
Test and Diagnosis of Faulty Logic Blocks in FPGAs

Sying-Jyan Wang and Tsi-Ming Tsai
Institute of Computer Science

National Chung-Hsing University
Taichung 402, Taiwan, R.O.C.
E-mail: sjwang@cs.nchu.edu.tw

Abstract

Since Field programmable gate arrays (FPGAs) are
reprogrammable, faults in them can be easily tolerated
once fault sites are located. In this paper we present a
method for the testing and diagnosis of faults in FPGAs.
The proposed method imposes no hardware overhead,
and requires minimal support from external test
equipments. Test time depends only on the number of
faults, and is independent of the chip size. With the help
of this technique, chips with faults can still be used. As a
result, the chip yield can be improved and chip cost is
reduced. Experimental results are given to show the
feasibility of this method.

1. Introduction

Field programmable gate arrays (FPGAs) can be
programmed in the field to implement any logic circuits.
They are widely used in rapid system prototyping because
of their reprogrammability, and they have also been used
in many practical circuits. An FPGA usually consists of
configurable logic blocks (CLBs), programmable I/O
blocks (IOBs), and programmable interconnects.

Testing faults in general FPGAs has been studied by
many researchers [1]-[4]. In these methods the FPGA
under test is not mapped to a specific logic function. As a
result, usually multiple test sessions are required, with
each session dealing with one configuration. Stroud et al
propose a Built-In Self-Test (BIST) method for FPGAs
[5]. This approach is attractive for two reasons. First of
all, it requires no extra hardware. Since FPGAs are
programmable, the BIST structure is implemented only
once during test time. Secondly, the requirement for
automatic test equipment (ATE) is much simplified. The
ATE only needs to download the configurations that are
used during test time, while the actual testing process is
conducted by the circuit itself.

Traditional chip-level testing usually deals with fault
detection only, while fault diagnosis is often conducted in
the system-level. This is because components in chip can
hardly be repaired. However, faults in FPGAs can be
easily tolerated by not including faulty elements in the
final circuit. Therefore, FPGA chips with faults can still
be used if we can identify the fault sites. In this paper we
propose a chip-level diagnosis methodology for faults in
CLBs. Our method is also based on BIST technique,
which means the requirement for external ATE support is
limited. The amount of testing time is affected by the
number of faults on chip only and is independent of the
chip size. Since the die yield of larger chips is lower than
smaller ones with the same defect density, our method is
especially attractive for larger chips.

2. Preliminaries

A well-studied model for system-level diagnosis is
known as the PMC model [6]. This model is based on the
following assumptions. (1) A system is divided into many
units, and each unit can test another one. (2) The test
outcome is either “pass” or “fail”. (3) If the testing unit is
fault-free, the test outcome is always correct. The test
outcome obtained by a faulty testing unit is not reliable.

Based on these assumptions, we may model a
diagnostic system with a diagnostic graph. A diagnostic
graph G = <V, E, W> is a directed graph, where V is the
set of vertices, E is the set of edges, and W is the set of
weights associated with all edges. A vertex v in V
represents a unit in the system. An edge from vi to vj in E
(denoted as eij) corresponds to the existence of a test in
which unit vi evaluates vj. The test outcome aij associated
with eij may assume the following values:

aij = 0 if both vi and vj are fault-free;
aij = 1 if vi is fault-free and vj is faulty;
aij = × if vi is faulty, no matter what is the status of vj

(i.e., × is either 0 or 1).

0-89791-993-9/97 $10.00  1997 IEEE

For example, consider the diagnostic graph shown in
Fig. 1. Some possible syndromes are shown in Fig. 1. If
all units are fault-free, the syndrome would be all 0’s. It
can be seen that any single fault can be correctly
diagnosed since two different faults will not produce the
same syndrome. On the other hand, proper diagnosis is
not possible if two or more faults are present. For example,
the syndrome for fault {v0} and {v0, v1} may be identical.
This system is thus called 1-fault diagnosable since any
single fault is guaranteed to be located.

v0

v1

a01 a12 a23 a34 a40

0 0 0 0 0
x 0 0 0 1
1 x 0 0 0
x x 0 0 1
x 1 x 0 1

faulty
units

None
v0

v1

v0, v1

v0, v2
v2v3

v4

Fig. 1. A diagnostic system

A system of n units is one-step t-fault diagnosable if
faulty units can be identified without replacement, given
that the number of faulty units is at most t [6]. The next
theorem provides necessary conditions for such systems.
Theorem 1 [6]: In a one-step t-fault diagnosable system S
1) There must be at least 2t+1 units.
2) Each unit must be diagnosed by at least t other units.

