Welcome to the 1997 International Symposium on Low Power Electronics and Design. This is the second year of this symposium, which is the result of a merger between the Symposium on Low Power Electronics and the International Symposium on Low Power Design. Like its predecessors, the symposium contains a mix of invited talks and contributed papers. All invited talks will be in plenary sessions, and thus can be heard by all attendees. Most other sessions will consist of two parallel tracks: one focusing on systems and CAD, the other focusing on circuits and technology.

A total of 102 contributed papers were received. This strong response attests to the continuing level of interest in low power design across the international VLSI technical community. Many thanks to the authors who submitted papers, which report significant advances in the domain of low power electronics and design. Even with the parallel sessions, we were able to accept only 42 regular papers. In addition to regular papers presented orally, we have accepted 17 poster papers that will be displayed in two poster sessions scheduled during extended breaks, so that attendees can visit all poster papers of interest to them.

The plenary sessions will be highlighted by invited talks, six in all, including two talks at the keynote session on the first day. There will also be a special talk at the banquet that evening by James Meindl, on the subject of the history of low power electronics, from his perspective of innovative participation in that history over the past several decades.

An evening panel session on the second day will feature the fictional company, Speedy Microsystems, and its contractor team of experts who are trying to design their next-generation multimedia microprocessor, with highly-demanding specs on power and performance. It should be a stimulating event of interest to all attendees.

For the first time, we will offer two half-day tutorials, one on low-voltage design techniques and another on CAD methodologies. These tutorials will present techniques employed currently in industry as well as future trends.

Many thanks to the program committee for doing an excellent job of paper selection and session organization. Thanks also to the panel organizers and panelists for what should prove to be an enlightening and entertaining evening session. We thank Lew Terman for his continuing assistance in preparations for the conference. Finally, we want to thank the ACM SIGDA and the IEEE Circuits and Systems Society for their sponsorship, and the IEEE Solid-State Circuits Society for their technical co-sponsorship and technical support.

We hope you will find the symposium both stimulating and helpful. Please give us your comments and suggestions on any aspects of the conference.

Brock Barton, Massoud Pedram
Symposium Co-chairs

Anantha Chandrakasan, Sayfe Kiaei
Program Co-chairs
TABLE OF CONTENTS

Keynote Session
Chair: Brock Barton
Low-Power CMOS Design through V^T Control and Low-Swing Circuits
Takayasu Sakurai, Hiroshi Kawaguchi, Tadahiro Kuroda

Session M1
Digital Circuit Techniques
Chair: Dan Dobberpuhl, Digital Equipment Corp
M1.1 Survey of Low Power Techniques for ROMs
Edwin de Angel, Earl E. Swartzlander, Jr.
M1.2 High-Performance, Low-Power Design Techniques for Dynamic to Static Logic Interface
June Jiang, Kan Lu, Uming Ko
M1.3 LVDCSL: Low Voltage Differential Current Switch Logic, A Robust Low Power DCVL Family
Dinesh Somasekhar, Kaushik Roy

Session M2
System Level Power Optimization
Chair: Jason Cong
M2.1 System-Level Power Optimization of Special Purpose Applications: The Beach Solution
Luca Benini, Giovanni De Micheli, Enrico Macii, Massimo Poncino, Stefano Quer
M2.2 Formalized Methodology for Data Reuse Exploration in Hierarchical Memory Mappings
J Ph. Diguet, S. Waytack, F Catthoor, H. De Man
M2.3 A Low-Power Design Method Using Multiple Supply Voltages
Mutsunori Igarashi, Kimiyoshi Usami, Kazutaka Nogami, Fumihiro Minami,
Yukio Kawasaki, Takahiro Aoki, Midori Takano, Chiharu Mizuno, Takashi Ishikawa,
Masahiro Kanazawa, Shinji Sonoda, Makoto Ichida, Naoyuki Hatanaka

