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Abstract

In this paper, we study the interconnect layout optimization problem
under a higher-order RLC model to optimize not just delay, but also
waveform for RLC circuits with non-monotone signal response. We
propose a unified approach that considerstopology optimization, wire-
sizing optimization, and waveform optimization simultaneously. Our
algorithm considers a large class of routing topologies, ranging from
shortest-path Steiner trees to bounded-radius Steiner trees and Steiner
routings. We construct a set of required-arrival-time Steiner trees or
RATS-trees, providing a smooth trade-off among signal delay, wave-
form, and routing area. Using anew incremental moment computation
algorithm, we interleave topology construction with moment compu-
tation to facilitate accurate delay calculation and evaluation of wave-
form quality. Experimental results show that our algorithm is able to
construct aset of topol ogies providing asmooth trade-off amongsignal
delay, signal settling time, voltage overshoot, and routing cost.

1 Introduction

AsVLSI circuitry reachesdeep submicron device dimension, operates
at giga-Hertz clock frequencies, and is packaged in highly integrated
multichip modules, the performance of interconnect structures has be-
come the dominating factor in determining system performance. Re-
cent studies show that interconnect delay can be reduced by intercon-
nect topology optimization, wiresizing optimization, and/or buffer op-
timization. A comprehensive survey of these optimization techniques
canbefoundin [1]. Inthis paper, we study the interconnect layout op-
timization problem under a higher-order RLC model. Our objective
is to perform topology and wiresizing optimization for performance
and signal integrity under a higher-order moment-based interconnect
model. It hasthe following advantages:

(1) Most of the previous works on interconnect optimization were
achieved under RC interconnect models only, including recent stud-
ies on topology optimization [2, 3], wiresizing optimization [4, 5, 6,
7], aswell asthe most recent works that combined topology construc-
tion with buffer insertion and/or wiresizing [8, 9, 10]. They did not
consider the inductance effect, which may be an important factor in
high-speed MCM/PCB designs and high frequency deep sub-micron
designs. In this study, we overcome this shortcoming by considering a
higher-order moment-based RL C interconnect model in the optimiza-
tion process. We also present a new algorithm to incrementally com-
pute moments of sinksin an RLC tree in a bottom-up manner.

(2) A few approacheshave proposed to use higher-order RL C mod-
els for topology optimization [11, 12], wiresizing optimization [13],
and termination optimization [14, 15, 16]. But none of them can con-
sider all three optimization simultaneously for both delay and signal in-
tegrity optimization. Our optimization algorithm takes a more global
approach; it considerswiresizing during routing topology construction,
optimizes for both signal delays and response waveforms, and returns
a set of routing topologies with appropriate wire width assignments.

(3) Our method is capable of constructing a large class of routing
topologies, ranging from shortest-path Steiner trees to bounded-radius
Steiner trees and Steiner routings. All of the previous topology con-
struction algorithms are limited to a single class of routing topology.
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For example, the A-tree algorithm considered shortest-path Steiner trees
only [2], and the set of topologiesgenerated by the P-tree algorithm [9]
isrestricted to apermutation-induced abstract topol ogy pre-determined
by a Traveling Salesman heuristic. By consideringalarge classof rout-
ing topologies, our algorithmis ableto produce a set of topologieswith
a smooth trade-off among signal delay, waveform, and routing area.

In order to optimize signal delay, waveform, and wiring area, we
construct a set of required-arrival-time Steiner trees (RAT S-trees) by
recursively merging subtreesin abottom-up fashion. Using thisbottom-
up tree construction, we can easily compute sink momentsin an incre-
mental manner. For each subset of sinks, we maintain a set of topolo-
gieswhich correspond to atrade-off among routing costs, time domain
waveforms, and signal delays. Moreover, we also consider intercon-
nect sizing (and possibly, buffer insertion) in the subtree merging pro-
cess. At the end of the bottom-up process, the designer would have a
set of solutionsto choosefrom. Inthispaper, wealsointroduce aspace-
efficient reducedtreerepresentationto captureall wiresized topologies
constructed during the execution of our algorithm.

Therest of the paper is organized asfollows: Section 2 formulates
the interconnect layout optimization problem that we aim to solve. In
Section 3, we present the RAT S-tree algorithm in detail, including the
reduced treerepresentation and theincremental bottom-up moment com-
putation algorithm. We present the experimental results in Section 4
and concludethe paper in Section 5.

2 Problem Formulation

Given a net of pins or terminals {sg,$,,S,--,Sn} to be electrically
connected, we assume that sy denotes the source (or driver) of the net
and the rest of the pins are sinks (or receivers). In this paper, we are
interested in interconnect trees We use Pr(u, V) to denote the unique
path from u to v in an interconnect tree T, dy(u,Vv) the pathlength of
Pr(u,v), and d(u, v) the Manhattan distance between u and v. We de-
note the signal delay from u to v by tr(u,Vv). The source node sy will
generally be referred to as the root of an interconnect tree, and each
node v in the tree is connected to its parent by edge e,. We use T, to
denote the subtree that is rooted at v. Given an edge e, we use Te t0
denote the subtree with e being its root edge. | (e) denotesthe length of
e.