Many sufficient and necessary conditions have been
provided for one-step t-fault diagnosable systems.
Theorem 2 [7]: Let S be a system with the property that
no two units test each other. Then S is one-step t-fault
diagnosable if and only if each unit is tested by at least t
other units.

The above results deal with the diagnosability of a
system. Another issue is how to identify the faulty units
for a given syndrome. Many diagnosing algorithms have
been proposed. An O(n2.5) algorithm was given for any
diagnosable system [8], and the complexity can be even
lower for systems with regular test structure.

3. Test architecture

In order to diagnose faults, first there must be a way
to test modules in FPGAs. A candidate for this purpose is
BIST [9]. The BIST structure reconfigures part of the
functional circuit to be a test pattern generator (TPG) and
some other to be an output response analyzer (ORA). The
rest circuit consists of the circuit under test (CUT). The
TPG is either a linear feedback shift register (LFSR) or a
counter. The test inputs are fed to the CUT, while the
output responses are collected and analyzed by the ORA.
The ORA can be either a signature analyzer or a
comparator-based analyzer.

3.1. Basic Architecture

Our test architecture works as follows. An FPGA is
divided into disjoint sets of CLBs, where each set can be
configured into a TPG and an ORA. Such a set acts as a
unit in the PMC model since it is able to test another unit.
In Fig. 2 we illustrate the testing method. All the CLBs
under test are programmed in the same way; therefore,
they perform the same logic function and could be applied
with the same test patterns. Thus outputs of the TPG are
fed to all CLBs in the set under test, and the results are
analyzed by the ORA.

TPG

ORA

CLB

CLB

Fig. 2. The connection between a testing unit and a
set of CLBs under test

Since each CLB can be programmed in many ways, it
is not possible to test any CLB in a single test run. A
complete test for a CLB requires several steps, and in
each step a CLB is programmed in a particular way.
Definition 1: A test phase is the procedure of testing
faults in a CLB that is programmed in a particular way.
Definition 2: A test session consists of many test phases
that completely test CLBs for all modeled faults.

Each test session corresponds to an edge in a
diagnostic graph.
Definition 3: A node is a set of CLBs that can be
reconfigured to a TPG and an ORA when it acts as a
testing unit. A node is said to be in T-mode when it
contains a TPG and an ORA. When the node is
corresponding to a tested unit in the PMC model, all
CLBs in it are configured in the same way, and the
configuration changes from phase to phase. At this
moment the node is said to be in C-mode.

A node corresponds to a vertex in a diagnostic graph.
The only requirement for a node is that it must be large
enough to accommodate a TPG and an ORA; and any two
nodes are not required to be equal in size. However, if we
use homogeneous nodes, the testing and diagnosis
procedures can be greatly simplified. Therefore we will
assume that all nodes are equal in size throughout the
remaining part of this paper.
Definition 4: A test group is a set of nodes in which the
target number of faulty nodes can be correctly diagnosed.

Our test and diagnosis strategy works as follows. The
CLBs on a chip are grouped into nodes, where each node

must be able to accommodate at least a TPG and an ORA.
Let the maximum number of faulty CLBs allowed on a
chip be t. The nodes are again assembled into test groups,
where each group must contain at least 2t+1 nodes. Let
the number of nodes in a group be n. We will label these
nodes as v0, v1, ..., vn−1. Such a group is t-fault
diagnosable according to Theorem 2. A node vi tests vj, if
j − i = m (mod n), where 1 ≤ m ≤ t. For example, the
system in Fig. 1 is a 1-fault diagnosable test group.