Invited Talk
Chair: Sayfe Kiaei
Minimizing Power Dissipation of Cellular Phones
Sven Mattisson

Session M3
Wireless Communication Circuits
Chair: R.J. van de Plassche
M3.1 A 1V, 5mW, 1.8 GHz Balanced Voltage-Controlled Oscillator with an Integrated Resonator
Donald A. Hitko, Theodore L Tewksbury, Charles G. Sodini
M3.2 $\Delta-$Σ Frequency-to-Time Conversion by Triangularly Weighted ZC Counter
M. Høvin, S. Kiaei, T S. Lande

Session M4
Register Transfer High-Level Synthesis
Chair: R. Iris Bahar
M4.1 A Symbolic Algorithm for Low-Power Sequential Synthesis
Balakrishna Kumthekar, In-Ho Moon, Fabio Somenzi
M4.2 Low Power High Level Synthesis by Increasing Data Correlation
Dongwan Shin, Kiyoung Choi

Session P1
Poster Sessions

Chair: Sayfe Kiaei
P1.1 A Programmable Power-Efficient Decimation Filter for Software Radios
Emad N. Farag, Ran-Hong Yan, Mohamed L Elmasry
P1.2 Techniques for Low Energy Software
Huzefa Mehta, Robert Michael Owens, Mary Jane Irwin, Rita Chen, Debashree Ghosh
P1.3 Low Power Multiplication for FIR Filters
Chris J. Nicoll, Patrik Larsson
P1.4 Low-Power H.263 Video CoDec Dedicated to Mobile Computing
Morgan H. Miki, Gen Fujita, Takao Onoye, Isao Shirakawa
P1.5 Scheduling for Power Reduction in a Real-Time System
Jason J. Brown, Danny Z Chen, Garrison W. Greenwood, Xiaobo (Sharon) Hu, Richard W Taylor
P1.6 Engineering Change for Power Optimization Using Global Sensitivity and Synthesis Flexibility
Premal Buch, Christopher K. Lennard, A. Richard Newton
P1.7 Synthesis of Low-Power Asynchronous Circuits in a Specified Environment
Steven M. Nowick, Michael Theobald
P1.8 Quasi-Static Energy Recovery Logic and Supply-Clock Generation Circuits
Yibin Ye, Kaushik Roy, Georgios L Stamoulis
P1.9 A New 4-2 Adder and Booth Selector for Low Power MAC Unit
Bum-Sik Kim, Dae-Hyun Chung, Lee-Sup Kim
P1.10 Enhanced Prediction of Energy Losses During Adiabatic Charging
A. Schlaffer J.A. Nossek

Session M5
Analog Circuit Techniques

Chair: Louis Williams
M5.1 Charge-Pump Assisted Low-Power/Low-Voltage CMOS Opamp Design
J. Zhou, R.M. Ziazadeh, H.-H Ng, H.-T Ng, D.J. Allstot
M5.2 A Low Voltage CMOS Current Source
Detlev Schmitt, Terri S. Fiez
M5.3 New Stability Criteria for the Design of Low-Pass Sigma-Delta Modulators
J. A. E.P van Engelen, R. J. van de Plassche
M5.4 A Capacitor-Based D/A Converter with Continuous Time Output for Low-Power Applications
Lapoe Lynn, Paul Ferguson, Jr.

Session M6
Register Transfer & Architectural Level Power Estimation

Chair: Rob Roy
M6.1 Cycle-Accurate Macro-Models for RT-Level Power Analysis
Qinru Qiu, Qing Wu, Massoud Pedram, Chih-Shun Ding
M6.2 A Method of Redundant Clocking Detection and Power Reduction at RT Level Design
Mitsuhisa Ohnishi, Akihisa Yamada, Hiroaki Noda, Takashi Kambe
M6.3 Power Analysis of a 32-bit RISC Microcontroller Integrated with a 16-bit DSP
R. S. Bajwa, N. Schumann, H. Kojima

