
0-89791-993-9/97 $10.00 1997 IEEE

Delay Bounded Bu�ered Tree Construction for

Timing Driven Floorplanning

Maggie Kang Wayne W.-M. Dai
Computer Engineering Department

University of California, Santa Cruz, CA 95064

Tom Dillinger David LaPotin
Rockwell Semiconductor IBM Austin Research Lab.
San Diego, CA 92121 Austin, Texas 78758

Abstract

As devices and lines shrink into the deep submicron
range, the propagation delay of signals can be e�ec-
tively improved by repowering the signals using inter-
mediate bu�ers placed within the routing trees. Almost
no existing timing driven oorplanning and placement
approaches consider the option of bu�er insertion. As
such, they may exclude solutions, particularly early in
the design process, with smaller overall area and better
routability. In this paper, we propose a new method-
ology in which bu�ered trees are used to estimate wire
delay during oorplanning. Instead of treating delay
as one of the objectives, as done by the majority of
previous work, we formulate the problem in terms of
Delay Bounded Bu�ered Trees (DBB-tree) and pro-
pose an e�cient algorithm to construct a DBB span-
ning tree for use during oorplanning. Experimental
results show that the algorithm is very e�ective. Us-
ing bu�er insertion at the oorplanning stage yields
signi�cantly better solutions in terms of both chip area
and total wire length.

1 Introduction

In high speed design, long on-chip interconnects can be
modeled as distributed delay lines, where the delay of
the lines can often be reduced by bu�er insertion. In-
termediate bu�ers can e�ectively decouple a large load
o� of a critical path or divide a long wire into smaller
segments, each of which has less line resistance and
makes the path delay more linear with overall length.
It is commonplace for production chips to contain tens
of thousands of bu�ers.

Floorplanning has a signi�cant impact on critical
path delay, however almost no existing timing driven
oorplanning technique considers the option of bu�er
insertion. Typically, only wire length or Elmore de-
lay is used for delay calculation. This practice is too
restrictive as evidenced by the reliance industry has
placed on intermediate bu�ering as a means for achiev-
ing aggressive cycle times.

This paper attempts to leverage the additional
freedom gained by incorporating bu�er insertion into
oorplanning stage. We propose a new methodol-
ogy of oorplanning using bu�ered trees to estimate
the wiring delay. We formulate the Delay Bounded
Bu�ered Tree (DBB-tree) problem which optimizes
the total wire length subject to given timing con-
straints. Based on the Elmore delay model, we present
an e�cient algorithm to construct DBB spanning trees
for use in oorplanning. The experimental results
show that using bu�er insertion at the oorplanning
stage provides an additional degree of freedom not
present in past approaches and typically leads to so-
lutions with signi�cantly smaller area and increased
routability.

2 Overview of Related Works

2.1 Elmore Delay Model

The Elmore delay model provides a simple closed-form
expression with greatly improved accuracy for delay
compared to the lumped RC model. For each wire
segment modeled as a ��type circuit, given the inter-
connect tree T , the Elmore delay from the source s0

to sink si can be expressed as follows:

� (0; i) = R0C0 +
X

e(u;v)2Path(0;i)

rlu;v(
clu;v

2
+ Cv)

where R0 is the driver resistance at the source and C0

is the total capacitance charged by the driver. Given a
uniformwire width, r and c are the unit resistance and
capacitance, respectively. Let e(u; v) denotes the wire
connecting sv to its parent su, both wire resistance
rlu;v and wire capacitance clu;v are proportional to
the wire length lu;v. Cv denotes the total capacitance
of a subtree rooted at sv, which is charged through
wire e(u; v). The �rst term of � (0; i) is linear with
the total wire length of T , while the second term has
quadratic dependence on the length of the path from
the source to si, denoted by Path(0; i).