After the above procedure having been finished, all
faulty nodes can be identified. However, faulty CLBs are
not known at this stage since a node contains multiple
CLBs. If we need to exactly identify all faulty CLBs, a
second step is required. This can be done since we have
more than half good nodes and we know the locations of
good nodes. The good CLBs are again configured into
TPGs and ORAs to locate the faulty CLBs.

3.2. An Efficient Diagnosis Scheme

If an n-unit system is t-fault diagnosable, at least n⋅t
test sessions are required. If the number of faults is
smaller than t, then many test sessions are redundant.
When the time required to conduct all test sessions is
much larger than the time required to carry out the
diagnosing algorithm, it is worthwhile to execute the
diagnosing algorithm several times so that the required
number of test sessions can be reduced.

Consider the test group discussed in Sec. 3.1. This
group can be represented by an n-vertex directed graph
where an edge (vi, vj) exists if (j−i) mod n is a member of
{1, 2, ..., t}. We divide the n⋅t test sessions into t sets,
each containing n test sessions. These sets are called T1,
T2, ..., Tt, where Tj = {(vi, v(i+j mod n)) | 0 ≤ i ≤ n−1} for all
1 ≤ j ≤ t. An adaptive one-step t-fault diagnosing scheme
is possible with the above test sets.

Procedure 1: Adaptive One-Step t-Fault Diagnosis
PreviousFaults = ∅;
AccumulatedOutCome = ∅
for (i = 1; i <= t; i++) {

Outcome = Apply_Test_Session(Ti);
AccumulatedOutcome = AccumulatedOutcome ∪ Outcome;
Faults = Fault_Diagnosis(AccumulatedOutcome, i);

/* Diagnosis for i-fault */
if (Faults == PreviousFaults) break;
else PreviousFaults = Faults;

}
return faults;

Fault_Diagnosis() can be any diagnosis algorithm. In
the i-th iteration of the loop, Fault_Diagnosis() tries to
solve the given syndrome by assuming that at most i

faults exist. We may not be able to reach a consistent
result in iteration i since the actual number of faults could
be larger than i. If a consistent diagnosis result is not
possible at iteration i, the comparison with the previous
result is false. The above algorithm says that, if we have
the same valid diagnosis results in two successive
iterations of the loop, then the remaining test sessions can
be omitted since the number of faults in the test group is i.
Theorem 3: Procedure 1 is t-fault diagnosable.

A proof of the correctness of the procedure can be
found in [10].

3.3. Analysis

3.3.1. Capability of the Test Architecture. Let a node
contain B CLBs, and the number of CLBs on a chip be N.
Then the number of nodes on a chip is N/B. If B does
not divide N evenly, there will be less than B remaining
CLBs that cannot form a complete node. We may ignore
these CLBs first. When all correct nodes are identified,
these remaining CLBs can be tested separately.

Under the PMC model, at most t = n/2 faulty nodes
can be diagnosed if sufficient tests are applied. Since the
interconnects between nodes can be reconfigured in an
FPGA, the required tests can always be arranged. Since a
chip has n = N/B nodes, we have t = N/2B. Therefore,
a chip with N/2B or less faulty CLBs is guaranteed to be
correctly diagnosed, and in the optimal condition up to
N/2×B faulty CLBs can be diagnosed.

3.3.2. Structure of a Test Block. The constraint for a
node is that it must be able to accommodate a TPG and an
ORA. The proposed model does not impose an upper
bound on the number of CLBs in a node. However, we
want to make a node as small as possible. As shown in
Fig. 2, the output of a TPG drives all CLBs in a C-mode
node (i.e., the fanout of a TPG output line is B). Therefore,
a large B means a large load for the TPG. If B is larger
than the driving capability of a TPG, output buffers must
be provided to the TPG. The second reason for a smaller
B is the diagnostic capability. Since the maximum
number of faulty CLBs that are guaranteed to be
diagnosed is N/2B, smaller nodes imply more faulty
CLBs are diagnosable. For these reasons, we assume that
a node can accommodate exactly a TPG and an ORA.