M6.4 Analytical Energy Dissipation Models for Low-Power Caches
Milind B. Kamble, Kanad Ghose

Banquet Talk
Chair: Anantha Chandrakasan
History of Low Power Electronics: How It Began and Where It’s Headed
James D. Meindl

Invited Talks
Chair: Massoud Pedram
Issues and Directions in Low Power Design Tools: An Industrial Perspective
Jerry Frenkil
System-Level Power Estimation and Optimization-Challenges and Perspectives
Jan M. Rabaey

Session T1
Low Power Signal Processing
Chair: Chuck Traylor
T1.1 Dynamic Algorithm Transformations (DAT) for Low-Power Adaptive Signal Processing
Manish Goel, Naresh R. Shanbhag
T1.2 Low Power Motion Estimation Design Using Adaptive Pixel Truncation
Zhong-Li He, Kai-Keung Chan, Chi-Ying Tsui, Ming L. Liou
T1.3 Low Power Signal Processing Architectures for Network Microsensors
Michael J. Dong, K. Geoffrey Yung, Wiliam J. Kaiser

Session T2
Logic-Level Power Estimation
Chair: Farid Najm
T2.1 K2: An Estimator for Peak Sustainable Power of VLSI Circuits
Michael S. Hsiao, Elizabeth M. Rudnick, Janak H. Patel
T2.2 Switching Activity Estimation Using Limited Depth Reconvergent Path Analysis
José C. Costa, José C. Monteiro, Srinivas Devadas
T2.3 Composite Sequence Compaction for Finite-State Machines Using Block Entropy and
High-Order Markov Models
Radu Marculescu, Diana Marculescu, Massoud Pedram

Session T3
Memory Techniques
Chair: Ingrid Verbauwhede
T3.1 Reducing TLB Power Requirements
Toni Juan, Tomas Lang, Juan J. Navarro
T3.2 Exploiting the Locality of Memory References to Reduce the Address Bus Energy
Enric Musoll, Tomás Lang, Jordi Cortadella
T3.3 An Extended Addressing Mode for Low Power
Atul Kalambur, Mary Jane Irwin
Session T4
Signal Processing Digital Circuits
Chair: Rick Carley
T4.1 Minimizing Energy Dissipation in High-Speed Multipliers
 Rafael Fried 214
T4.2 A One Division per Clock Pipelined Division Architecture Based on LAPR
 (Lookahead of Partial-Remainder) for Low-Power ECC Applications
 Hyung-Joon Kwon, Kwyro Lee 220
T4.3 Power Reduction Techniques for a Spread Spectrum Based Correlator
 David Garrett, Mircea Stan 225

Session P2
Poster Session
Chair: Anantha Chandrakasan
P2.1 A Sequential Procedure for Average Power Analysis of Sequential Circuits
 Li-Pen Yuan, Sung-Mo Kang 231
P2.2 Energy Delay Measures of Barrel Switch Architectures for Pre-Alignment of Floating
 Point Operands for Addition
 R. V K. Pillai, D. Al-Khalili, A. J. Al-Khalili 235
P2.3 Analysis of Power Consumption in Memory Hierarchies
 Patrick Hicks, Matthew Walnock, Robert Michael Owens 239
P2.4 The Impact of SOI MOSFETs on Low Power Digital Circuits
 Ying-Che Tseng, Steven C. Chin, Jason C. S. Woo 243
P2.5 On the Power Dissipation in Dynamic Threshold Silicon-on-Insulator CMOS Inverter
 Wei Jin, Philip C. H. Chan, Mansun Chan 247
P2.6 Analogue LSI RF Switch and Beamforming Matrixes for Communications Satellites
 Markku Aberg, Anssi Leppanen, Arto Rantala, Jouko Marjonen 251
P2.7 Low Power Architecture for High Speed Infrared Wireless Communication System
 Hiroshi Uno, Keiji Kumatani, Hiroyuki Okuhata, Takao Onoye, Isao Shirakawa, Toru Chiba 255

