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Abstract
In this paper, we study the interconnect layout optimization problem
under a higher-order RLC model to optimize not just delay, but also
waveform for RLC circuits with non-monotone signal response. We
propose a unified approach that considers topology optimization, wire-
sizing optimization, and waveform optimization simultaneously. Our
algorithm considers a large class of routing topologies, ranging from
shortest-path Steiner trees to bounded-radius Steiner trees and Steiner
routings. We construct a set of required-arrival-time Steiner trees or
RATS-trees, providing a smooth trade-off among signal delay, wave-
form, and routing area. Using a new incremental moment computation
algorithm, we interleave topology construction with moment compu-
tation to facilitate accurate delay calculation and evaluation of wave-
form quality. Experimental results show that our algorithm is able to
construct a set of topologies providing a smooth trade-off among signal
delay, signal settling time, voltage overshoot, and routing cost.

1 Introduction
As VLSI circuitry reaches deep submicron device dimension, operates
at giga-Hertz clock frequencies, and is packaged in highly integrated
multichip modules, the performance of interconnect structures has be-
come the dominating factor in determining system performance. Re-
cent studies show that interconnect delay can be reduced by intercon-
nect topology optimization, wiresizing optimization, and/or buffer op-
timization. A comprehensive survey of these optimization techniques
can be found in [1]. In this paper, we study the interconnect layout op-
timization problem under a higher-order RLC model. Our objective
is to perform topology and wiresizing optimization for performance
and signal integrity under a higher-order moment-based interconnect
model. It has the following advantages:

(1) Most of the previous works on interconnect optimization were
achieved under RC interconnect models only, including recent stud-
ies on topology optimization [2, 3], wiresizing optimization [4, 5, 6,
7], as well as the most recent works that combined topology construc-
tion with buffer insertion and/or wiresizing [8, 9, 10]. They did not
consider the inductance effect, which may be an important factor in
high-speed MCM/PCB designs and high frequency deep sub-micron
designs. In this study, we overcome this shortcoming by considering a
higher-order moment-based RLC interconnect model in the optimiza-
tion process. We also present a new algorithm to incrementally com-
pute moments of sinks in an RLC tree in a bottom-up manner.

(2) A few approacheshave proposed to use higher-order RLC mod-
els for topology optimization [11, 12], wiresizing optimization [13],
and termination optimization [14, 15, 16]. But none of them can con-
sider all three optimization simultaneously for both delay and signal in-
tegrity optimization. Our optimization algorithm takes a more global
approach; it considerswiresizing during routing topology construction,
optimizes for both signal delays and response waveforms, and returns
a set of routing topologies with appropriate wire width assignments.

(3) Our method is capable of constructing a large class of routing
topologies, ranging from shortest-path Steiner trees to bounded-radius
Steiner trees and Steiner routings. All of the previous topology con-
struction algorithms are limited to a single class of routing topology.
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For example, the A-tree algorithm consideredshortest-path Steiner trees
only [2], and the set of topologies generated by the P-tree algorithm [9]
is restricted to a permutation-induced abstract topology pre-determined
by a Traveling Salesman heuristic. By considering a large class of rout-
ing topologies, our algorithm is able to produce a set of topologies with
a smooth trade-off among signal delay, waveform, and routing area.

In order to optimize signal delay, waveform, and wiring area, we
construct a set of required-arrival-time Steiner trees (RATS-trees) by
recursively merging subtrees in a bottom-up fashion. Using this bottom-
up tree construction, we can easily compute sink moments in an incre-
mental manner. For each subset of sinks, we maintain a set of topolo-
gies which correspond to a trade-off among routing costs, time domain
waveforms, and signal delays. Moreover, we also consider intercon-
nect sizing (and possibly, buffer insertion) in the subtree merging pro-
cess. At the end of the bottom-up process, the designer would have a
set of solutions to choosefrom. In this paper, we also introduce a space-
efficient reducedtree representation to capture all wiresized topologies
constructed during the execution of our algorithm.

The rest of the paper is organized as follows: Section 2 formulates
the interconnect layout optimization problem that we aim to solve. In
Section 3, we present the RATS-tree algorithm in detail, including the
reduced tree representation and the incremental bottom-up momentcom-
putation algorithm. We present the experimental results in Section 4
and conclude the paper in Section 5.

2 Problem Formulation
Given a net of pins or terminals fs0;s1;s2; � � � ;sng to be electrically
connected, we assume that s0 denotes the source (or driver) of the net
and the rest of the pins are sinks (or receivers). In this paper, we are
interested in interconnect trees We use PT (u;v) to denote the unique
path from u to v in an interconnect tree T , dT(u;v) the pathlength of
PT (u;v), and d(u;v) the Manhattan distance between u and v. We de-
note the signal delay from u to v by tT (u;v). The source node s0 will
generally be referred to as the root of an interconnect tree, and each
node v in the tree is connected to its parent by edge ev. We use Tv to
denote the subtree that is rooted at v. Given an edge e, we use Te to
denote the subtree with e being its root edge. l(e) denotes the length of
e.

Let qi be the required arrival time of sink si. A minimal required-
arrival-time Steiner tree (RATS-tree) is a minimum-cost Steiner tree
such that qi � tT (s0;si) for all sinks. RATS-trees include several com-
monly used topologies when we use the pathlength delay formulation
with tT (u;v) = dT (u;v). For example, by setting qi = d(s0;si) for all
sinks, an optimal RATS-tree is an optimal Steiner arborescence [17].
If we relax the requirement such that all sinks have the same required
arrival time, then an optimal RATS-tree is an optimal bounded-radius
Steiner tree [18]. Lastly, an optimal RATS-tree with unbounded qi’s is
an optimal Steiner tree [19].