Let g; be the required arrival time of sink ;. A minimal required-
arrival-time Steiner tree (RATS-tree) is a minimum-cost Steiner tree
suchthat g; > tt(sg,s) for all sinks. RATS-treesinclude several com-
monly used topologies when we use the pathlength delay formulation
with tt(u,v) = dr(u,v). For example, by setting g; = d(sg,s;) for all
sinks, an optimal RATS-tree is an optimal Steiner arborescence[17].
If we relax the requirement such that all sinks have the same required
arrival time, then an optimal RATS-tree is an optimal bounded-radius
Steiner tree [18]. Lastly, an optimal RAT S-tree with unbounded g;’sis
an optimal Steiner tree[19].

The pathlength formulation captures the delay for unloaded loss-
less transmission lines in MCM/PCB designs perfectly. In this case,
the output responseis areplica of the input signal delayed by the time-
of-flight (or propagation delay) t; = +/LCl whereL and C are the unit-
length interconnect inductance and capacitance, respectively, and | is
the length of the interconnect. In general, it is assumed that +/LC is
a constant unchanged by wiresizing. Therefore, the time-of-flight (or
propagation delay) on the path from the sourceto sink s; ists (sp, ) =



Y eePr(s,s) VLC (ev), whichisproportional tothe pathlengthdr (sg, ).

A more general formulation is to model MCM/PCB and IC inter-
connect structures as lossy transmission lines. Under this formulation,
the delay at each sink is the sum of the propagation delay and the ris-
ing/falling (or transition) delay of the signal response waveform [13].
Thetransition delay can be estimated by a higher-order moment-based
delay model asfollows: Let hj(t) betheimpulse response at anode of
interest, say sink s;, in an interconnect. Let vj,(t) be the input voltage
of the linear circuit, v;(t) be the output voltage of sink s; in the circuit,
Vin(s) and V;(s) be the Laplace transform of vj,(t) and vi(t), respec-
tively. Then, H;(s) = Vi(s)/Vin(s) is the transfer function, which can
be written as:
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whereny is the j-th moment of the transfer function.

Moments of an RL C interconnect can be computed by the methods
proposedin [20, 21]. From thefirst 2q— 1 moments, one can construct
ag-poletransfer function H;(s) to approximatethe actual transfer func-
tion H;(s) asfollows:
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where pj’s are poles and k;’s are residues, all of which can be deter-
mined uniquely by matching the initial boundary conditions, denoted
m~1, and the first 2q — 1 moments my of H;(s) to those of H;(s) [22].
The choice of order q depends on the accuracy required but is always
much lessthan the order of the circuit. In practice, g < 5is commonly
used. When q is chosento be two, it is known as the two-pole model
[23,11, 24]. From H;(s), one can derive the approximated output volt-
agev;(t) and solvefor thetransition delay ty(i) of the output signal at s5;
to reach x% of Vpp (assuming arising output) for thefirst time. In this
paper, we use the two-pole delay model proposed in [24] to approxi-
mate the rise/fall delays of asignal asfollows:
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Signal response waveform is another important factor in intercon-
nect design. Under the ideal situation, one would prefer the transmis-
sion of theinput signal to the output not to be distorted. However, due
to impedance mismatch and reflection, ringing may occur at the output
node, resulting in excessive settling time and voltage overshoot or un-
dershoot, and adversely affecting the circuit performance. Similar to
[14, 15, 16], we proposeto use moments as an indirect metric to mea-
sure signal quality.

For example, if we use the two-pole model to model the intercon-
nect, then ringing can be attributed to the existence of complex poles
in Hi(t). The condition for the poles to be complex (i.e., for the out-
put responseto be non-monotonic, or underdamped) isfor Aj = 4rr}2 —
3(m%)? to be negative. When A is strictly positive, we have a over-
damped and monotoneresponse. When A; is exactly zero, the signal is
said to be critically damped. On the other hand, an underdamped sig-
nal generally has a faster rise delay when compared to a damped sig-
nal. Other metrics that involved even higher order moments include
the third central moment proposedin [15]. With other attributes (such
as the signal delay and the wiring length) being the same, we would
prefer aRAT S-tree with A;’s as close to zero as possible.

too(i) =

To summarize, we propose to solve the following problem:
Required-Arrival-Time Steiner Tree Routing: Given aset of termi-
nals s's and required arrival times g;’s, construct a required-arrival-
time Steiner tree T suchthat ¢ > tr(sp, ), critical dampingisachieved
for good signal quality (i.e., Aj’s are as close to zero as possible), and
the total wirelength or wiring areais minimized.

3 RATSTreeAlgorithm

We construct required-arrival-time Steiner trees (RATS-trees) by re-
cursively merging subtreesin a bottom-up fashion. Using this bottom-
up tree construction, we can compute moments of sinks and consider
interconnect sizing and possibly buffer insertion in the subtree merging
process easily.

3.1 Overview of RATS-Tree Algorithm

In the following discussion, we assume that the sourceis at the origin
and the sinks are in the first quadrant. We generalize the algorithm to
handlethe casewheretheterminalsare at arbitrary locationsin Section
3.7. Given a set of terminals, the RATS-Tree algorithm operates on a
Hanan grid [25] induced by the terminals. All Hanan grid points are
ordered according to their distance from the source, with arbitrary tie
breaking.

Let (Xm, ym) denotethe coordinates of grid point m, and |m| = Xm+
Ym. Given two distinct points p and g, we define the Steiner merging
point for p and g, denoted (p, q), as the point with coordinates We say
that g is dominated by p, or g < pif and only if xq < Xp, yq < yp, and
p#aq.