Session T5
Embedded Caches
Chair: Mary Jane Irwin
T5.1 Low Power Data Processing by Elimination of Redundant Computations
 Mir Azam, Paul Franzon, Wentai Liu 259
T5.2 An Object Code Compression Approach to Embedded Processors
 Yukihiro Yoshida, Bao-Yu Song, Hiroyuki Okuhata, Takao Onoye, Isao Shirakawa 265

Session T6
Gate Level Power Optimization
Chair: Sasan Iman
T6.1 Low Power Multiplexer Decomposition
 Unni Narayanan, Hon Wai Leong, Ki-Seok Chung, C. L Liu 269
T6.2 Node Normalization and Decomposition in Low Power Technology Mapping
 Winfried Nöth, Reiner Kolla 275
T6.3 A Gate Resizing Technique for High Reduction in Power Consumption
 R Girard, C. Landrault, S. Pravossoudovitch, D. Severac 281
T6.4 Re-Mapping for Low Power under Tight Timing Constraints
 P. Vuillod, L. Benini, G. De Micheli 287
Evening Panel: Low Power Design without Compromise
Moderator/Organizer: Jim Burr
Co-organizer: Anantha Chandrakasan
 Fari Assaderaghi, Francky Catthoor, Frank Fox, Dave Greenhill, Deo Singh, Jim Sproc

Invited Talk
SOI CMOS as a Mainstream Low Power Technology: A Critical Assessment
Dimitri A. Antoniadis

Session W1
Technology Paths to Low Power
Chair: Lisa Su

W1.1 Fully Depleted CMOS/SOI Device Design Guidelines for Low Power Applications
Srinivasa R. Banna, Philip C. H. Chan, Mansun Chan, Samuel K. H. Fung, Ping K. Ko

W1.2 Hybrid Dual-Threshold Design Techniques for High-Performance Processors with Low-Power Features
Uming Ko, Andrew Pua, Anthony Hill, Pranjal Srivastava

Session W2
Technology Optimizations
Chair: Don Monroe

W2.1 Device and Technology Optimizations for Low Power Design in Deep Sub-micron Regime
Kai Chen, Chenming Hu

W2.2 Supply and Threshold Voltage Optimization for Low Power Design
David J. Frank, Paul Solomon, Scott Reynolds, John Shin

Session W3
Adiabatic Techniques
Chair: Brock Barton

W3.1 Clocked CMOS Adiabatic Logic with Integrated Single-Phase Power-Clock Supply: Experimental Results
Dragan Maksimovic, Vojin G. Oklobdzija, Borivoje Nikolic, K. Wayne Current

W3.2 AC-1: A Clock-Powered Microprocessor
1997 ISLPED Program Committee

General Co-chairs: Brock Barton, *Texas Instruments*
Massoud Pedram, *USC*

Technical Program Co-chairs: Anantha Chandrakasan, *MIT*
Sayfe Kiaei, *Oregon State University*

Publications Chair: Ingrid Verbauwhede, *ATMEL*

Treasurer: Mary Jane Irwin, *Penn State University*

Local Arrangements Chair: Jan Rabaey, *U. C. Berkeley*

Publicity Chair: Bill Mangione-Smith, *UCLA*

Other Members of the Executive Committee: Bryan Preas, *Xerox PARC*
Lewis Terman, *IBM TJ. Watson Research Center*

Technical Program Committee

David Allstot, *Oregon State University*
Sharad Malik, *Princeton University*
Brock Barton, *Texas Instruments*
Teresa Meng, *Stanford University*
Robert Brodersen, *U.C. Berkeley*
Don Monroe, *Bell Labs, Lucent Technologies*
Wayne Burleson, *University of Massachusetts at Amherst*
Farid N. Najm, *University of Illinois at Urbana- Champaign*