The pathlength formulation captures the delay for unloaded loss-
less transmission lines in MCM/PCB designs perfectly. In this case,
the output response is a replica of the input signal delayed by the time-
of-flight (or propagation delay) t f =

p
LCl where L and C are the unit-

length interconnect inductance and capacitance, respectively, and l is
the length of the interconnect. In general, it is assumed that

p
LC is

a constant unchanged by wiresizing. Therefore, the time-of-flight (or
propagation delay) on the path from the source to sink si is t f (s0;si) =



∑ev2PT (s0 ;si)

p
LCl(ev), which is proportional to the pathlength dT (s0;si).

A more general formulation is to model MCM/PCB and IC inter-
connect structures as lossy transmission lines. Under this formulation,
the delay at each sink is the sum of the propagation delay and the ris-
ing/falling (or transition) delay of the signal response waveform [13].
The transition delay can be estimated by a higher-order moment-based
delay model as follows: Let hi(t) be the impulse response at a node of
interest, say sink si, in an interconnect. Let vin(t) be the input voltage
of the linear circuit, vi(t) be the output voltage of sink si in the circuit,
Vin(s) and Vi(s) be the Laplace transform of vin(t) and vi(t), respec-
tively. Then, Hi(s) = Vi(s)=Vin(s) is the transfer function, which can
be written as:

Hi(s) =
Z ∞

0
hi(t)e

�stdt =
∞

∑
j=0

(�1) j

j!
s j
Z ∞

0
t jhi(t)dt

=
∞

∑
j=0

(�1) j �mj
i � s j : (1)

where mj
i is the j-th moment of the transfer function.

Moments of an RLC interconnect can be computed by the methods
proposed in [20, 21]. From the first 2q�1 moments, one can construct
a q-pole transfer function Ĥi(s) to approximate the actual transfer func-
tion Hi(s) as follows:

Ĥi(s)=
q

∑
j=1

k j

s� p j
; (2)

where p j’s are poles and k j’s are residues, all of which can be deter-
mined uniquely by matching the initial boundary conditions, denoted
m�1

i , and the first 2q� 1 moments mj
i of Hi(s) to those of Ĥi(s) [22].

The choice of order q depends on the accuracy required but is always
much less than the order of the circuit. In practice, q � 5 is commonly
used. When q is chosen to be two, it is known as the two-pole model
[23, 11, 24]. From Ĥi(s), one can derive the approximated output volt-
age v̂i(t) and solve for the transition delay tx(i) of the output signal at si
to reach x% of VDD (assuming a rising output) for the first time. In this
paper, we use the two-pole delay model proposed in [24] to approxi-
mate the rise/fall delays of a signal as follows:

t90(i) =
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>>:
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(3)

Signal response waveform is another important factor in intercon-
nect design. Under the ideal situation, one would prefer the transmis-
sion of the input signal to the output not to be distorted. However, due
to impedance mismatch and reflection, ringing may occur at the output
node, resulting in excessive settling time and voltage overshoot or un-
dershoot, and adversely affecting the circuit performance. Similar to
[14, 15, 16], we propose to use moments as an indirect metric to mea-
sure signal quality.

For example, if we use the two-pole model to model the intercon-
nect, then ringing can be attributed to the existence of complex poles
in Ĥi(t). The condition for the poles to be complex (i.e., for the out-
put response to be non-monotonic, or underdamped) is for λi = 4m2

i �
3(m1

i )
2 to be negative. When λi is strictly positive, we have a over-

damped and monotone response. When λi is exactly zero, the signal is
said to be critically damped. On the other hand, an underdamped sig-
nal generally has a faster rise delay when compared to a damped sig-
nal. Other metrics that involved even higher order moments include
the third central moment proposed in [15]. With other attributes (such
as the signal delay and the wiring length) being the same, we would
prefer a RATS-tree with λi’s as close to zero as possible.

To summarize, we propose to solve the following problem:
Required-Arrival-Time Steiner Tree Routing: Given a set of termi-
nals si’s and required arrival times qi’s, construct a required-arrival-
time Steiner tree T such that qi � tT (s0;si), critical damping is achieved
for good signal quality (i.e., λi’s are as close to zero as possible), and
the total wirelength or wiring area is minimized.

3 RATS-Tree Algorithm
We construct required-arrival-time Steiner trees (RATS-trees) by re-
cursively merging subtrees in a bottom-up fashion. Using this bottom-
up tree construction, we can compute moments of sinks and consider
interconnect sizing and possibly buffer insertion in the subtree merging
process easily.

3.1 Overview of RATS-Tree Algorithm
In the following discussion, we assume that the source is at the origin
and the sinks are in the first quadrant. We generalize the algorithm to
handle the case where the terminals are at arbitrary locations in Section
3.7. Given a set of terminals, the RATS-Tree algorithm operates on a
Hanan grid [25] induced by the terminals. All Hanan grid points are
ordered according to their distance from the source, with arbitrary tie
breaking.

Let (xm;ym) denote the coordinates of grid point m, and jmj= xm+
ym. Given two distinct points p and q, we define the Steiner merging
point for p and q, denoted hp;qi, as the point with coordinates We say
that q is dominated by p, or q � p if and only if xq � xp, yq � yp, and
p 6= q.