In general, the RATS-Tree algorithm follows a branch-and-bound
paradigm, by considering merging and skipping (of merging) of sub-
trees at a Steiner merging point as introduced in [17], as well asre-
rooting of asubtree, aconceptintroduced in [26], at Hanan grid points.
Each node in the branch-and-bound (B&B) search tree is associated
with a peer topology set T which contains a forest of subtrees con-
structed so far and ascanlevel K = |m| wheremisthe Steiner merging
point last considered in the subtree merging process. Not to be con-
fused with anode in a constructed topology, we refer to anode in the
B&B searchtree asaB&B node.

Starting with aB& B node where the peer topology set contains all
single-terminal trees and the scanlevel K = «, we expandaB&B node
characterized by (T ,K) by considering anew Steiner merging point m
with the highest order among all Steiner merging points of tree roots
inT suchthat |m| < K. If the new Steiner merging point is aterminal,
then suchamerging iscalled aterminal merging. Otherwise, itiscalled
a Seiner merging. These operations are similar to those in [17].

LetP-(m) = {p/m= p,Tp € T } denotethe set of treerootsin T
that dominates m. Both terminal and Steiner merging connect from m
to eachnode p in R-(m) and eliminate T, from T . We make a shortest
path connection between mand p by growing Ty, along the Hanan grid
points from p to min a bottom-up fashion. A new subtree Ty, is added
to T and K is updated to |m|. Note that when xm # Xp and ym # Yy,
there are several shortest Manhattan paths from mto p. We consider
only the two shortest Manhattan pathsthat correspond to the boundary
of the smallest bounding box containing mand p.

Asin the branch-and-bound-based minimum rectilinear Steiner ar-
borescence (MRSA) agorithms in [17], we also consider skipping a
Steiner merging. In this case, while K is updated to |m|, we keep T
unchanged. Therefore, skipping a Steiner merging operation generates
an additional child B&B nodein the B&B searchtree.

Both terminal merging and Steiner merging consider merging at the
roots of sub-trees only, thereby producing shortest path trees only. In
order to consider a large class of routing solutions, we allow merging
at non-root nodes of the sub-trees. We achieve non-root merging by
re-rooting. After each terminal merging or Steiner merging, the resul-
tant topology T is re-rooted at various Hanan grid pointsin T, creat-
ing several topologies that consist of the same nodes and edgesin T,
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Figure 1: A snapshot of the B& B search tree illustrating the RATS-algorithm
applied to a 5-terminal net.
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but rooted at different nodes. These re-rooted topologies have identi-
cal routing structure, but different sink delays and signal waveforms.
Therefore, re-rooting creates several sibling B& B nodesfor the newly
generated child B&B node.

Figure 1 showsa partial B& B search tree corresponding to the ap-
plication of the RAT S-tree algorithm applied to a5-terminal net. In the
B& B search tree, root nodes of the peer topology set are depicted by
empty circles, and non-root nodesby filled circles. For illustrative pur-
pose, the scan level K is shown as a dash line. Note that after the first
Steiner merging, the newly created subtree and its re-rooted topologies
include a new Hanan grid point.

From the above discussion, it is obvious that growing of a subtree
and its subsequent merger with sibling subtrees are bottom-up in na-
ture. Aswe shall seein Section 3.3, topologies are also re-rooted in
a bottom-up manner. It is therefore natural to incorporate bottom-up
wiresizing (and buffer insertion for IC designs) optimization asin[9, 8]
during the subtree merging and re-rooting process (see Section 3.4).
For an effective evaluation of different wiresizing solutions, as well as
topologies, we present in Section 3.5 an efficient incremental bottom-
up moment computation method to computehigher-order sink moments
for a more accurate delay computation and signal waveform evalua-
tion.

We explore the B&B search tree in a breadth-first traversal order.
In other words, nodes at the same level of the B&B search tree are
expanded first before any of their children are expanded. The reason
for the breadth-first expansion order isto facilitate as much pruning as
possible (see Section 3.4). A breadth-first traversal essentially trades
spacefor time. Wewould like to point out that our algorithm can poten-
tially generate an exponential number of topologies and wiresizing so-
lutions. However, for interconnect optimization problemsin practice,
most nets have no more than 10 sinks, So the run-time and space re-
quirement of our algorithm are not a problem. For very large nets, our
algorithm can selectively store a subset of topologies and their wire-
sizing solutions for runtime and memory efficiency. Moreover, since
these topologies share many sub-topologies, we develop a space effi-
cient reduced tree representation which supports sub-tree sharing in
different routing topologies. The reduced tree representation will be
presentedin Section 3.2.

Although the RAT S-tree algorithm follows the branch-and-bound
paradigm, we would like to point out that in general, it does not guar-
antee optimal RAT S-tree construction even under the pathlength for-
mulation for two reasons. First, an optimal RATS-tree may not lie on
the Hanan grid. An exampleof such aRAT S-tree can befound in [27].
Second, our algorithm may missthe optimal solutionsdueto thegreedy
nature of terminal merging. Nonetheless, if it is required that all the
sinks have a shortest path to the source, then our RAT S-tree algorithm
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Figure 2: (&) An interconnect with 8 nodes. (b) Reduced tree representations
for topologies T; and T} rooted at node 1 (filled circle) and 2 (empty circle) of
the sameinterconnectin (a), respectively. The shared nodes are shaded.

will alwaysreturn an optimal rectilinear Steiner arborescence.

3.2 Reduced Tree Representation

To achieve an efficient implementation, we introduce the notion of a
reduced tree representationto allow topologies to share common sub-
topologies. Thisis analogousto the concept of reducedorderedbinary
decision diagram (ROBDD) [28] that is commonly used in logic syn-
thesis.