Let the sizes of a TPG and an ORA be BTPG and BORA,
respectively. By the above arguments,

B = BTPG + BORA (1)
Define the following parameters of a CLB:

O: Number of outputs of a CLB
I: Number of inputs of a CLB
F: Number of flip-flops in a CLB

In an exhaustive test of a CLB for a given

configuration, all 2I input vectors are required. This
means that the TPG must have I independent output
signals, which implies I flip-flops are required:

BTPG ≥ I/F (2)
In practice, if two input lines do not affect the same

output, they may be applied with the same signal to
achieve pseudoexhaustive testing [9]. In this case, p (< I)
signals may be enough, and some of the p lines may be
connected to two or more inputs of a CLB:

BTPG ≥ p/F (2a)
Since the outputs of all CLBs in a node under test are

analyzed by the same ORA, we have:
B×O ≤ BORA×I (3)

3.3.3. A Test Group. If we want to achieve maximum
diagnosability, only one test group is allowed on chip. In
this case N/2B faulty nodes can be identified. On the
other hand, if it is known that the number of faulty nodes
on a chip, t, is much less than N/2B, it is possible to
have smaller test groups. The only requirement for a test
group is that it must contain at least 2t+1 nodes.

Employing multiple test groups does not improve
diagnosability. The advantage of smaller test groups is the
reduced diagnosing time. Since all test groups conduct
their test sessions simultaneously and the time required
for diagnosis is O(n2.5), the diagnosing time is greatly
reduced for smaller test groups.

4. Case Study: XC4000 FPGA FAMILY

We implemented the above test architecture with
Xilinx XC400 FPGAs, and the details are discussed here.

4.1. Testing a CLB

A simplified diagram of a CLB in Xilinx XC4000

Family is shown in Fig. 3. This CLB has 13 inputs (I =
13), in which one is clock input (K), nine signals are
input to the combinational part (F1 to F4, G1 to G4, and
H1), and the other three are for the sequential part (DIN,
S/R, and EC). There are four outputs in a CLB (O = 4).
The combinational part consists of 3 Look-Up Tables
(LUTs) and three multiplexers (MUXs) whose outputs are
H1, X, and Y, respectively. The sequential part contains
the remaining components: two D flip-flops (F = 2), the
S/R control, and the remaining MUXs.

The LUTs are made of SRAM. To test the LUTs,
each bit in them has to be set to both 0 and 1. Therefore,
at least two phases are required to exercise all possible
faults in the LUTs. There are 4-to-1 MUXs in a CLB. As
a result, we need at least four test phases so that each
input-to-output connection of these MUXs can be
exercised. We found that four test phases are enough to
exercise all possible configurations in the CLB.

Fig. 3. A simplified diagram of a CLB in XC4000

l Phase 1: The LUTs are configured as Exclusive-OR of
the nine inputs. F′ is connected to both flip-flops, G′ is
connected to Y, and H′ is connected to X.

l Phase 2: The LUTs are configured as Exclusive-NOR
of the nine inputs. G′ is connected to both flip-flops, F′
is connected to X, and H′s is connected to Y.

l Phase 3: The LUTs implement XOR, and DIN is
connected to both flip-flops.

l Phase 4: The LUTs implement XNOR, and H′ is
connected to both flip-flops.

The combinational part is tested in the first two
phases. Flip-flops are tested in all four phases. In order to
fully test the upper MUXs, in Phase 1 the connections are
(C1, C2, C3, C4) ⇒ (H1, DIN, S/R, EC) (i.e., H1 is
connected to C1, etc.). In Phase 2 the connection is (C2,
C3, C4, C1) ⇒ (H1, DIN, S/R, EC), etc. As a result, all
connections are exercised in four phases.

In each phase, we apply pseudo-exhaustive test
vectors to test all faults in a CLB. The question is how
many independent signals are required to carry out the
test. In the 13 inputs to the CLB, the clock (K) is fed by
the system clock and thus is not considered. The three
input signals (DIN, S/R, and EC) for the sequential part
are independent of the combinational inputs (that is, they
do not affect the same output), so these three signals can
be connected to any 3 of the nine combinational inputs.
Therefore, we need no more than 9 test signals. A further
reduction can be made. If we fed all 28 vectors to inputs
F1 to F4 and G1 to G4, both LUTs F′ and G′ are
exhaustively tested, and all four combinations (00, 01, 10,
11) will appear on F′ and G′ since they are either XOR or
XNOR. Now in order to fully test LUT H′, we need 23 = 8
independent inputs for each configuration. The third
input (H1) can be connected to any one of the other eight
combinational inputs to get exhaustive input vectors for
H′. Therefore, we need only 8 independent signals to test
each configuration of the CLB exhaustively (i.e., p = 8 in
Eq. 2a).