In general, the RATS-Tree algorithm follows a branch-and-bound
paradigm, by considering merging and skipping (of merging) of sub-
trees at a Steiner merging point as introduced in [17], as well as re-
rooting of a subtree, a concept introduced in [26], at Hanan grid points.
Each node in the branch-and-bound (B&B) search tree is associated
with a peer topology set T which contains a forest of subtrees con-
structed so far and a scan level K = jmj where m is the Steiner merging
point last considered in the subtree merging process. Not to be con-
fused with a node in a constructed topology, we refer to a node in the
B&B search tree as a B&B node.

Starting with a B&B node where the peer topology set contains all
single-terminal trees and the scan level K =∞, we expand a B&B node
characterized by (T ;K) by considering a new Steiner merging point m
with the highest order among all Steiner merging points of tree roots
in T such that jmj< K. If the new Steiner merging point is a terminal,
then such a merging is called a terminal merging. Otherwise, it is called
a Steiner merging. These operations are similar to those in [17].

Let P�(m) = fpjm � p;Tp 2 T g denote the set of tree roots in T
that dominates m. Both terminal and Steiner merging connect from m
to each node p in P�(m) and eliminate Tp from T . We make a shortest
path connection between m and p by growing Tp along the Hanan grid
points from p to m in a bottom-up fashion. A new subtree Tm is added
to T and K is updated to jmj. Note that when xm 6= xp and ym 6= yp,
there are several shortest Manhattan paths from m to p. We consider
only the two shortest Manhattan paths that correspond to the boundary
of the smallest bounding box containing m and p.

As in the branch-and-bound-based minimum rectilinear Steiner ar-
borescence (MRSA) algorithms in [17], we also consider skipping a
Steiner merging. In this case, while K is updated to jmj, we keep T
unchanged. Therefore, skipping a Steiner merging operation generates
an additional child B&B node in the B&B search tree.

Both terminal merging and Steiner merging considermerging at the
roots of sub-trees only, thereby producing shortest path trees only. In
order to consider a large class of routing solutions, we allow merging
at non-root nodes of the sub-trees. We achieve non-root merging by
re-rooting. After each terminal merging or Steiner merging, the resul-
tant topology T is re-rooted at various Hanan grid points in T , creat-
ing several topologies that consist of the same nodes and edges in T ,
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Figure 1: A snapshot of the B&B search tree illustrating the RATS-algorithm
applied to a 5-terminal net.

but rooted at different nodes. These re-rooted topologies have identi-
cal routing structure, but different sink delays and signal waveforms.
Therefore, re-rooting creates several sibling B&B nodes for the newly
generated child B&B node.

Figure 1 shows a partial B&B search tree corresponding to the ap-
plication of the RATS-tree algorithm applied to a 5-terminal net. In the
B&B search tree, root nodes of the peer topology set are depicted by
empty circles, and non-root nodes by filled circles. For illustrative pur-
pose, the scan level K is shown as a dash line. Note that after the first
Steiner merging, the newly created subtree and its re-rooted topologies
include a new Hanan grid point.

From the above discussion, it is obvious that growing of a subtree
and its subsequent merger with sibling subtrees are bottom-up in na-
ture. As we shall see in Section 3.3, topologies are also re-rooted in
a bottom-up manner. It is therefore natural to incorporate bottom-up
wiresizing (and buffer insertion for IC designs)optimization as in [9, 8]
during the subtree merging and re-rooting process (see Section 3.4).
For an effective evaluation of different wiresizing solutions, as well as
topologies, we present in Section 3.5 an efficient incremental bottom-
up momentcomputation method to compute higher-order sink moments
for a more accurate delay computation and signal waveform evalua-
tion.

We explore the B&B search tree in a breadth-first traversal order.
In other words, nodes at the same level of the B&B search tree are
expanded first before any of their children are expanded. The reason
for the breadth-first expansion order is to facilitate as much pruning as
possible (see Section 3.4). A breadth-first traversal essentially trades
spacefor time. We would like to point out that our algorithm can poten-
tially generate an exponential number of topologies and wiresizing so-
lutions. However, for interconnect optimization problems in practice,
most nets have no more than 10 sinks, So the run-time and space re-
quirement of our algorithm are not a problem. For very large nets, our
algorithm can selectively store a subset of topologies and their wire-
sizing solutions for runtime and memory efficiency. Moreover, since
these topologies share many sub-topologies, we develop a space effi-
cient reduced tree representation which supports sub-tree sharing in
different routing topologies. The reduced tree representation will be
presented in Section 3.2.

Although the RATS-tree algorithm follows the branch-and-bound
paradigm, we would like to point out that in general, it does not guar-
antee optimal RATS-tree construction even under the pathlength for-
mulation for two reasons. First, an optimal RATS-tree may not lie on
the Hanan grid. An example of such a RATS-tree can be found in [27].
Second,our algorithm may miss the optimal solutions due to the greedy
nature of terminal merging. Nonetheless, if it is required that all the
sinks have a shortest path to the source, then our RATS-tree algorithm
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Figure 2: (a) An interconnect with 8 nodes. (b) Reduced tree representations
for topologies T1 and T 0

2 rooted at node 1 (filled circle) and 2 (empty circle) of
the same interconnect in (a), respectively. The shared nodes are shaded.

will always return an optimal rectilinear Steiner arborescence.

3.2 Reduced Tree Representation
To achieve an efficient implementation, we introduce the notion of a
reduced tree representation to allow topologies to share common sub-
topologies. This is analogous to the concept of reducedorderedbinary
decision diagram (ROBDD) [28] that is commonly used in logic syn-
thesis.

