the
trajectories are plotted as a function ofλ for discrete val-
ues ofα. The basic thought behind this is that in low-pass
Σ∆Ms the inputamplitudeof the quantizer is minimized, ef-
fectively changingλ, but leavingα unchanged. We will now
apply this procedure to two cases.

Case I:First we analyze a second orderΣ∆M described
by (8). The root locus is shown in Figure 5 for several values
of α.

A discrete-time system is stable when all poles of the sys-
tem are inside (or on, in the case of a stable oscillation) the
unit circle in the complex plane. For zero-input stability, this
means a non-empty set of initial conditions exists for which
the poles of the system should either stay inside the unit cir-
cle, or move into the unit circle within a finite period of time.
In practice, the range of initial conditions should be large
enough to allow for a meaningful operation of the system.
The range of initial conditions results in a range of initial val-
ues forλ andα. Generally, the initial condition values (and
thus the input of the quantizer) are very small, resulting in a
large value forλ. In this case one or two poles will be outside
the unit circle (Fig. 5). Due to the single-bit quantizer, which
always has a non-zero output value, a signal with increasing

amplitude will appear in the system. This will reduceλ and
move the poles into or onto the unit circle foreverypossible
value ofα: the system becomes stable for all initial condi-
tions. Depending on the actual value ofα, one of two stable
operating points results, as predicted in the previous section:
� α = 0: A single pole on the unit circle forz=�1, corre-

sponding to an idle pattern atfs=2.
� α � �0:295: A pair of conjugate poles on the unit circle

for z=� j, corresponding to an idle pattern atf s=4.
Case II: We now apply this method to a class of higher

order (> 3) low-passΣ∆Ms described by the class of loop-
filters1 [6]:

G(z) =
(z�a)n

(z�1)n
�1; with:

�
n= 3;4;5; : : :
�1< a< 1

: (9)

When modeling the quantizer as an addition of (input-
independent) quantization errors, the transfer of this error
signal to the output of theΣ∆M (Fig. 1) equals

1
1+G(z)

=
(z�1)n

(z�a)n
; (10)

revealing the low-pass (z= ej0 = 1) error-shaping character-
istic of theseΣ∆Ms. In Figure 6 the root locus is shown for
a third order (n= 3) Σ∆M with a= 0. For large values ofλ,
one or two poles will be outside the unit circle. The resulting
increasing amplitude of the signal in the system effectively
decreasesλ. For some values ofα the poles will not enter
the unit circle untilλ = 0: theΣ∆M is not zero-input stable
for a considerable range of initial conditions.

1The second order loop-filter described by (8) also belongs to this
class:a= 0 andn= 2.
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Fig. 5. Root locus of a second order low-passΣ∆M described by (8) for
different values of the phase uncertainty parameterα.
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Fig. 6. Root locus of a third order low-passΣ∆M (a=0) for different values
of the phase uncertainty parameterα.

In order for theΣ∆M to be zero-input stable, the poles
should enter the unit circle for everyα, with λ > 0. As the
root locus of theΣ∆M changes together with filter parame-
ter a, a boundary (minimum) value fora can be found for
which theΣ∆M is zero-input stable. In Figure 7 the root lo-
cus withα =�

1
2 (corresponding to the outermost trajectory

possible) is plotted for different values of the filter parame-
tera. Fora >

� 0:41 the trajectories intersect the unit circle for
all α at λ > 0 and the system is zero-input stable. The root
loci for n= 4;5; : : : are similar the one shown in Figure 6, and
minimum values fora can be obtained in the same way as for
the third orderΣ∆M. The minimum values fora can be cal-
culated numerically by determining the value for which the
root locus forα=�

1
2 is tangent to the unit circle. These cal-

culated minimum values fora are listed in Table I, together
with minimum values determined experimentally needed for
zero-input stability. The differences between experimental
and calculated values are due to the linearization in model-
ing the single-bit quantizer.

TABLE I

MINIMAL VALUES FOR a FOR WHICH THE SYSTEM DESCRIBED BY(9)

IS ZERO-INPUT STABLE FOR ORDERn.

n a
numerical experimental

3 0.412 0.415
4 0.587 0.616
5 0.679 0.713
6 0.736 0.769

-2

-1

0

1

2

-2 -1 0 1 2

Im

Re

Root locus

λ= 0

λ= 1

a= 0 a= 0

a= 0:2 a= 0:2

a= 0:412
a= 0:6

Fig. 7. Root locus (α = � 1
2) of a third order low-passΣ∆M for different

values of the filter parametera.

IV. T EST SET-UP

In order to verify the theoretical results both computer-
simulations and an experimental test set-up were used. The
test set-up consisted of a 12-bit A/D converter (Philips
TDA 8768) frontend, a 10-bit D/A converter (Philips
TDA 8776) backend and a programmable logic device (Al-
tera EPF81500) containing 1500 flipflops and over 15000
ports. The programmable logic device was used to imple-
ment all-digitalΣ∆Ms with 28-bit wide internal registers and
upto four adders per filter coefficient. The filter coefficients
were implemented using Canonical Signed Digit (CSD) en-
coding. This set-up allows for real-time evaluation of the
behaviour of digitalΣ∆Ms for speeds up to 10 MHz. Digi-
tal implementation of theΣ∆M makes exact control of sys-
tem parameters possible; the use of an analog frontend and
backend simplifies control and evaluation of input and output
signals.

V. CONCLUSIONS

A new model for the stability analysis of low-pass Sigma-
Delta modulators (Σ∆Ms) is described. The analysis is based
on the describing function method in which the non-linear el-
ement is modeled by a global transfer. The single-bit quan-
tizer of theΣ∆M is modeled by a global gainanda variable
phase uncertainty. This new model can be reduced to the
commonly used model of a global gain by settting the phase
uncertainty model parameter to zero. This extended model
allows for a better prediction of possible idle patterns (impor-
tant for the in-band signal-to-quantization error ratio), and
calculation of zero-input stability boundaries for loop-filter
parameters in low-passΣ∆Ms. Both results are not obtained
without modeling the phase-uncertainty of the quantizer.
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