Weillustrate the idea of a reduced tree representation in Figure 2.
Consider two topologies T, and T, that correspond to the same inter-
connect structure with 8 nodesin Figure 2(a). T, isrooted at node 1
and T} is rooted at node 2. Suppose we already have a reduced tree
representation of T; asshown by thefilled and shaded circles and solid
line edges in Figure 2(b). To avoid confusion, any new node created
for T to represent node i of the interconnect structure in Figure 2(a)
islabeledi’. Since T, sharesthe subtree Ts, and leaf nodes3 and 4 in
Ty, to create areduced tree representation of the topology T;, we only
need to create two additional nodes 2’ and 1’ (empty circlesin Figure
2(b)) to represent T, completely.

Sharingisallowed not just among re-rooted topol ogieswhich cover
the same set of nodes, as depicted in the above example. It isalso pos-
sible to share sub-topologiesin topologies that cover different sets of
nodes. This, again, is analogousto multi-root ROBDD’s for multiple-
output functionswhereinstead of keeping onedistinct ROBDD for each
output function, different outputs share common structures (co-factors)
inthe ROBDDs. Notethat atopology can be uniquely identified by the
root node and the child topologies of theroot note. In our implementa-
tion, we keep each topology in a hash table so that each topology will
be created only once.

3.3 Rerooting of Topology

Now, we present alinear time algorithm to re-root atopology T, rooted
at noder. Let Ty, denote the sub-tree rooted at nodew in T;. Let the k
children of r beu; fori=1---k. Supposewe want to re-root T; at one
of the child nodes, say u; where 1 < j < k. Let TL’Ji denote the new
topology. Let T, be the sub-tree rooted at node w in TL’“. Re-rooting
of Ty at nodeu; effectively swapsthe parent-child relationship of r and
Uj. The parent-child relationships of other nodes are not affected. For
example, in Figure 2 where T; is being re-rooted at node 2, only two
changes are required to reflect the re-rooting operation. First, node 1
becomes a child node of node 2 in T;, and nodes 3 and 4 which are
child nodesof 2 in Ty remain as children of node 2 after the re-rooting
operation. Moreover, while the child nodesof 1in T; are nodes5 and
2, node 5 isthe only child node of node 1 in T, after re-rooting.

We note that the original topology can be re-rooted at all nodesin
the topology by asimple depth-first traversal. Using the tree T, in the



preceding discussion as an example, where u; is the next node in the
traversal order, wefirst create T;, which takestime linear to the degree
of Tr. T/ differs from T, in that it doesnot contain Ty, asits child topol-
ogy. Next, we create T’i , Which again takes time linear to the degree
of Ty,. Ty, differs from Ty, in that it contains T/. Only two additional

nodesand O(k) edges are created where k is the maximum degree of a
node in thetopology. This processis repeated for al child nodesof T,
in the depth-first traversal. Therefore, the total time complexity to re-
root antopology with g grid pointsinitisO(g-k). Sinceweare dealing
with planar single-layer Manhattan routing, the degree of each node
is bounded by 4. We can conclude that it takes linear time to re-root
atopology. Moreover, instead of requiring O(g?) nodes and edgesto
represent all possible re-rooted topologies under an explicit represen-
tation, a reduced tree representation can represent all re-rooted topolo-
gies using only O(g) nodesand edges.

3.4 Wiresizing Optimization

From the above description of the re-rooting operation, the basic oper-
ations to create re-rooted topologies are still growing and merging of
subtreesin a bottom-up manner (albeit a top-down depth-first traver-
sal). Therefore, it is natural to incorporate bottom-up wiresizing opti-
mization into the algorithm asin [9, 8]. Notethat it is easy to extend it
to consider buffer insertion aswell for 1C designs.

Basically, given asubtree with aset of | wiresizing configurations.
When we grow asubtree, we consider agiven set of |W| candidatewire
widths for the new root edge e, resulting in | x |W| combinations of
wire width assignmentsfor Te, the new subtree tree rooted at e. Simi-
larly, merging of two subtrees with | and J wiresizing configurations,
respectively, producesatotal of | x J possible wire width assignments
for the new subtree.

Clearly, suchan approach generatesan exponential number of wire-
sizing configuration. Similar to the previous bottom-up wiresizing al-
gorithms 6, 8], we perform pruning of wiresizing solutions of atopol-
ogy T. Each wiresizing solution W of T is associated with a triple
(Cap(T,W),Sack(T,W),3Q(T,W)), where Cap(T,W) is the total
capacitance, Sack(T,W) = minget(d — trw () with tr\y () be-
ing the two-pole sink delay of 5 in T (Section 2), and SQ(T,W) is
the signal quality of the topology and wiresizing solution defined as
follows: Recall that A; = 4m? — 3(m!)? is a measure of the degree of
damping for sink 5. If Aj > 0, 5 isoverdamped. If A; < 0, 5 isunder-
damped. Otherwise, 5 iscritically damped. We proposeto measurethe
signal quality of atree T with wiresizing solution W by SQ(T,W) =
ming T Aj. In other words, the signal quality is measured by the worst
signal response waveform among all sinks.