We illustrate the idea of a reduced tree representation in Figure 2.
Consider two topologies T1 and T 02 that correspond to the same inter-
connect structure with 8 nodes in Figure 2(a). T1 is rooted at node 1
and T 02 is rooted at node 2. Suppose we already have a reduced tree
representation of T1 as shown by the filled and shaded circles and solid
line edges in Figure 2(b). To avoid confusion, any new node created
for T 02 to represent node i of the interconnect structure in Figure 2(a)
is labeled i0 . Since T 02 shares the subtree T5, and leaf nodes 3 and 4 in
T1, to create a reduced tree representation of the topology T 02, we only
need to create two additional nodes 20 and 10 (empty circles in Figure
2(b)) to represent T 02 completely.

Sharing is allowed not just among re-rooted topologies which cover
the same set of nodes, as depicted in the above example. It is also pos-
sible to share sub-topologies in topologies that cover different sets of
nodes. This, again, is analogous to multi-root ROBDD’s for multiple-
output functions where instead of keeping one distinct ROBDD for each
output function, different outputs share common structures (co-factors)
in the ROBDDs. Note that a topology can be uniquely identified by the
root node and the child topologies of the root note. In our implementa-
tion, we keep each topology in a hash table so that each topology will
be created only once.

3.3 Re-rooting of Topology
Now, we present a linear time algorithm to re-root a topology Tr rooted
at node r. Let Tw denote the sub-tree rooted at node w in Tr. Let the k
children of r be ui for i= 1 � � � k. Suppose we want to re-root Tr at one
of the child nodes, say u j where 1 � j � k. Let T 0u j

denote the new
topology. Let T 0w be the sub-tree rooted at node w in T 0u j

. Re-rooting
of Tr at node u j effectively swaps the parent-child relationship of r and
u j . The parent-child relationships of other nodes are not affected. For
example, in Figure 2 where T1 is being re-rooted at node 2, only two
changes are required to reflect the re-rooting operation. First, node 1
becomes a child node of node 2 in T 02, and nodes 3 and 4 which are
child nodes of 2 in T1 remain as children of node 2 after the re-rooting
operation. Moreover, while the child nodes of 1 in T1 are nodes 5 and
2, node 5 is the only child node of node 1 in T 02 after re-rooting.

We note that the original topology can be re-rooted at all nodes in
the topology by a simple depth-first traversal. Using the tree Tr in the



preceding discussion as an example, where u j is the next node in the
traversal order, we first create T 0r , which takes time linear to the degree
of Tr. T 0r differs from Tr in that it does not contain Tu j as its child topol-
ogy. Next, we create T 0u j

, which again takes time linear to the degree
of Tu j . T 0u j

differs from Tu j in that it contains T 0r . Only two additional
nodes and O(k) edges are created where k is the maximum degree of a
node in the topology. This process is repeated for all child nodes of Tr
in the depth-first traversal. Therefore, the total time complexity to re-
root an topology with g grid points in it is O(g �k). Since we are dealing
with planar single-layer Manhattan routing, the degree of each node
is bounded by 4. We can conclude that it takes linear time to re-root
a topology. Moreover, instead of requiring O(g2) nodes and edges to
represent all possible re-rooted topologies under an explicit represen-
tation, a reduced tree representation can represent all re-rooted topolo-
gies using only O(g) nodes and edges.

3.4 Wiresizing Optimization

From the above description of the re-rooting operation, the basic oper-
ations to create re-rooted topologies are still growing and merging of
subtrees in a bottom-up manner (albeit a top-down depth-first traver-
sal). Therefore, it is natural to incorporate bottom-up wiresizing opti-
mization into the algorithm as in [9, 8]. Note that it is easy to extend it
to consider buffer insertion as well for IC designs.

Basically, given a subtree with a set of I wiresizing configurations.
When we grow a subtree, we consider a given set of jWj candidate wire
widths for the new root edge e, resulting in I � jWj combinations of
wire width assignments for Te, the new subtree tree rooted at e. Simi-
larly, merging of two subtrees with I and J wiresizing configurations,
respectively, produces a total of I� J possible wire width assignments
for the new subtree.

Clearly, suchan approachgeneratesan exponentialnumberof wire-
sizing configuration. Similar to the previous bottom-up wiresizing al-
gorithms [6, 8], we perform pruning of wiresizing solutions of a topol-
ogy T . Each wiresizing solution W of T is associated with a triple
(Cap(T;W );Slack(T;W);SQ(T;W )), where Cap(T;W ) is the total
capacitance, Slack(T;W ) = minsi2T (qi� tT;W (si)) with tT;W (si) be-
ing the two-pole sink delay of si in T (Section 2), and SQ(T;W ) is
the signal quality of the topology and wiresizing solution defined as
follows: Recall that λi = 4m2

i � 3(m1
i )

2 is a measure of the degree of
damping for sink si. If λi > 0, si is overdamped. If λi < 0, si is under-
damped. Otherwise, si is critically damped. We propose to measure the
signal quality of a tree T with wiresizing solution W by SQ(T;W ) =
minsi2T λi. In other words, the signal quality is measured by the worst
signal response waveform among all sinks.