2.2 Interconnect Optimization

From the discussion of Elmore delay, we can conclude
that total tree length and the path length from the
driver to the critical sinks are two major concerns for
interconnect topology optimization. The early works
[1, 2] observed the existence of conicting min-cost and
min-radius (the longest source-to-sink path length of
the tree) objectives. A number of algorithms [3, 2, 4, 5,
6]have been proposed to make the trade-o�s between
them. On the other hand, for deep submicron design,
path length is no longer an accurate estimate of path
delay. Several attempts [7, 8, 9, 10] have been made
to directly optimize Elmore delay rather than using
geometric objectives.

Intermediate bu�er insertion creates another de-
gree of freedom for interconnect optimization. Early
works on fanout optimization problem focused on the
construction of bu�ered trees during logic synthesis
[11, 12, 13] without taking into account the wiring ef-
fect. Recently, layout driven fanout optimization have
been proposed [14, 15]. For a given Steiner tree, a
polynomial time dynamic programming algorithmwas
proposed for the delay-optimal bu�er insertion prob-
lem [16]. Using dynamic programming, [17] integrated
wire sizing and power minimization with the tree con-
struction under a more accurate delay model taking
signal slew into account. Inspired by the same dy-
namic programming algorithm, Okamoto and Cong
[18] proposed a simultaneous Steiner tree construc-
tion and bu�er insertion algorithm. Later the work
was extended to include wire sizing [19]. In the for-
mulation of the problem [18, 19], the main objective
is to maximize the required arrival time at the root of
the tree, which is de�ned as the minimum among the
di�erences between the arrival time of the sinks and
the delay from the root to the sinks.

To achieve optimal delay, multiple bu�ers may be
necessary for a single edge. An early work [20] de-
veloped the optimal solution for the size, number and
position of bu�ers driving a uniform line that mini-
mizes the delay of the line. Given single sized bu�er,
recent work [21] presented the optimal bu�er insertion
on a uniform wire based on Elmore delay.

2.3 Delay Minimized vs. Delay Bounded

Since oorplanning and placement are usually iterated
with static timing analysis tools, the critical path in-
formation is often available and the timing require-
ment for critical sinks converges as the design and
layout progresses. It is su�cient to have bounded de-
lay rather than minimized delay. On the other hand,
the minimization of total wire length is of interest
since total wire length not only contributes to circuit
area and routing congestion, but also contributes a
signi�cant factor to the switching power. In this pa-
per, instead of minimizing the source to sink delays,

we de�ne the delay bounded bu�ered tree (DBB-tree)
problem to minimize the total wire length while satis-
fying timing constraints. Without considering bu�er
insertion, [22] proposed a \Delay Bounded Minimum
Steiner Tree" (DBMST) to construct a low cost tree
subject to bounded delays.

2.4 DBB-tree Problem

In this paper, we de�ne the new Delay Bounded
Bu�ered tree (DBB-tree) problem as follows: Given
a signal net and delay bounds associated with criti-
cal sinks, construct a routing tree with intermediate
bu�ers inserted to minimize the total wiring length
and the number of bu�ers while satisfying the delay
bounds. Based on Elmore delay, we develop an e�-
cient algorithm for constructing DBB spanning tree,
which consists of three phases:
1. Calculate the minimum Elmore delay for each

critical sink and exclude the oorplanning solu-
tion which is timing infeasible.

2. Construct a bu�ered spanning tree which has
minimized total wire length and bounded delays
at critical sinks.

3. Revisit the topology obtained in 2 and delete un-
necessary bu�ers subject to delay bounds.

Our DBB-tree algorithm makes the following three
major contributions:
� Treating delays as constraints rather than formu-
lating it into the optimized objectives.

� Constructing the topology and inserting bu�ers
simultaneously, the algorithm is very e�ective to
minimize both wire length and the number of
bu�ers.

� Allowing multiple bu�ers to be inserted on each
single edge and calculating the precise bu�er po-
sitions for the optimal solution. In contrast, most
previous work assumes at most one bu�er is in-
serted at the �xed location for each single edge.