Jim Burr, *Sun Microsystems*
Wolfgang Nebel, *Carl v. Ossietzky University*
Min Cao, *HP Labs*
Massoud Pedram, *USC*
Rick Carley, *Carnegie Mellon University*
Jan Rabaey, *U. C. Berkeley*
Anantha Chandrakasan, *MIT*
Suresh Rajgopal, *Intel Corp.*
Wayne Burleson, *University of Massachusetts at Amherst*
Katsuro Sasaki, *Hitachi Central Research Laboratory*

An-Chang Deng, *Synopsys Inc.*
Paul Solomon, *IBM TJ. Watson Research Center*
Srinivas Devadas, *MIT*
Jim Sproch, *Synopsys, Inc.*
Dan Dobberpuhl, *Digital Equipment Corp.*
Lisa Su, *IBM Corporation*
Terri Fiez, *Washington State University*
Lars Svensson, *USC/ISI*
Jason Cong, *UCLA*
Chuck Traylor, *National Semiconductor*
An-Chang Deng, *Synopsys Inc.*
R.J. van de Plassche, *Philips Research Labs*
Srinivas Devadas, *MIT*
Bill Kaiser, *UCLA*
Ingrid Verbauwhede, *ATMEL*
Sasan Iman, *Escalade Co.*
Lou Williams, *Texas Instruments*
Mary Jane Irwin, *Penn State University*
Bruce Wooley, *Stanford University*
Rick Carley, *Carnegie Mellon University*
Rajesh Zele, *Motorola Inc.*
Ian Getreu, *Analogy*
Tadahiro Kuroda, *Toshiba Corporation*
Author Index

A
Aberg, M. 251
Al-Khalili, A. J. 235
Al-Khalili, D. 235
Allstot, D. J. 108
Antoniadis, D. A. 295
Aoki, T. 36
Assaderaghi, R 293
Athas, W. 328
Azam, M. 259

B
Bajwa, R. S. 137
Banna, S. R. 301
Benini, L. 24, 287
Brown, J. J. 84
Buch, R 88

C
Catthoor, R 30, 293
Chan, K.-K. 167
Chan, M. 247, 301
Chan, P. C. H. 247, 301
Chen, D. Z. 84
Chen, K. 312
Chen, R. 72
Chiba, T. 255
Chin, S. C. 243
Choi, K. 62
Chung, D.-H. 100
Chung, K.-S. 269
Cortadella, J. 202
Costa, J. C. 184
Current, K. W. 323

d
De Angel, E. 7
De Man, H. 30
De Micheli, G. 24, 287
Devadas, S. 184
Diguet, J. Ph. 30
Ding, C.-S. 125
Dong, M. J. 173

E
Elmasry, M. I. 68

F
Farag, E. N. 68
Ferguson, Jr., P. 119
Fiez, T. S. 110
Fox, F. 293
Frank, D. J. 317
Franzon, P. 259
Frenkil, J. 152
Fried, R. 214
Fujita, G. 80
Fung, S. K. H. 301
Garrett, D. 225
Ghose, K. 143
Ghosh, D. 72
Girard, P. 281
Goel, M. 161
Greenhill, D. 293
Greenwood, G. W. 84

G

H
Hatanaka, N. 36
He, Z.-L. 167
Hicks, P. 239
Hill, A. 307
Hitko, D. A. 46
Høvin, M. 52
Hsiao, M. S. 178
Hu, C. 312
Hu, X. (S) 84

I
Ichida, M. 36
Igarashi, M. 36
Irwin, M. J. 72, 208
Ishikawa, T 36

J
Jiang, J. 12
Jiang, X. 328

K
Kaiser, W. J. 173
Kalambur, A. 208
Kambe, T 131
Kamble, M. B. 143
Kanazawa, M. 36
Kang, S.-M. 231
Kawaguchi, H. 1
Kawasaki, Y. 36
Kiaei, S. 52
Kim, B.-S. 100
Kim, L.-S. 100
Ko, P. K. 301
Ko, U. 12, 307
Kojima, H. 137
Kolla, R. 275
Kumatani, K. 255
Kumthekar, B. 56
Kuroda, T. 1
Kwon, H.-J. 220