Given two wiresizing solutions W and W 0 for T , we say that W 0 is
redundant ifCap(T;W )�Cap(T;W 0), Slack(T;W )� Slack(T;W 0),
SQ(T;W ) � SQ(T;W 0), and at least one of the three inequalities is
a strict inequality. Note that the pruning criterion is similar to that in
[6, 8] if we do not consider SQ(T;W ). The basic idea of our pruning
criterion is as follows: with other attributes such as the Cap’s and SQ’s
being identical, we would prefer a solution with a larger Slack in order
to reduce the possibility of constructing an infeasible topology (with
negative Slack). Similarly, with Cap’s and Slack’s being identical, we
would always pick the solution with a better signal quality, i.e., larger
SQ. Finally, we would always choose a solution with a smaller Cap if
other attributes of the two solutions are identical. Essentially, we are
trading-off total capacitance for timing slack or signal quality and vice
versa.

We prune all redundantwiresizing solutions from the solution space.
To perform such a pruning, we have to compute the higher order mo-
ments and evaluate the sink delays and signal quality for each wiresiz-
ing solution. We present an incremental bottom-up moment computa-
tion algorithm in the following.

3.5 Incremental Bottom-Up Moment Computation
Moments can be computed by the polynomial-time algorithms in [20,
21]. However, these works compute moments by traversing the entire
tree iteratively, and do not allow incremental computation of moments.
As the topology changes, another round of iterative tree traversals is
needed to re-compute the moments. Even when we restrict the topol-
ogy change to a simple addition of an RLC segment to the root of the
original tree, which is the basis of our bottom-up topology construction
algorithm, moments cannotbe incrementally updatedwith the previous
methods. Therefore, these previous approachesare not suitable for our
RATS-tree algorithm. A method to incrementally compute moment in
a bottom-up fashion for RC interconnects was recently presented in
[10]. However, it did not consider the inductance effect. In the fol-
lowing, we generalize the algorithm to handle moment computation of
a RLC tree.

Consider an RLC tree Tv rooted by node v. For any node w in Tv,
let mp

w be the p-th moment of node w and Cp
Tw
= ∑ j2Tw

mp
j �Cj be the

total p-th order moment weighted capacitance of Tw [20] where Cj is
the capacitance connected to node j. Now, we add a new edge uv at the
root of Tv to obtain a new tree Tu rooted at u. Let C

p
Tw

be the new total
p-th order moment weighted capacitances of Tw for w in Tu. Similarly,
let mp

w be the new p-th moment of node w in Tu. Let Rv, Lv, and Cv
be the total resistance, inductance, and capacitance of the edge uv, re-
spectively. The following theorem illustrates how we can express mp

w
for p � 0 in terms of mq

v and mq
w for q = 0 � � � p.

Theorem 1 For root node u,

mp
u =

�
0 if p =�1 or p > 0
1 if p = 0. (4)

For p � 0,

C
p�1
Tv

= mp�1
v Cv +

p�1

∑
q=0

mp�1�q
v Cq

Tv
(5)

mp
v = RvC

p�1
Tv

� LvC
p�2
Tv

(6)

mp
w =

p

∑
q=0

mp�q
v mq

w 8 w 2 Tv (7)

The proof of the theorem is left out due to space limitation. The
reader may refer to [27] for details. The theorem implies that if we
keep Ci

Tv
for i = 0 � � � p� 1, we can compute up to the p-th order the

new moments for v by computing C
i�1
Tv

followed by mi
v for i = 0 � � � p

by Eqns. (5) and (6). Then, we can update the moments of all the sinks
in the topology by Eqn. (7). From the above theorem, we can state the
following corollary which allows us to incrementally update sink mo-
ments during the merging operation and compute the total p-th order
moment weighted capacitance at the new root u:

Corollary 1 Consider k topologies, denoted Tvi for i = 1 � � � k. If the k
topologies are merged at a new node u, then for p � 0 and i = 1 � � � k,

then C
p�1
Tvi

, mp
vi and mp

w 8 w 2 Tvi can be computed by Eqns. (5–7),

respectively. Let cs
u be the sink capacitanceat the root node u, i.e., cs

u =
0 if u is not a sink. For p � 0,

C
p�1
Tu

= mp�1
u cs

u +
k

∑
i=0

C
p�1
Tvi

(8)

From Theorem 1 and Corollary 1, the time complexity to update the
moments of n sinks in a tree is O(n � p2). The auxiliary space require-
ment is O(p). On the other hand, the time complexity of the method
proposed by [20] is O(g � p)where g is the total number of grid nodes in



the tree and the auxiliary space requirement is O(g). Since our RATS-
tree algorithm is based on the Hanan-grid, g could be in the order of
O(n2).

We can integrate the incremental bottom-up moment computation
algorithm with our RATS-tree algorithm easily. For each topology con-
structed by our algorithm, we keep a set of irredundant wiresizing solu-
tions and their corresponding sink moments (up to a pre-specified p-th
order) for the topology. Note that all these are stored in the reduced tree
representation. As we grow a topology along the path of Hanan grid
points towards the new root in the merge operation, we compute the
length of each new edge and for each candidate wire width of the new
edge, derive the interconnect resistance, inductance and capacitance.
These RLC parasitics are used to update the moments of the sinks us-
ing Theorem 1. We then use Corollary 1 to compute the weighted ca-
pacitances at the new root. The RATS-tree algorithm then prunes the
wiresizing solutions of the newly created topology.

3.6 Further Pruning of Solution Space
Removal of redundant wiresizing solutions from a topology is not the
only pruning technique employed by the RATS-tree algorithm. We ap-
ply several other techniques to prune the B&B search tree. For exam-
ple, with a clever arrangementof the tree roots in T , it is possible to find
the new Steiner merging point m and P�(m) in O(n) time and partially
avoid generation of non-planar routings during the merging operation
(see [17] for details.)