4.2. Test Blocks

In our design, the TPG is made of a type I LFSR [9]
which implements the polynomial x8+x6+x5+x+1. This
LFSR generates 255 patterns (28−1) except the all 0
vector. In order to get all 256 exhaustive vectors, we reset
all FFs in the first cycle, and then set the first bit in the
second cycle. The rest vectors will be automatically
generated. This TPG consists of 4 CLBs (BTPG = 4).

We use the comparator-based ORAs because they are
easier to be implemented and do not suffer the alias
problem. An ORA compares the outputs of all tested
CLBs; whenever there are inconsistent results, an error
bit is set to record the fault. The ORA design also consists

of 4 CLBs (BORA = 4). Therefore, a test node contains 8
CLBs (B = 8). It is easy to verify that this design satisfies
conditions in Sec. 3.3.2.

4.3. Experimental Results

We experiment our method on an XC40003A PC84
FPGA chip. An XC4003A chip has 100 CLBs arranged
in a 10×10 array. Since B = 8, this chip may have up to
100/8 = 12 nodes. However, it is difficult to construct
nodes from CLBs locating at the chip boundary.
Therefore, we construct only 10 nodes in this case. The
remaining 20 CLBs are considered after we have
identified faulty nodes. Fig. 4 shows the structure of our
design on an XC3003A chip. All nodes locate at center
part of the chip, while the top and bottom rows of CLBs
are not configured.

Since CLBs are configurable, we can “inject” faults
into CLBs by simulating the effects of logic faults. We
consider two types of faults: stuck-at faults and open
faults. We simulate the effect of a stuck-at fault by
connecting the faulty line to logic “0” or “1”. To simulate
the effect of an open fault, all we have to do is to
disconnect the faulty line from its driving source.
Unfortunately, we are unable to simulate the bridging
fault. The reason is that, if we try to short two lines that
are driven by different sources, a DRC error occurs and
the design is not realizable. In our experiment we inject
48 faults into the chip, in which there are 25 stuck-at
faults and 23 open faults. These faults appear in 17
different CLBs. Eleven faulty CLBs locate in four test
nodes, and the remaining 6 faulty CLBs are in the top and
bottom rows. Fig. 4 shows the locations of faulty CLBs
and faulty nodes.

It requires three different stages to identify all faulty
CLBs, and the three stages are described as follows.

: Good Node :Faulty Node : Good CLB : Faulty CLB

Fig. 4. Experimental environment

Stage 1: Identify faulty nodes. Since there are 10
nodes on the chip, we are able to identify all four faulty
nodes. We apply test sets T1, T2, T3, and T4 in sequence.
Each test set consists of 10 test sessions. These test
sessions, however, cannot be completed in one step for
several reasons. First of all, each node is in C-mode in
one session while it is in T-mode in another session.
Since a node cannot be in both C-mode and T-mode, it
requires at least two steps to execute a test set. Secondly,
due to the limited routing resource, it may not be possible
to have maximum test sessions running concurrently.

Stage 2: Identify faulty CLBs in faulty nodes. The
locations of faulty CLBs are known at this stage. One
good node is configured as a TPG. Output of the TPG
drives two nodes: one is faulty and the other is faulty-free.
The two nodes are programmed in the same way during
test time. A comparator compares the output responses of
the two tested nodes. The TPG design is the same as
before, while the comparator is somewhat different here.

Stage 3: Identify faulty CLBs in the remaining part.
The remaining CLBs are divided into three nodes. We
repeat the process in stage 2 to identify faulty CLBs. It
requires 3 test sessions for the remaining CLBs.

The time used to apply all test sessions in Stage 1 is:

TimeStage_1 = ()D C S Pv
ii

t + × × ×=∑ 2
1

(4)

in which D is the time for download, C is the clock cycle
time, v the number of outputs of a TPG, Si is the number
of steps required to apply test sessions in set Ti, and P is
the number of phases in a session. Among them, D, C, v,
and P are constant for a given FPGA technology.