3 Description of DBB-tree Algorithm

For oorplanning purpose, we assume uniform wire
width and consider only non-inverting bu�ers. Given
a signal net S = fs0; s1; � � � ; sng, s0 is the source and
s1; � � � ; sn the sinks. The geometric location for each
terminal of S is determined by oorplanning. Let ~B =
(tb; rb; cb) describes the internal delay, resistance and
capacitance of the non-inverting bu�er, respectively.
Before presenting the detailed DBB-tree algorithm, we
�rst state some theoretical results developed by [21]
which calculate the number and position of identical
bu�ers placed on a single edge to minimize the edge
delay.

Theorem 1 Given a uniform line e(0; i) connecting

sink si to source s0, and identical bu�ers ~B, the

Figure 1: Given a uniform line e(0; i) and identical bu�er
~B, the Elmore delay through e(0; i) is minimized if �(0; i)
bu�ers are placed on the wire in such way that the �rst
bu�er is �� away from source s0, each pair of adjacent
bu�ers are equally spaced each other by ��.

Elmore delay through e(0; i) is minimized if �(0; i)
bu�ers are inserted on the edge such that the �rst
bu�er is ��(0; i) away from the source s0, and each
pair of adjacent bu�ers are ��(0; i) away from each
other :

�(0; i) = max(0; b�
1

2
+s

1 +
2(r(cl0;i + cb � ci)� c(rb � R0))2

rc(rbcb + tb)
c);

��(0; i) =
1

�+ 1
(l0;i +

tb(rb � R0)

r
+

ci � cb

c
);

��(0; i) =
1

�+ 1
(l0;i �

rb � R0

r
+

ci � cb

c
):

where R0 is the driver resistance at source s0 and ci

the loading capacitance at sink si.

By replacing R0 with 0, the results can be applied
to any wire which connects two sinks in routing tree
T . Based on the discussion above, we will present the
detailed DBB-tree algorithm in the following section.

3.1 Lower Bound of Elmore Delay

The �rst phase of DBB-tree algorithm calculates the
lower bound of Elmore delay for each critical sink si.
It may not be possible to achieve this delay simultane-
ously for all critical sinks, but no achievable delay will
be less than it. Formally, the lower bound of Elmore
delay for si can be given by:

�
�(0; i) = ��(0; i)

where ��(0; i) is the minimized Elmore delay through
edge e(0; i) as shown in Figure 1. That is, the lower
bound of sink si is the minimized delay through the
direct connection between source s0 and si without
considering other terminals' e�ect. The oorplanning
is timing infeasible if there exists a critical sink si such
that its lower bound �

�(0; i) is greater than the given
delay bound Di : �

�(0; i) > Di. The infeasible solu-
tion will be excluded, otherwise the algorithm contin-
ues to phase 2 and 3.

Figure 2: For particular sink sv 2 T , the last bu�er on
edge e(u � 1; u) drives Tv, the subtree rooted at sv, if
e(u � 1; u) is the last bu�ered edge on the path between
the source and sv.

3.2 DBB Spanning Tree Construction

The second phase constructs a bu�ered spanning tree
such that the total wire length is minimized and
bounded delays are satis�ed. Similar with Prim's
MST algorithm, it starts with the trivial tree: T =
fs0g, iteratively edge e(v; w) with �(v; w) bu�ers is
added into T , where sv 2 T and sw 2 S � T are cho-
sen such that the length of e(v; w) is minimized and
the timing constraints in T are still satis�ed. T grows
up incrementally until it spans all terminals, or there
is no edge that can be added without exceeding the
delay bounds. In the latter case, the oorplanning
is considered timing infeasible and the solution is ex-
cluded.