Due to the re-rooting operation, however, it is possible that we may
create many sibling B&B nodes which will generate non-planar rout-
ings in subsequentmerging operations. While we can prune away B&B
nodes that contain non-planar routings, a better approach is to avoid
creating them as much as possible. We introduce the visible set of a
RATS-tree, which is a subset of the Hanan grid points in the RATS-
tree defined as follows:

A node p dominates q, denoted q � p if and only if hp;qi= q and
p 6= q. Node p x-dominates q, denoted q �x p, if q � p and py = qy.
Given a RATS-tree T , p 2 T is x-visible if it does not x-dominates any
node in T . We define the y-dominance relation and y-visibility simi-
larly. A node p is visible if it is either x-visible or y-visible. In Fig-
ure 2(a), for example, except for nodes 3 and 7, the rest of the nodes
are visible. We can show that if we order the x-visible nodes by their
y-coordinates, then the merging operations can generate the x-visible
nodes of the new topology from the x-visible nodes of its child topolo-
gies in linear time. Similarly, the y-visible nodes can be computed in
linear time. We do not re-root at all Hanan grid points in the tree but
only at the visible nodes, i.e., grid points in the visible set.

Another pruning technique that we employ is to prune wiresizing
solutions among different topologies. We say that two RATS-trees T
and T 0 share the same alias if they are rooted at the same node and
cover the same set of sinks. Consider wiresizing solutions W of T and
W 0 of T 0 where T and T 0 share the same alias, we say that W 0 is re-
dundant if Cap(T;W )�Cap(T0;W 0), Slack(T;W )� Slack(T0;W 0),
SQ(T0;W )� SQ(T0;W 0), and at least one of the three inequalities is a
strict inequality. A RATS-tree is redundant if all of its wiresizing solu-
tions are redundant with respect to the wiresizing solutions of topolo-
gies with the same alias.

We use a hash table to store aliases. For each alias in the table, we
maintain a set of irredundant wiresized RATS-trees. For each RATS-
tree generated (whether by merging or re-rooting operation), our algo-
rithm updates the set of irredundant wiresized RATS-trees that share
the same alias as the newly generated RATS-tree. All B&B nodes that
are associated with redundant RATS-trees are pruned.

3.7 Summary
The RATS-tree can be generalized by the following re-definitions to
handle the case where the sinks are not restricted to the first quadrant,
and the source is not located at the origin. Given two distinct points p

RATS-tree Algorithm
B&B-Queue f(ffs0g;fs1g;fs2g; � � � ;fsngg;∞)g
while B&B-Queue not empty do

(T ;K) Remove-Head-of-Queue(B&B-Queue)

if all RATS-trees in T irredundant then
(m;mN ;mE ;Merger-Type) Find-Merging-Point((T ;K))
if Merger-Type= TERMINAL-MERGING then

(T 0
;K0) (Terminal-Merge(m;T ),jmj)

else
/* STEINER-MERGING */

(T 0
;K0) (Steiner-Merge(m;mN;mE ;T ),jmj)

/* SKIP STEINER-MERGING */

K jmj
Append (T ;K) to B&B-Queue

end if
New-B&B-Set Re-root((T 0

;K0)) + (T 0
;K0)

Append all B&B nodes in New-B&B-Set to B&B-Queue

end if
end while

Figure 3: Outline of the RATS-tree algorithm.

and q, we define the Steiner merging point hp;qi to be (med(xs0 ;xp;xq);
med(ys0 ;yp;yq))where med() returns the median of three numbers. We
say that q � p if and only if hp;qi = q and p 6= q. jmj = d(s0;m) is
the Manhattan distance between s0 and m. Lastly, the visible nodes
of a topology are ordered and kept in their respective quadrants with
respect to the source to facilitate computation of the visible nodes of
parent topologies.

To summarize, we use a queue to implement breadth-first traversal
of the B&B search tree. At the beginning of the algorithm, the queue
contains a B&B node with a peer topology set T containing all single-
terminal subtrees and a scan level K = ∞. We use the pair (T ;K) to
denote a B&B node. Until the queue is empty, the algorithm iterates
the expansion of a B&B node removed from the head of the queue by
either performing a terminal/Steiner merging operation, or skipping a
Steiner merging operation. In the case of subtree merging, the resul-
tant topology is re-rooted to generate sibling B&B nodes. All newly
generated B&B nodes are appended to the end of the queue. A brief
outline of our RATS-tree algorithm is given in Figure 3.

The above summary assumes no pruning of the B&B search tree.
To consider such pruning, two simple modifications are made to the
algorithm. A B&B node with (T ;K) is only expanded if all partial
RATS-trees in T are irredundant. After each partial RATS-tree is con-
structed (by either merging or re-rooting operation), the irredundant list
of RATS-trees with the same alias as the newly created topology is up-
dated.

4 Experimental results

We have implemented the RATS-tree algorithm in C++ language and
evaluated the algorithm for MCM designs. We use randomly generated
netlists with 6 to 12 terminals on a 10cm� 10cm MCM substrate. In
the first set of experiments, we run the RATS-tree algorithm under the
pathlength formulation to investigate the trade-off between the path-
length and the routing cost of the topologies generated. Ten random
n-pin nets are generated for each n ranging from 6 to 12. For each rout-
ing instance, we consider four different arrival time (or pathlength) re-
quirements, namely qi = k � d(s0;si), where k = f1;1:2;1:5;2g for
sinks si’s. Note that when k= 1, it is known as the shortest path Steiner
routing.