Giventwo wiresizing solutionsW and W' for T, we say that W' is
redundantif Cap(T,W) < Cap(T,W’), Sack(T,W) > Sack(T,W'),
T, W) > Q(T,W'), and at least one of the three inequalities is
astrict inequality. Note that the pruning criterion is similar to that in
[6, 8] if we do not consider SQ(T,W ). The basic idea of our pruning
criterion isasfollows: with other attributes such astheCap’sand SQ's
being identical, we would prefer a solution with alarger Sack in order
to reduce the possibility of constructing an infeasible topology (with
negative Sack). Similarly, with Cap’sand Sack’sbeing identical, we
would always pick the solution with a better signal quality, i.e., larger
N. Finally, we would always choose a solution with a smaller Cap if
other attributes of the two solutions are identical. Essentially, we are
trading-off total capacitancefor timing slack or signal quality and vice
versa.

We pruneall redundant wiresizing solutionsfrom the solution space.

To perform such a pruning, we have to compute the higher order mo-
ments and evaluate the sink delays and signal quality for each wiresiz-
ing solution. We present an incremental bottom-up moment computa-
tion algorithm in the following.

3.5 Incremental Bottom-Up Moment Computation

Moments can be computed by the polynomial-time algorithmsin [20,
21]. However, these works compute moments by traversing the entire
treeiteratively, and do not allow incremental computation of moments.
As the topology changes, another round of iterative tree traversals is
needed to re-compute the moments. Even when we restrict the topol-
ogy changeto asimple addition of an RLC segment to the root of the
original tree, whichisthebasisof our bottom-up topology construction
algorithm, momentscannot beincrementally updatedwith the previous
methods. Therefore, these previous approachesare not suitable for our
RAT S-tree algorithm. A method to incrementally compute moment in
a bottom-up fashion for RC interconnects was recently presented in
[10]. However, it did not consider the inductance effect. In the fol-
lowing, we generalize the algorithm to handle moment computation of
aRLC tree.

Consider an RLC tree Ty rooted by node v. For any nodew in Ty,
let miy be the p-th moment of nodew and C} = 5 jer, m?-Cj bethe
total p-th order moment weighted capacitance of Ty, [20] where C; is
the capacitanceconnectedto node j. Now, we add anew edgeuv at the
root of Ty to obtain anew tree T, rooted at u. Let C?W be the new total
p-th order moment weighted capacitancesof Ty, for win T,. Similarly,
let MY be the new p-th moment of node w in T,. Let Ry, Ly, and Cy
be the total resistance, inductance, and capacitance of the edge uv, re-
spectively. The following theorem illustrates how we can expressmmb,
for p> 0in terms of M) and m{}, for q=0--- p.

Theorem 1 For root node u,

_ 0 ifp=-1lorp>0
p_
m“_{l if p=0. @
For p> 0,
~p—1 1 Pl o1
ot - w4+ y M 5)
q=0
m = RCY - LCY? ®)
p
m'/)v = Zm'/)_qmc/‘vVWE Ty (7)

The proof of the theorem is left out due to space limitation. The
reader may refer to [27] for details. The theorem implies that if we
keep C'TV fori =0--- p— 1, we can compute up to the p-th order the

new moments for v by computing C'T:l followed by M, fori =0---p
by Egns. (5) and (6). Then, we can updatethe momentsof all the sinks
in the topology by Egn. (7). From the abovetheorem, we can state the
following corollary which allows usto incrementally update sink mo-
ments during the merging operation and compute the total p-th order
moment weighted capacitance at the new root u:

Corollary 1 Consider k topologies, denoted Ty, for i = 1---k. If thek
topologies are merged at a new node u, thenfor p> Oandi=1---Kk,

then C%_l, m} and My ¥ w € T, can be computed by Eqns. (5-7),
respectively. Let ¢ bethe sink capacitanceat theroot nodeu, i.e., ¢ =
Oifuisnotasink. For p> 0,

k

CR' = mii+ 5 R ®)
i=

From Theorem 1 and Corollary 1, thetime complexity to updatethe

moments of n sinksin atreeisO(n- p2). The auxiliary space require-

ment is O(p). On the other hand, the time complexity of the method

proposed by [20] isO(g- p) wheregisthetotal number of grid nodesin



the tree and the auxiliary spacerequirement isO(g). Sinceour RATS-
tree 2algorithm is based on the Hanan-grid, g could be in the order of
O(n<).

We can integrate the incremental bottom-up moment computation
algorithm with our RAT S-tree algorithm easily. For eachtopology con-
structed by our algorithm, we keep a set of irredundant wiresizing solu-
tions and their corresponding sink moments (up to a pre-specified p-th
order) for thetopology. Notethat all theseare stored in thereduced tree
representation. Aswe grow atopology along the path of Hanan grid
points towards the new root in the merge operation, we compute the
length of each new edge and for each candidate wire width of the new
edge, derive the interconnect resistance, inductance and capacitance.
These RLC parasitics are used to update the moments of the sinks us-
ing Theorem 1. We then use Corollary 1 to compute the weighted ca-
pacitances at the new root. The RATS-tree algorithm then prunes the
wiresizing solutions of the newly created topology.

3.6 Further Pruning of Solution Space

Removal of redundant wiresizing solutions from a topology is not the
only pruning technique employed by the RAT S-tree algorithm. We ap-
ply several other techniquesto prunethe B& B search tree. For exam-
ple, with aclever arrangement of thetreerootsin T , it ispossibletofind
the new Steiner merging point mand R- (m) in O(n) time and partially
avoid generation of non-planar routings during the merging operation
(see[17] for details.)