For the incremental construction of the DBB-tree,
the key issue is how to quickly evaluate the timing con-
straints each time a new edge is added, i.e. whether or
not the delay bound at each critical sink is satis�ed.
Recall for edge e(v; w), the number of bu�ers, �(v; w),
and the position of bu�ers, ��(v; w) and ��(v; w), in-
serted on the edge which minimize the edge delay can
be calculated in constant time. Let Tv denote the sub-
tree rooted at sv, after adding edge e(v; w) in which
sv 2 T and sw 2 S � T , the loading capacitance of Tv
will be increased by �Cv:

�Cv =

�
clv;w + cw if �(v; w) = 0;
c��(v; w) + cb otherwise:

where lv;w is the length of edge e(v; w) and cw the
loading capacitance at sink sw . Let e(u� 1; u) denote
the last bu�ered edge on the path from the source to
sv as shown in Fig. 2, the last bu�er on edge e(u�1; u)
drives Tv. If there is no bu�er from the source to sv,
the source drives Tv directly. According to Elmore
delay, Tv is driven through the resistance between the
driver and sv, de�ned as driving resistance of Tv, de-
noted by R(Tv). Given sv�1 is the parent of sv, and �,
�� and �� are abbreviations of �(v�1; v), ��(v�1; v)
and ��(v� 1; v), respectively, R(Tv) can be calculated

as follows:

R(Tv) =

�
R(Tv�1) + rlv�1;v if � = 0;
rb + r(lv�1;v � �� � (�� 1)��) otherwise:

Let Ti� Ti+1 denote the set of sinks in subtree Ti but
not in Ti+1 and su+1; � � � ; sv�1 denote the intermediate
terminals from su to sv. The Elmore delay of sinks in
Ti � Ti+1 for i = u; u+ 1; � � � ; v, is given by:

�� (0; s) = R(Ti)�Cv

On the other hand, due to the isolation of bu�ers on
edge e(u � 1; u), the increased loading capacitance of
Tv will not a�ect on the delay of sinks which are not
in Tu. We de�ne the delay slack of each sink s 2 T as:

�(s) = Ds � � (0; s);

and the delay slack of each subtree Ti as:

�(Ti) = min
s2Ti

�(s) (1)

The timing constraints will be satis�ed for the sinks
in Tu � fswg if and only if for i = u; u+ 1; � � �v, the
following condition holds:

�(Ti) � R(Ti)�Cv (2)

By introducing the loading capacitance slack of each
subtree Ti :

�(Ti) =
�(Ti)

R(Ti)
; (3)

and the minimum loading capacitance slack among
subtrees Ti for i = u; u+ 1; � � �v :

�
�(v) = min

i=u;u+1;���;v
�(Ti);

the condition in Eq. 2 can be simply rewritten as:

�
�(v) � �Cv:

By keeping track of �
�(v), this condition can be

checked in constant time. The Elmore delay of sw
can also be calculated from the Elmore delay of sv:

� (0; w) = � (0; v) +R(Tv)�Cv + ��(v; w):

From above analysis, we can conclude:

Theorem 2 Given a routing tree T with bounded de-
lays at critical sinks, after a new edge e(v; w) is added,
the necessary and su�cient condition for satisfying the
bounded delays in T is:

�
�(v) � �Cv and Dw � � (0; w); (4)

By keeping track of �
�(v), this condition can be

checked in constant time.

Figure 3: In case of (a), edge e(v;w) becomes unbu�ered
after deleting the bu�er, otherwise �(v;w)� 1 > 0 bu�ers
are re-inserted on e(v;w), as shown in (b).

At each iterative step, sv 2 T and sw 2 S � T

can be selected in linear time such that lv;w is mini-
mum and the timing constraints are satis�ed. After
adding the new edge e(v; w), a two-pass traversal of
T is su�cient to update the delay slack and loading
capacitance slack of each subtree in T : (1) traverse
T bottom up and calculate the delay slack and load-
ing capacitance slack of each subtree Ti according to
Equations 1 and 3; (2) traverse T top down and cal-
culate ��(i) from �

�(i�1), given si�1 is the parent of
si:

�
�(i) =

�
�(i) if �(i� 1; i) > 0;
min(��(i� 1); �(i)) otherwise:

Since each new edge can be added into T in linear time,
the overall DBB spanning tree can be constructed in
O(n2) time for net S with n terminals.