Table 1 shows the trade-off between the pathlength requirement and
routing cost. We normalize the length of each resultant topology with
respect to that of the shortest path routing. Therefore, we do not show
the routing length when k = 1. The columns labeled “CPU” give the
worst-case CPU seconds incurred among the ten nets for each n and



k = 1 k = 1:2 k = 1:5 k = 2
n CPU Length CPU Length CPU Length CPU
6 0.3 0.996 0.3 0.987 0.3 0.984 0.3
7 0.9 1.000 0.9 0.996 0.9 0.982 0.9
8 0.8 0.989 0.9 0.973 0.9 0.963 0.9
9 4.3 0.991 4.7 0.976 4.2 0.973 4.3

10 8.7 0.972 8.8 0.956 9.3 0.948 8.6
11 37.4 0.988 47.7 0.971 40.4 0.951 36.3
12 96 0.978 152.2 0.958 145.0 0.942 125.0

Table 1: Pathlength requirement and routing cost trade-off.

Max-delay Settling Time Overshoot Wire Cap.
Topology (ns) (ns) (pF)

RATS1 2.15 0.83 0.10 33.4
RATS2 2.28 0.76 0.07 38.3
RATS3 2.26 0.00 0.04 37.7
RATS4 2.24 0.71 0.06 35.7
RATS5 2.18 0.82 0.10 31.9

Table 2: Trade-off among maximum sink delay, signal settling time, voltage
overshoot, and routing cost for a small k = 2.

k. In general, the average CPU time is much lower. For example, the
average CPU time for 12-pin net is only 22 seconds whereas the worst-
case CPU time is 152 seconds. While the average gain in terms of total
routing length is a modest 5% when we relaxed k from 1 to 2, in some
instances, the gain could be as high as 15%. Such high gains in general
occur more frequently in larger nets than in smaller nets. Moreover, the
shortest path routings generated by our algorithm is optimal in terms of
wirelength, and therefore, it is more difficult to achieve much reduction
in wirelength.

In the secondsetof experiments, we apply the RATS-tree algorithm
without consideration of wiresizing under the two-pole model. The
purpose of this experiment is to investigate the impact of routing topol-
ogy on signal delay and integrity. The interconnect parameters that
are used by our algorithms for moment, delay, and signal quality com-
putations are obtained from the Micro Module System (MMS) D500
process on Aluminum offered through MIDAS. Assuming a nominal
width of 19µm, the interconnect resistance, inductance, and capacitance
are 236:84Ω=m, 301:49nH=m, and 128:99pF=m, respectively. The load
capacitanceof each sink is assumedto be 1pF, and the driver resistance
ranges from 10Ω to 30Ω, depending on the size of the net and the prox-
imity of the terminals.

For each net, we set the required arrival time of sink si to be k�p
LCd(s0;si) where k > 1. Note that k is larger than 1 in order to ac-

count for the rise/fall delay. For each net, our algorithm constructs a
large class of topologies satisfying the delay requirements. We then
run SPICE simulations using the transmission line model to evaluate
the sink delay and measure signal integrity in terms of the signal set-
tling time and voltage overshoot of these constructed topologies. We
measure the signal delay at the 90% Vdd (assuming a rising signal) and
the signal settling time is the time taken for the signal to settle above
the 90% Vdd . In general, the large class of topologies generated by our
algorithm is able to provide a trade-off among maximum sink delay,
signal settling time, voltage overshoot, and routing cost.

For example, Table 2 shows the maximum delays, signal settling
times, voltage overshoots, and routing costs for the topologies gener-
ated by our RATS-tree algorithm for one of the randomly generated 9-
pin nets. Both the delay and settling time of each topology are in ns,
and the total wire capacitance is in pF. The voltage overshoot is nor-
malized with respect to Vdd . In this example, due to a small k of 2, most
of the RATS-trees generated are shortest-path Steiner tree. As we can
see from Figure 4, except for RATS5, the topologies RATS1–4 are all
shortest-path Steiner tree. In fact, RATS1 is an optimal Steiner arbores-
cence. While it is the best in terms of maximum delay, its total wire

Max-delay Settling Time Overshoot Wire Cap.
Topology (ns) (ns) (pF)
RATS6 2.65 0.00 0.09 29.9
RATS7 2.39 0.58 0.15 30.5

(a) k = 3
Max-delay Settling Time Overshoot Wire Cap.

Topology (ns) (ns) (pF)
RATS8 2.84 0.00 0.12 26.7
RATS9 2.81 0.00 0.11 27.4

(b) k = 6

Table 3: Trade-off among maximum sink delay, signal integrity, and routing
cost for the case where (a) k = 3 and (b) k = 6.

source source

(a) RATS6 (b) RATS8

Figure 5: An example of the topologies generated by the RATS-tree algorithm
for a 9-pin net for (a) k = 3 and (b) k = 6.

capacitance, settling time, and voltage overshoot are not necessary the
smallest.

Table 3(a) and (b) show the routing solutions (for the same net as in
Table 2) for the case where we relax k to 3 and 6, respectively. Figure 5
shows an example of the topologies generated for each k. Note that the
total wire capacitance of RATS10 is 20% smaller than that of RATS1.
Due to space constraints in the paper, we only show the simulation re-
sults of a subset of the topologies generated by our algorithm in Table
3. In total, 16, and 20 topologies are generated for the two different
k’s, respectively. Note that if we do not consider pruning, the numbers
could be much larger. There are also overlaps between the three sets
of topologies.