Dueto the re-rooting operation, however, it is possiblethat we may
create many sibling B& B nodes which will generate non-planar rout-
ingsin subsequent merging operations. Whilewe canpruneaway B& B
nodes that contain non-planar routings, a better approach is to avoid
creating them as much as possible. We introduce the visible set of a
RATS-tree, which is a subset of the Hanan grid points in the RATS-
tree defined asfollows:

A node p dominates g, denoted g < pif and only if {p,q) = q and
p # . Node p x-dominates g, denoted q <x p, if g < pand py = qy.
GivenaRATStree T, p € T isx-visibleif it does not x-dominates any
nodein T. We define the y-dominance relation and y-visibility simi-
larly. A node p isvisibleif it is either x-visible or y-visible. In Fig-
ure 2(a), for example, except for nodes 3 and 7, the rest of the nodes
are visible. We can show that if we order the x-visible nodes by their
y-coordinates, then the merging operations can generate the x-visible
nodesof the new topology from the x-visible nodes of its child topolo-
giesin linear time. Similarly, the y-visible nodes can be computed in
linear time. We do not re-root at all Hanan grid points in the tree but
only at the visible nodes, i.e., grid pointsin the visible set.

Another pruning technique that we employ is to prune wiresizing
solutions among different topologies. We say that two RATS-trees T
and T’ share the same alias if they are rooted at the same node and
cover the same set of sinks. Consider wiresizing solutionsW of T and
W' of T where T and T’ share the same alias, we say that W' isre-
dundantif Cap(T,W) < Cap(T’',W'), Sack(T,W) > Sack(T',W’),
T, W) > Q(T',W"'), and at least one of thethreeinequalitiesisa
strict inequality. A RATS-treeisredundant if all of itswiresizing solu-
tions are redundant with respect to the wiresizing solutions of topolo-
gies with the same alias.

We use a hash table to store aliases. For each dliasin the table, we
maintain a set of irredundant wiresized RAT S-trees. For each RATS-
tree generated (whether by merging or re-rooting operation), our algo-
rithm updates the set of irredundant wiresized RAT S-trees that share
the same alias as the newly generated RAT S-tree. All B& B nodesthat
are associated with redundant RAT S-trees are pruned.

3.7 Summary

The RATS-tree can be generalized by the following re-definitions to
handle the case where the sinks are not restricted to the first quadrant,
and the sourceis not located at the origin. Given two distinct points p

RAT Stree Algorithm
BEB-Guewe — {(({oF, {51, (52, (7))
while B&B-Queue not empty do
(T,K) — Remove-Head-of-Queue (B&B-Queue)
if all RATS-trees in T irredundantthen
(m,my, Mg, Merger-Type) — Find-Merging-Point ((T,K))
if Merger-Type = TERMINAL-MERGING then
(T',K') —(Terminal-Merge(m,T),/m|)
else
/* STEINER-MERGING */
(T',K') —(Steiner-Merge(m my,mg, T),m|)
/* SKIP STEINER-MERGING */
Ke—|m|
Append (T,K) to B&B-Queue
end if
New-B&B-Set — Re-root((T',K')) +(T',K')
Append all B&B nodes in New-B&B-Set to B&B-Queue
end if
end while

Figure 3: Qutline of the RATS-tree algorithm.

and g, wedefinethe Steiner merging point (p, d) to be (med(Xs,, Xp, Xg)
med(Ys,,Yp, Yq) ) Wwheremed() returnsthe median of three numbers. We
say that g < pif and only if (p,q) = gand p # g. |m| = d(so,m) is
the Manhattan distance between sy and m. Lastly, the visible nodes
of atopology are ordered and kept in their respective quadrants with
respect to the source to facilitate computation of the visible nodes of
parent topologies.

To summarize, we use a queue to implement breadth-first traversal
of the B&B search tree. At the beginning of the algorithm, the queue
containsaB& B nodewith a peer topology set T containing all single-
terminal subtrees and a scan level K = «. We use the pair (T ,K) to
denote a B& B node. Until the queueis empty, the algorithm iterates
the expansion of a B& B node removed from the head of the queue by
either performing a terminal/Steiner merging operation, or skipping a
Steiner merging operation. In the case of subtree merging, the resul-
tant topology is re-rooted to generate sibling B&B nodes. All newly
generated B& B nodes are appended to the end of the queue. A brief
outline of our RATS-tree algorithm is givenin Figure 3.

The above summary assumes no pruning of the B& B search tree.
To consider such pruning, two simple modifications are made to the
agorithm. A B&B node with (T ,K) is only expanded if all partial
RATStreesin T areirredundant. After each partial RAT S-treeis con-
structed (by either merging or re-rooting operation), theirredundant list
of RATS-treeswith the same alias asthe newly created topology is up-
dated.

4 Experimental results

We have implemented the RAT S-tree algorithm in C++ language and
evaluatedthe algorithm for MCM designs. We userandomly generated
netlists with 6 to 12 terminals on a 10cm x 10cm MCM substrate. In
thefirst set of experiments, we run the RAT S-tree algorithm under the
pathlength formulation to investigate the trade-off between the path-
length and the routing cost of the topologies generated. Ten random
n-pin netsare generated for each n ranging from 6 to 12. For eachrout-
ing instance, we consider four different arrival time (or pathlength) re-
quirements, namely ¢; = k x d(sp,s;), wherek = {1,1.2,1.5,2} for
sinkss’s. Notethat whenk = 1, it isknown asthe shortest path Steiner
routing.