3.3 Bu�er Deletion

In phase 2, bu�ers are inserted on each edge to min-
imize the edge delay in order to maximize the choice
of tree topology. Some bu�ers may not be necessary
for meeting the delay bounds. The third phase deletes
unnecessary bu�ers from the spanning tree obtained
in phase 2. In general, the bu�ers closest to the source
can unload the critical path the most. The algorithm
traverses T bottom up and deletes one bu�er at a
time without violating timing constraints. The dele-
tion continues until all bu�ers left in T are necessary,
that is, the delays would not be bounded if any of the
remaining bu�ers is deleted.

For particular edge e(v; w) with �(v; w) > 0 bu�ers,
if one bu�er is deleted from e(v; w), the wire delay will
be increased by ���(v; w) :

���(v; w) =
(rclv;w + r(cw � cb) � crb)

2

2�(v; w)(�(v; w) + 1)rc
� tb � rbcb:

In case of �(v; w) = 1 as shown in Fig. 3 (a), e(v; w)
becomes unbu�ered edge after deletion, the load ca-
pacitance of subtree Tv is increased by:

�Cv = clv;w + Cw � c��(v; w)� cb:

Otherwise �(v; w) � 1 bu�ers are re-inserted on edge
e(v; w), as shown in Fig. 3 (b): �� ! ���1 and �� !

���1. The load capacitance of Tv is increased by :

�Cv = c(���1 � ��):

Similar to phase 2, let e(u � 1; u) denote the last
bu�ered edge from the source to sv . The delay of
the sinks in subtree Tu will be increased due to the
increased loading capacitance of Tv. In addition, the
delay of sinks in subtree Tw will be further increased
due to the increased edge delay of e(v; w). Based on
the analysis in phase 2, we can conclude that:

Theorem 3 Given a bu�ered routing tree T with
bounded delays at critical sinks, one bu�er can be
deleted from edge e(v; w) without causing timing vi-
olation if and only if the following condition holds:

�
�(v) � �Cv and �(Tw) � R(Tv)�Cv +���(v;w) (5)

Therefore the timing constraints of T can be evalu-
ated in constant time for deleting a bu�er from edge
e(v; w). The bu�er can be found by searching at most
n � 1 edges. After deleting a bu�er, the delay slack
and loading capacitance slack of subtrees in T are in-
crementally updated in O(n) time as in phase 2. So
one bu�er will be deleted in linear time. There are at
most kn bu�ers in T where k is the maximum num-
ber of bu�ers on single edge, The timing complexity of
bu�er deletion is O(kn2) which dominates the overall
DBB-tree algorithm. Following experimental results
show that the bu�er deletion e�ectively minimizes the
total number of bu�ers and it can delete up to 93% of
the bu�ers inserted in the previous phase.

4 Experimental Results

In the �rst part of the experiments, we implemented
the DBB spanning tree algorithm on a Sun SPARC
20 workstation under the C/UNIX environment. The
algorithm was tested on signal nets with 2; 5; 10; 25; 50
and 100 pins. For each net size, 100 nets are randomly
generated on a 10mm � 10mm routing region, and
the delay bounds of critical sinks are randomly cho-
sen from [1:0ns; 5:0ns]. The parameters used in the
experiments are based on [18], which are summarized
in Table 1.

The average results are reported in Table 2, the
CPU time consumed per net shows that the algorithm
is fast enough that can be applied during the stochas-
tic optimization. The average number of bu�ers in-
serted in DBB-tree is very reasonable considering the
number of terminals of the net. In addition, the num-
ber of bu�ers before the third phase of DBB-tree algo-
rithm is also listed, the percentage of bu�ers reduced
is as high as 93%. Therefore the bu�er deletion is
quite e�ective at removing unnecessary bu�ers.