L
Lande, T. S. 52
Landrault, C. 281
Lang, T. 196, 202
Larsson, P. 76
Lee, K. 220
Lennard, C. K. 88
Leong, H. W. 269
Leppanen, A. 251
Li, H. 328
Liou, M. L. 167
Liu, C. L. 269
Liu, W-C. 328
Liu, W. 259
Lu, K. 12
Lynn, L. 119

M
Maksmivovic, D. 323
Marculescu, D. 190
Marcii, E. 24
<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marculescu, R.</td>
<td>190</td>
</tr>
<tr>
<td>Marjonen, J.</td>
<td>251</td>
</tr>
<tr>
<td>Mattisson, S.</td>
<td>42</td>
</tr>
<tr>
<td>Mehta, H.</td>
<td>72</td>
</tr>
<tr>
<td>Meindl, J. D.</td>
<td>149</td>
</tr>
<tr>
<td>Miki, M. H.</td>
<td>80</td>
</tr>
<tr>
<td>Minami, F.</td>
<td>36</td>
</tr>
<tr>
<td>Mizuno, C.</td>
<td>36</td>
</tr>
<tr>
<td>Monteiro, J. C.</td>
<td>184</td>
</tr>
<tr>
<td>Moon, I.-H.</td>
<td>56</td>
</tr>
<tr>
<td>Musoll, E.</td>
<td>202</td>
</tr>
<tr>
<td>Narayanan, U.</td>
<td>269</td>
</tr>
<tr>
<td>Navarro, J. J.</td>
<td>196</td>
</tr>
<tr>
<td>Newton, A. R.</td>
<td>88</td>
</tr>
<tr>
<td>Ng, H.-H.</td>
<td>108</td>
</tr>
<tr>
<td>Ng, H.-T.</td>
<td>108</td>
</tr>
<tr>
<td>Nicol, C. J.</td>
<td>76</td>
</tr>
<tr>
<td>Nikolic, B.</td>
<td>323</td>
</tr>
<tr>
<td>Noda, H.</td>
<td>131</td>
</tr>
<tr>
<td>Nogami, K.</td>
<td>36</td>
</tr>
<tr>
<td>Nossek, J. A.</td>
<td>104</td>
</tr>
<tr>
<td>Nöth, W.</td>
<td>275</td>
</tr>
<tr>
<td>Nowick, S. M.</td>
<td>92</td>
</tr>
<tr>
<td>Ohnishi, M.</td>
<td>131</td>
</tr>
<tr>
<td>Oklobdzija, V. G.</td>
<td>323</td>
</tr>
<tr>
<td>Okuhata, H.</td>
<td>255</td>
</tr>
<tr>
<td>Okuhata, H.</td>
<td>265</td>
</tr>
<tr>
<td>Onoye, T.</td>
<td>80,265</td>
</tr>
<tr>
<td>Owens, R. M.</td>
<td>72,239</td>
</tr>
<tr>
<td>Patel, J. H.</td>
<td>178</td>
</tr>
<tr>
<td>Pedram, M.</td>
<td>125, 190</td>
</tr>
<tr>
<td>Peterson, L.</td>
<td>328</td>
</tr>
<tr>
<td>Pillai, R. V. K.</td>
<td>235</td>
</tr>
<tr>
<td>Poncino, M.</td>
<td>24</td>
</tr>
<tr>
<td>Pravossoudovitch, S.</td>
<td>281</td>
</tr>
<tr>
<td>Pua, A.</td>
<td>307</td>
</tr>
<tr>
<td>Qiu, Q.</td>
<td>125</td>
</tr>
<tr>
<td>Quer, S.</td>
<td>24</td>
</tr>
<tr>
<td>Rabaey, J. A.</td>
<td>158</td>
</tr>
<tr>
<td>Rantala, A.</td>
<td>251</td>
</tr>
<tr>
<td>Reynolds, S.</td>
<td>317</td>
</tr>
<tr>
<td>Roy, K.</td>
<td>18,96</td>
</tr>
<tr>
<td>Rudnick, E. M.</td>
<td>178</td>
</tr>
<tr>