Table 1 showsthetrade-off between the pathlength requirement and
routing cost. We normalize the length of each resultant topology with
respect to that of the shortest path routing. Therefore, we do not show
the routing length when k = 1. The columns labeled “CPU” give the
worst-case CPU seconds incurred among the ten nets for each n and



Table 2: Trade-off among maximum sink delay, signal settling time, voltage
overshoot, and routing cost for asmall k = 2.

k. In general, the average CPU time is much lower. For example, the
average CPU time for 12-pin net isonly 22 secondswhereasthe worst-
case CPU timeis 152 seconds. While the averagegain in terms of total
routing length is a modest 5% when we relaxed k from 1 to 2, in some
instances, the gain could be ashigh as 15%. Such high gainsin general
occur morefrequently inlarger netsthanin smaller nets. Moreover, the
shortest path routings generated by our algorithmis optimal in terms of
wirelength, and therefore, it ismore difficult to achievemuchreduction
in wirelength.

Inthe second set of experiments, we apply the RAT S-treealgorithm
without consideration of wiresizing under the two-pole model. The
purposeof thisexperiment is to investigate the impact of routing topol-
ogy on signal delay and integrity. The interconnect parameters that
are used by our algorithms for moment, delay, and signal quality com-
putations are obtained from the Micro Module System (MMS) D500
process on Aluminum offered through MIDAS. Assuming a nominal
width of 19um, theinterconnect resistance, inductance, and capacitance
are236.84Q/m, 301.49nH /m, and 128.99pF /m, respectively. Theload
capacitanceof each sink isassumedto be 1 pF, andthe driver resistance
rangesfrom 10Q to 30Q, depending on the size of the net and the prox-
imity of the terminals.

For each net, we set the required arrival time of sink s to be k x
v/LCd(sp,s) where k > 1. Note that k is larger than 1 in order to ac-
count for the rise/fall delay. For each net, our algorithm constructs a
large class of topologies satisfying the delay requirements. We then
run SPICE simulations using the transmission line model to evaluate
the sink delay and measure signal integrity in terms of the signal set-
tling time and voltage overshoot of these constructed topologies. We
measurethe signal delay at the 90% Vg (assuming arising signal) and
the signal settling time is the time taken for the signal to settle above
the 90% Vyq. In general, the large class of topologies generated by our
algorithm is able to provide a trade-off among maximum sink delay,
signal settling time, voltage overshoot, and routing cost.

For example, Table 2 shows the maximum delays, signal settling
times, voltage overshoots, and routing costs for the topologies gener-
ated by our RAT S-tree algorithm for one of the randomly generated 9-
pin nets. Both the delay and settling time of each topology are in ns,
and the total wire capacitanceisin pF. The voltage overshoot is nor-
malized with respecttoVyg. Inthisexample, dueto asmall k of 2, most
of the RATS-trees generated are shortest-path Steiner tree. Aswe can
see from Figure 4, except for RAT S5, the topologies RATS1—4 are all
shortest-path Steiner tree. Infact, RAT Slisan optimal Steiner arbores-
cence. While it is the best in terms of maximum delay, its total wire

k=1 k=12 k=15 k=2 Max-delay | Settling Time | Overshoot | Wire Cap.
n [ CPU | Length | CPU | Length | CPU | Length | CPU Topology (ns) (ns) (pF)
6 0.3 | 0.996 0.3 | 0.987 03| 00984 0.3 RATS6 2.65 0.00 0.09 29.9
7 0.9 1.000 0.9 | 0.996 0.9 | 0.982 0.9 RATS7 2.39 0.58 0.15 30.5
8 0.8 | 0.989 0.9 | 0973 0.9 | 0.963 0.9 (@ k=3
9 43 | 0.991 4.7 | 0976 42 | 0973 4.3 Max-delay | Settling Time | Overshoot | Wire Cap.
10 87| 0972 88 | 0.956 93| 0948 8.6 Topology (ns) (ns) (pF)
11| 374 | 09838 | 47.7| 0971 | 404 | 0951 | 36.3 RATS3 284 0.00 0.12 26.7
12 96 | 0978 | 1522 | 00958 | 145.0 | 0.942 | 125.0 RATS9 281 0.00 0.11 274
Table 1: Pathlength requirement and routing cost trade-off. k=6
Table 3: Trade-off among maximum sink delay, signal integrity, and routing
Max-delay | Settling Time | Overshoot | Wire Cap. cost for the case where (a) k = 3and (b) k = 6.
Topology (ns) (ns) (PF)
RATS1L 215 0.83 0.10 334
RATS2 2.28 0.76 0.07 38.3 T
RATS3 2.26 0.00 0.04 37.7 —
RATSA 224 0.71 0.06 35.7
RATSH 2.18 0.82 0.10 31.9 »_T;

Lource

(a) RATSS

source

(b) RATS3

Figure 5: An example of the topologies generated by the RAT S-tree algorithm
for a9-pin net for (@) k= 3 and (b) k = 6.

capacitance, settling time, and voltage overshoot are not necessary the
smallest.

Table 3(a) and (b) show the routing solutions (for the same net asin
Table 2) for the casewhere werelax k to 3 and 6, respectively. Figure5
shows an example of the topologiesgenerated for each k. Note that the
total wire capacitance of RATS10 is 20% smaller than that of RATSL.
Due to space constraintsin the paper, we only show the simulation re-
sults of asubset of the topologies generated by our algorithm in Table
3. Intotal, 16, and 20 topologies are generated for the two different
k’s, respectively. Note that if we do not consider pruning, the numbers
could be much larger. There are also overlaps between the three sets
of topologies.