In the final set of experiments, we apply the RATS-tree algorithm
with wiresizing under the two-pole model to investigate the impact of
wiresizing on signal delay and signal integrity. In addition to the nom-
inal width of 19µm, we allow four other different wire widths f39µm;
59µm; 79µm; 99µmg for the interconnect. The interconnect parame-
ters for the four additional wire widths are given in Table 4. In this
experiment, the RATS-tree algorithm produces a much larger number
of solutions when compared to the previous two experiments. For in-
stance, there are a total of 123 wiresized solutions generated for the
above 9-pin sample net. The run-times also increase significantly due
to the wiresizing optimization. For example, if we keep all the irredun-
dant wiresizing solutions for each irredundant topologies generated in
the algorithm, the average run-times for 6-pin, 9-pin, and 12-pin nets
are 5 seconds, 341 seconds, and 12,702 seconds, respectively.

However, we observe that a majority of the irredundant wiresiz-
ing solutions of a topology are very similar to each other in terms of
Cap(T;W ), Slack(T;W ), and SQ(T;W ). Therefore, we adopt a more
aggressive pruning approachwhere we keep only a user-specifiednum-
ber, say I, of irredundant wiresizing solutions for each topology. In this
approach, we first apply the pruning technique outlined in Section 3.4.
If the number of irredundant wiresizing solutions is greater than I, then
we always keep the wiresizing solutions that correspond to the smallest
Cap(T;W ), largest Slack(T;W), and largest SQ(T;W ). We select the
rest of the solutions uniformly by their ordering based onCap(T;W )’s.



source source source source source

(a) RATS1 (b) RATS2 (c) RATS3 (d) RATS4 (e) RATS5

Figure 4: Topologies generated by the RATS-tree algorithm for a 9-pin net for a small k = 2.

39µm 59µm 79µm 99µm
R (Ω=m) 115.38 76.27 59.96 45.45
L (nH=m) 205.88 157.82 128.50 108.62
C (pF=m) 188.89 246.42 302.64 358.03

Table 4: MMS interconnect parameters.

Max-delay Settling Time Overshoot Wire Cap.
Topology (ns) (ns) (pF)
RATS1:a 1.82 0.77 0.08 37.6
RATS1:b 2.18 0.85 0.04 44.8
RATS2:a 2.64 0.92 0.04 57.9
RATS3:a 2.19 0.69 0.03 44.2
RATS3:b 2.64 0.00 0.01 56.0

RATS10:a 2.71 0.00 0.00 64.3

Table 5: Impact of wiresizing on signal delay and integrity.

Using this approach, we are able to cut down the run-time significantly
while maintaining high solution quality. For example, the average run-
times for 6-pin, 9-pin, and 12-pin nets are reduced to 4 seconds, 72
seconds, and 604 seconds, respectively when we set I to 15. Note that
the run-times for the RATS-tree algorithm in the first two experiments
are similar. While the run-times of the RATS-tree algorithm may com-
pare unfavorably with those of algorithms in [9, 8] which also consider
wiresizing with topology construction, the higher computational com-
plexity is due to its ability to handle a large class of topologies.

Again, we use the same 9-pin net in the above discussion to illus-
trate the impact of wiresizing. In general, we observe that most of the
topologies that resemble shortest-path Steiner tree more have more wire-
sizing solutions. For example, topologies such as RATS1–5 have more
wiresizing solutions than RATS6–9. We also observe that most of the
wiresizing solutions are monotone, i.e., the widths decrease from source
to sinks. Note that these solutions are obtained by the RATS-tree algo-
rithm with aggressive pruning of wiresizing solutions. Table 4 shows
the impact of wiresizing on RATS1-3 and a new shortest-path Steiner
tree, denoted RATS10. We use RATS j:a and RATS j:b to refer to two
different wiresizing solutions of RATS j. From the table, we see that it
is possible to improve both max-delay and voltage overshoot simulta-
neously by wiresizing (RATS1:a and RATS3:a). On the other hand, we
can also use wiresizing to minimize voltage overshoot at the expense
of signal delay. In all cases, the total wire capacitance increases.

5 Concluding Remarks
To summarize, this paper describesa RATS-tree construction algorithm
under a higher-order RLC interconnect model. Our algorithm consid-
ers the impact of routing on signal delays and response waveforms, and
returns not one, but a set of appropriately wiresized routing topologies.
Our algorithm optimizes signal waveform, not just delay, and due to
its capability to handle a large class of topologies, provides a trade-off
among routing cost, signal delay, and signal integrity. In the algorithm,
we introduce a space-efficient reduced tree representation to capture all

topologies and wiresizing solutions constructedduring the execution of
our algorithm. We also present a new algorithm to incrementally com-
pute moments of sinks in a bottom-up manner.

Currently, we are working towards improving the run-time of the
algorithm. Besides the simple yet effective pruning technique that we
outlined in Section 4, we are investigating the effectiveness of other
pruning techniques to reduce run-time while maintaining high solution
quality. For example, we can perform pruning using bin sorting based
onCap(T;W ), and keep only a representative wiresizing solution from
each bin. Furthermore, we observe that the re-rooting operation gener-
ates many child B&B nodes. By limiting the number of re-rooting al-
lowed along any branch of the B&B search tree, it is possible to reduce
the run-time without any solution quality degradation. We are also fo-
cusing our efforts on generalizing the RATS-tree algorithm for gen-
eral graph routing, which would enable us to handle multi-layer routing
more effectively.
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