Table 1: Experimental Parameters for Signal Nets

Output Resistance of Driver R0 500
 � 1000

Unit Wire Resistance c 0:12
=�m
Unit Wire Capacitance r 0:15fF=�m

Output Resistance of Bu�er rb 500

Loading Capacitance of Bu�er cb 0:05pF

Intrinsic Delay of Bu�er tb 0:1ns
Loading Capacitance of Sink ci 0:05pF � 0:15pF

Table 2: Average Results of DBB-trees

Pins CPU Number of Bu�ers
(#) (sec:) Before Del. After Del. Reduction (%)
2 0.0004 3.24 0.23 92.90
5 0.0019 7.09 1.43 79.83
10 0.0049 13.99 2.82 79.84
25 0.0816 36.34 4.57 87.42
50 0.6259 79.61 7.15 91.02
100 4.9228 171.24 10.53 93.85

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90 100

Le
ng

th
 (

m
m

)

Pins (#)

"MST"
"SPT"

"DBB-tree"

Figure 4: Average length of MST, SPT and DBB-trees.

Furthermore, we compared the average results with
the minimum spanning tree (MST) and shortest path
tree (SPT) on the same examples. Figure 4 shows
the average length achieved by three di�erent trees,
DBB-tree is much closer to MST than to SPT.

To compare with the traditional approaches which
do not consider bu�er insertion during the oorplan-
ning, in the second part of the experiments, we apply
DBB-tree, MST and SPT to evaluate the timing per-
formance during the oorplanning, respectively. Four
examples are generated, in which blocks, netlists and
timing bounds are randomly generated within some
nominal ranges. Table 3 reports the consistant im-
provement of chip area and total wire length by using
DBB-tree. The area can be improved up to 31% over
MST and 22% over SPT, on the other hand, the total

Table 3: Improvement of Floorplanning Using DBB-tree.
Blocks Nets Area(%) Wire Length(%)
(#) (#) MST SPT MST SPT
10 50 31.10 21.01 14.71 47.04
25 75 27.74 14.28 13.42 43.85
50 150 24.24 9.48 19.23 46.02
100 250 22.27 22.06 14.17 63.04

wire length can be improved up to 19% over MST and
63% over SPT. This substantial improvement demon-
strates that using bu�er insertion at the oorplanning
stage yields signi�cantly better solutions in terms of
both chip area and total wire length. It should be
noted that future research is needed to extend the ap-
proach to distribute bu�ers into the empty space be-
tween macros subject to timing constraints. However,
the area of such bu�ers is typically a small fraction of
a given macro area and can be accommodated.

5 Conclusion

In this paper, we propose a new methodology of oor-
planning where intermediate bu�er insertion is used as
another degree of freedom in the delay calculation. A
more realistic model for the path based timing driven
layout design is de�ned: Delay Bounded Bu�ered tree
(DBB-tree), in which we treat the delay bounds as
constraints rather than formulating the delay into the
objectives as is done in most of the previous work.
The e�cient DBB spanning tree algorithm made our
bu�ered tree based oorplanning very e�ective and
applicable to industrial problems.

References

[1] J. P. Cohoon and L. J. Randall, \Critical net rout-
ing," in Proc. IEEE Intl. Conf. on Computer Design,
pp. 174{177, 1991.

[2] J. Cong, A. B. Kahng, G. Robins, M. Sarrafzadeh,
and C. K. Wong, \Performance-Driven global rout-
ing for cell based IC's," in Proc. IEEE Intl. Conf.
Computer Design, (Cambridege, MA), pp. 170{173,
October 1991.

[3] J. M. Ho, D. J. Lee, C. H. Chang, and C. K. Wong,
\Bounded-diameter spanning tree and related prob-
lems," in Proc. ACM Symp. on Computational Ge-
ometry, pp. 276{282, 1989.

[4] A. Lim and S. Wing Cheng, \Performance oriented
rectilinear steiner trees," in Proc. of 30th Design Au-
tomation Conf., pp. 171{176, June 1992.

[5] C. J. Alpert, T. C. Hu, J. H. Huang, and A. B.
Kahng, \A direct combination of the prim and di-
jkstra constructions for improved performance-driven
global routing," in Proc. of IEEE Intl. Symp. on Cir-
cuits and Systems, pp. 1869{1872, 1993.