In thefinal set of experiments, we apply the RAT S-tree algorithm
with wiresizing under the two-pole model to investigate the impact of
wiresizing on signal delay and signal integrity. In addition to the nom-
inal width of 19um, we allow four other different wire widths {39um,
59um, 79um, 99um;} for the interconnect. The interconnect parame-
ters for the four additional wire widths are given in Table 4. In this
experiment, the RAT S-tree algorithm produces a much larger number
of solutions when compared to the previous two experiments. For in-
stance, there are a total of 123 wiresized solutions generated for the
above 9-pin sample net. The run-times also increase significantly due
to thewiresizing optimization. For example, if wekeepall theirredun-
dant wiresizing solutions for each irredundant topologies generated in
the algorithm, the average run-times for 6-pin, 9-pin, and 12-pin nets
are 5 seconds, 341 seconds, and 12,702 seconds, respectively.

However, we observe that a majority of the irredundant wiresiz-
ing solutions of a topology are very similar to each other in terms of
Cap(T,W), Sack(T,W), and SQ(T, W ). Therefore, we adopt amore
aggressive pruning approachwherewe keep only auser-specified num-
ber, say 1, of irredundant wiresizing solutionsfor eachtopology. Inthis
approach, we first apply the pruning technique outlined in Section 3.4.
If the number of irredundant wiresizing solutionsis greater than |, then
we alwayskeepthe wiresizing solutionsthat correspond to the smallest
Cap(T,W), largest Sack(T, W), and largest SQ(T, W ). We select the
rest of the solutionsuniformly by their ordering based onCap(T,W)'s.
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source
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Figure 4: Topologies generated by the RATS-tree algorithm for a 9-pin net for asmall k = 2.

(a) RATSL (b) RATS2

3%um | 59%um | 79um | 99um

R(Q/m) | 11538 | 76.27 | 59.96 | 45.45

L (nH/m) | 205.88 | 157.82 | 128.50 | 108.62

C(pF/m) | 188.89 | 246.42 | 302.64 | 358.03

Table4: MM S interconnect parameters.
Max-delay | Settling Time | Overshoot | Wire Cap.

Topology (ns) (ns) (pF)
RATSL.a 1.82 0.77 0.08 37.6
RATS1.b 2.18 0.85 0.04 44.8
RATS2.a 2.64 0.92 0.04 57.9
RATS3.a 219 0.69 0.03 44.2
RATS3.b 2.64 0.00 0.01 56.0
RATSI10.a 271 0.00 0.00 64.3

Table 5: Impact of wiresizing on signal delay and integrity.

Using this approach, we are able to cut down the run-time significantly
while maintaining high solution quality. For example, the averagerun-
times for 6-pin, 9-pin, and 12-pin nets are reduced to 4 seconds, 72
seconds, and 604 seconds, respectively when we set | to 15. Note that
therun-times for the RAT S-tree algorithm in the first two experiments
aresimilar. While the run-times of the RAT S-tree algorithm may com-
pare unfavorably with those of algorithmsin [9, 8] which also consider
wiresizing with topology construction, the higher computational com-
plexity is dueto its ability to handle alarge class of topologies.

Again, we use the same 9-pin net in the above discussion to illus-
trate the impact of wiresizing. In general, we observe that most of the
topologiesthat resemble shortest-path Steiner tree more havemore wire-
sizing solutions. For example, topologies such as RAT S1-5 have more
wiresizing solutions than RATS6-9. We also observe that most of the
wiresizing solutionsaremonotone, i.e., thewidths decreasefrom source
to sinks. Note that these solutions are obtained by the RAT S-tree algo-
rithm with aggressive pruning of wiresizing solutions. Table 4 shows
the impact of wiresizing on RATSL1-3 and a hew shortest-path Steiner
tree, denoted RATS10. We use RATSj.a and RATS;.b to refer to two
different wiresizing solutions of RATSj. From thetable, we seethat it
is possible to improve both max-delay and voltage overshoot simulta-
neously by wiresizing (RATSL.aand RATS3.a). On the other hand, we
can also use wiresizing to minimize voltage overshoot at the expense
of signal delay. In @l cases, the total wire capacitanceincreases.

5 Concluding Remarks

To summarize, thispaper describesa RAT S-tree construction algorithm
under a higher-order RLC interconnect model. Our algorithm consid-
erstheimpact of routing on sighal delaysand responsewaveforms, and
returns not one, but aset of appropriately wiresized routing topologies.
Our agorithm optimizes signal waveform, not just delay, and due to
its capability to handlealarge class of topologies, provides a trade-off
among routing cost, signal delay, and signal integrity. Inthealgorithm,
weintroduce a space-€ffi cient reduced tree representation to capture all

topologiesand wiresizing sol utions constructed during the execution of
our algorithm. We also present anew algorithm to incrementally com-
pute moments of sinksin a bottom-up manner.

Currently, we are working towards improving the run-time of the
algorithm. Besidesthe simple yet effective pruning technique that we
outlined in Section 4, we are investigating the effectiveness of other
pruning techniquesto reduce run-time while maintaining high solution
quality. For example, we can perform pruning using bin sorting based
onCap(T, W), and keep only arepresentativewiresizing solutionfrom
each bin. Furthermore, we observethat the re-rooting operation gener-
ates many child B&B nodes. By limiting the number of re-rooting al-
lowed along any branch of the B& B searchtree, it is possibleto reduce
the run-time without any solution quality degradation. We are also fo-
cusing our efforts on generalizing the RAT S-tree algorithm for gen-
eral graph routing, which would enable usto handlemulti-layer routing
more effectively.
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