<td>Sakurai, T.</td>
<td>1</td>
</tr>
<tr>
<td>Schlafler, A.</td>
<td>104</td>
</tr>
<tr>
<td>Schmitt, D.</td>
<td>110</td>
</tr>
<tr>
<td>Schumann, N.</td>
<td>137</td>
</tr>
<tr>
<td>Severac, D.</td>
<td>281</td>
</tr>
<tr>
<td>Shanbhag, N. R.</td>
<td>161</td>
</tr>
<tr>
<td>Shin, D.</td>
<td>62</td>
</tr>
<tr>
<td>Shin, J.</td>
<td>317</td>
</tr>
<tr>
<td>Shirakawa, I.</td>
<td>80,255,265</td>
</tr>
<tr>
<td>Singh, D.</td>
<td>293</td>
</tr>
<tr>
<td>Sodini, C. G.</td>
<td>46</td>
</tr>
<tr>
<td>Solomon, R</td>
<td>317</td>
</tr>
<tr>
<td>Somasekhar, D.</td>
<td>18</td>
</tr>
<tr>
<td>Somenzi, R</td>
<td>56</td>
</tr>
<tr>
<td>Song, B.-Y.</td>
<td>265</td>
</tr>
<tr>
<td>Sonoda, S.</td>
<td>36</td>
</tr>
<tr>
<td>Sproch, J.</td>
<td>293</td>
</tr>
<tr>
<td>Srivastava, P.</td>
<td>307</td>
</tr>
<tr>
<td>Stamoulis, G. I.</td>
<td>96</td>
</tr>
<tr>
<td>Stan, A</td>
<td>225</td>
</tr>
<tr>
<td>Svensson, L.</td>
<td>328</td>
</tr>
<tr>
<td>Swartzlander, Jr., E. E.</td>
<td>7</td>
</tr>
<tr>
<td>Takano, A</td>
<td>36</td>
</tr>
<tr>
<td>Taylor, R. W.</td>
<td>84</td>
</tr>
<tr>
<td>Tewksbury, T. L.</td>
<td>46</td>
</tr>
<tr>
<td>Theobald, M.</td>
<td>92</td>
</tr>
<tr>
<td>Tseng, Y.-C.</td>
<td>243</td>
</tr>
<tr>
<td>Tsui, C.-Y.</td>
<td>167</td>
</tr>
<tr>
<td>Tzartzanis, N.</td>
<td>328</td>
</tr>
<tr>
<td>Uno, H.</td>
<td>255</td>
</tr>
<tr>
<td>Usami, K.</td>
<td>36</td>
</tr>
<tr>
<td>van de Plassche, R. J.</td>
<td>114</td>
</tr>
<tr>
<td>van Engelen, J. A. E P.</td>
<td>114</td>
</tr>
<tr>
<td>Vuillod, P.</td>
<td>287</td>
</tr>
</tbody>
</table>
Session Index

Session M1 - Digital Circuit Techniques
Session M2 - System Level Power Optimization
Session M3 - Wireless Communication Circuits
Session M4 - Register Transfer High-Level Synthesis
Session P1 - Poster Sessions
Session M5 - Analog Circuit Techniques
Session M6 - Register Transfer & Architectural Level Power Estimation
Session T1 - Low Power Signal Processing
Session T2 - Logic-Level Power Estimation
Session T3 - Memory Techniques
Session T4 - Signal Processing Digital Circuits
Session P2 - Poster Session
Session T5 - Embedded Caches
Session T6 - Gate Level Power Optimization
Session W1 - Technology Paths to Low Power
Session W2 - Technology Optimizations
Session W3 - Adiabatic Techniques