The test time of our method depends on the number
of diagnosable faults t and the number of steps to arrange
all the test sessions (form Eq. 4). It is independent of the
chip size. Therefore, we need to reduce the summation of
all Si if we want to reduce the test time. Procedure 1 in
Sec 3.2 is developed for this purpose.

The time required to complete Stage 2 is:

Time Stage_2 = ()D C P tv
F+ × × ×2 (5)

where tF is number of actual faulty nodes. The time
required to complete Stage 3 is:

Time Stage_3 = ()D C P Rv+ × × ×2 (6)
where R is the number of remaining nodes.

The following parameters are valid for the XC4000
family CLBs. A test session requires four phases (P = 4).
In each phase we need to download the configuration
once and apply 28 test vectors (v = 8). Our experimental
results show that downloading a bitstream needs about
7.8 seconds. We use a 8MHz clock, that is, C=1.25×10−7

sec. The time required to apply all test vectors in a test
phase is thus 28×1.25×10−7 = 32µs. Since the test
application time is negligent compared with the time for
downloading, we can ignore this term.

We need 15 steps in the first stage. For the second
and third stage, we have tF = 4 and R = 3. Put everything
together, we need 7.8×4×(15+4+3) = 686.4 seconds.

In terms of diagnosability, all 17 faulty CLBs in the
experiment are properly located, as we expect.

5. Concluding Remarks

In this paper we present a method to diagnose faulty
CLBs in FPGAs. The advantages of this method include:
(1) no hardware overhead, (2) all tests and responses are
processed on chip, (3) test time depends on the number of
faults only, and is independent of the chip size. With this
method, FPGAs with faulty CLBs can still be used.

A significant part of the FPGA die area is dedicated
to the interconnections. Faults on interconnections are not
considered in this paper; we will explore this issue in the
future.

REFERENCES

[1] T. Liu, W.K. Huang, and F. Lombardi, “Testing of
uncustomized segmented channel FPGAs,” in Proc.
ACM Intl. Symp. on FPGAs, pp. 125-131, 1995.

[2] T. Inoue, H. Fujiwara, H. Michinishi, T. Yokohira, and
T. Okamoto, “Universal test complexity of field-
programmable gate arrays,” in Proc. 4th Asian Test
Symp., pp. 259-265, 1995.

[3] W.K. Huang and F. Lombardi, “An approach for
testing programmable/configurable FPGAs,” in Proc.
IEEE 14th VLSI Test Symp., pp. 125-131, 1995.

[4] H. Michinishi, T. Yokohira, T. Okamoto, T. Inoue, and
H. Fujiwara, “A test methodology for interconnect
structures of LUT-based FPGAs,” in Proc. 5th Asian
Test Symp., pp. 68-74, 1996.

[5] C. Stroud, S. Konala, P. Chen, M. Abramovici,
“Built-in self-test of logic blocks in FPGAs,” in Proc.
IEEE 14th VLSI Test Symp., pp. 387-392, 1996.

[6] F.P. Preparata, G. Metze, and R.T. Chien, “On the
connection assignment problem of diagnosable
systems,” IEEE Trans. Electronic Comput., EC-16, pp.
848-854, Dec. 1967.

[7] S.L. Hakimi and A.T. Amin, “Characterization of the
connection assignment of diagnosable systems,” IEEE
Trans. Comput., C-23, pp. 86-88, 1974.

[8] A.T. Dahbura and G.M. Masson, “An O(n2.5) fault
identification algorithm for diagnosable systems,”
IEEE Trans. Comput., C-33, pp. 486-492, June 1984.

[9] M. Abramovici, M.A. Breuer, and A.D. Friedman,
Digital Systems Testing and Testable Design, W. H.
Freeman and Company, 1990.

[10] S.-J. Wang, “Adaptive system-level diagnosis and its
application,” in Proc. 1997 Pacific Rim Intl. Symp. On
Fault-Tolerant Systems.

	CD-ROM Home Page
	ICCAD97
	Front Matter
	Table of Contents
	Session Index
	Author Index