[6] J. Cong, K. Shing Leung, and D. Zhou, \Performance-
Driven interconnect design based on distributed RC

delay model," in Proc. 30th ACM/IEEE Design Au-
tomation Conf., pp. 606{611, June 1993.

[7] K. D. Boese, A. B. Kahng, and G. Robins, \High-
Performance routing trees with identi�ed critical
sinks," in Proc. 30th ACM/IEEE Design Automation
Conf., pp. 182{187, June 1993.

[8] K. D. Boese, A. B. Kahng, B. A. McCoy, and
G. Robins, \Rectilinear steiner trees with minimum
elmore delay," in Proc. 31st ACM/IEEE Design Au-
tomation Conf., pp. 381{387, June 1994.

[9] X. Hong, T. Xue, E. S. Kuh, C. K. Cheng, and
J. Huang, \Performance-Driven steiner tree algo-
rithms for global routing," in Proc. 30th ACM/IEEE
Design Automation Conf., (Baltimore, MD), pp. 177{
181, June 1993.

[10] S. Prasitjutrakul and W. J. Kubitz, \A timing-Driven
global router for custom chip design," in IEEE Intl.
Conf. on Computer Aided Design, pp. 48{51, 1990.

[11] K. J. Singh and A. Sangiovanni-Vincentelli, \A
heuristic algorithm for the fanout problem," in Proc.
ACM/IEEE Design Automation Conf., pp. 357{360,
1990.

[12] H. J. Touati, C. W. Moon, R. K. Brayton, and
A. Wang, \Performance oriented technology map-
ping," in Proc. 6th MIT VLSI Conf., pp. 79{97, 1990.

[13] C. L. Berman, J. L. Carter, and K. F. Day, \The
fanout problem: From theory to practice," in Proc.
1989 Decennial Caltech Conf., pp. 69{99, 1989.

[14] L. N. Kannan, P. R. Suaris, and H. G. Fang, \A
methodology and algorithms for post-Placement delay
optimization," in Proc. ACM/IEEE Design Automa-
tion Conf., pp. 327{332, 1994.

[15] H. Vaishnav and M. Pedram, \Routability-Driven
fanout optimization," in Proc. ACM/IEEE Design
Automation Conf., pp. 230{235, 1993.

[16] L. P. P. P. van Ginneken, \Bu�er placement in dis-
tributed RC-tree networks for minimal elmore delay,"
in Proc. International Symposium on Circuits and
Systems, pp. 865{868, 1990.

[17] J. Lillis, C. Kuan Cheng, and T. Ting Y. Lin, \Opti-
mal and e�cient bu�er insertion and wire sizing," in
Proc. IEEE 1995 Custom Integrated Circuits Conf.,
pp. 259{262, 1995.

[18] T. Okamoto and J. Cong, \Interconnect layout op-
timization by simultaneous steiner tree construction
and bu�er insertion," in Proc. 5th ACM/SIGDA
Physical Design Workshop, (Reston, Virginia), pp. 1{
6, April 1996.

[19] T. Okamoto and J. Cong, \Bu�ered steiner tree con-
struction with wire sizing for interconnect layout op-
timization," in Proc. 1996 IEEE/ACM International
Conf. on Computer Aided Design, (San Jose, CA),
pp. 44{49, Nov. 1996.

[20] S. Dhar and M. A. Franklin, \Optimum bu�er cir-
cuits for driving long uniform lines," IEEE Journal of
Solid-State Circuits, vol. 26, pp. 32{40, January 1991.

[21] C. Alpert and A. Devgan, \Wire segmenting for im-
proved bu�er insertion," in to appear in Proc. of 34th
Design Automation Conf., June 1997.

[22] Q. Zhu, Chip and Package Co-Synthesis of Clock Net-
works. PhD thesis, Univ. of California, Santa Cruz,
Santa Cruz, CA, June 1995.

	CD-ROM Home Page
	ICCAD97
	Front Matter
	Table of Contents
	Session Index
	Author Index

