
Java as a Specification Language for Hardware-Software Systems

Rachid Helaihel and Kunle Olukotun
Computer Systems Laboratory

Stanford University, Stanford, CA 94305
{rashhel, kunle}@ogun.stanford.edu

Abstract

The specification language is a critical component of the
hardware-software co-design process since it is used for
functional validation and as a starting point for hardware-
software partitioning and co-synthesis. This paper pro-
poses the Java programming language as a specification
language for hardware-software systems. Java has several
characteristics that make it suitable for system specifica-
tion. However, static control and dataflow analysis of Java
programs is problematic because Java classes are dynam-
ically linked. This paper provides a general solution to the
problem of statically analyzing Java programs using a
technique that pre-allocates most class instances and
aggressively resolves memory aliasing using global analy-
sis. The output of our analysis is a control dataflow graph
for the input specification. Our results for sample designs
show that the analysis can extract fine to coarse-grained
concurrency for subsequent hardware-software partition-
ing and co-synthesis steps of the hardware-software co-
design process to exploit.

1 Introduction

Hardware-software system solutions have increased in
popularity in a variety of design domains [1] because these
systems provide both high performance and flexibility.
Mixed hardware-software implementations have a number
of benefits. Hardware components provide higher perfor-
mance than can be achieved by software for certain time-
critical subsystems. Hardware also provides interfaces to
sensors and actuators that interact with the physical envi-
ronment. On the other hand, software allows the designer
to specify the system at high levels of abstraction in a flex-
ible environment where errors - even at late stages in the
design - can be rapidly corrected [2]. Software therefore
contributes to decreased time-to-market and decreased sys-
tem cost.

Hardware-software system design can be broken down
into the following main steps: system specification, parti-

tioning, and co-synthesis. The first step in an automatic
hardware-software co-design process is to establish a com-
plete system specification. This specification is used to val-
idate the desired behavior without considering
implementation details. Functional validation of the system
specification is critical to keep the system development
time short because functional errors are easier to fix and
less costly to handle earlier in the development process.
Given a validated system specification, the hardware-soft-
ware partitioner step divides the system into hardware,
software subsystems, and necessary interfaces by analyz-
ing the concurrency available in the specification. The par-
titioner maps concurrent blocks into communicating
hardware and software components in order to satisfy per-
formance and cost constraints of the design. The final co-
synthesis step generates implementations of the different
subsystems by generating machine code for the software
subsytems and hardware configuration data for the hard-
ware subsystems.

The system specification is a critical step in the co-de-
sign methodology because it drives the functional valida-
tion step and the hardware-software partitioning process.
Thus, the choice of a specification language is important.
Functional validation entails exploration of the design
space using simulation; hence, the specification must allow
efficient execution. This requires a compile and run-time
environment that efficiently maps the specification onto
general-purpose processor platforms. On the other hand,
the partitioning process requires a precise input specifica-
tion whose concurrency can be clearly identified. Generat-
ing a precise specification requires language constructs and
abstractions that directly correspond to characteristics of
hardware or software. Traditionally, designers have not
been able to reconcile these two objectives in one specifi-
cation language, but have instead been forced to maintain
multiple specifications. Obviously, maintaining multiple
specifications of the design is at best tedious due to the
need to keep all specifications synchronized. It is also er-
ror-prone because different specification languages tend to
have different programming models and semantics. This
need for multiple specifications is due to shortcomings of

0-89791-993-9/97 $10.00  1997 IEEE

current specification languages used in hardware-software
co-design.

Hardware-software specification languages currently
used by system designers can be divided into software pro-
gramming languages and hardware description languages.
Software languages such as C or C++ generate high-perfor-
mance executable specifications of system behavior for
functional validation. Software languages are traditionally
based on a sequential execution model derived from the ex-
ecution semantics of general purpose processors. However,
software languages generally do not have support for mod-
eling concurrency or dealing with hardware issues such as
timing or events. These deficiencies can be overcome by
providing the designer with library packages that emulate
the missing features [15]. A more serious problem is that
software languages allow the use of indirect memory refer-
encing which is very difficult to analyze statically. This
makes it difficult for static analysis to extract implicit con-
currency within the specification. Hardware description
languages such as Verilog [5] and VHDL [6] are optimized
for specifying hardware with support for a variety of hard-
ware characteristics such as hierarchy, fine-grained con-
currency, and elaborate timing constructs. Esterel is
another specification language similar to Verilog with
more constructs for handling exceptions [7]. SpecCharts
builds on a graphical structural hierarchy while using
VHDL to specify the implementations of the various struc-
tures in the hierarchy [4]. These languages do not have
high-level programming constructs, and this limits their ex-
pressiveness and makes it difficult to specify software. Fur-
thermore, these languages are based on execution models
that require a great deal of run-time interpretation such as
event-driven semantics. This results in low-performance
execution compared to software languages.

This paper advocates the use of Java as a single speci-
fication language for hardware-software systems by identi-
fying key language characteristics that enable both
efficient functional validation and concurrency exploration
by the hardware-software partitioner. Java is a general-pur-
pose, concurrent, object-oriented, platform-independent
programming language [10]. Java is implementation-inde-
pendent because its run-time environment is an abstract
machine called the Java virtual machine (JVM) with its
own instruction set called bytecodes [11]. The virtual ma-
chine uses a stack-based architecture; therefore, Java byte-
codes use an operand stack to store temporary results to be
used by later bytecodes. Java programs are set in an object-
oriented framework and consist of multiple classes, each of
which is compiled into a binary representation called the
classfile format. This representation lays out all the class
information including the class’s data fields and methods

whose code segments are compiled into bytecodes. These
fields and methods can be optionally declared as static.
Static fields or methods of a class are shared by all instanc-
es of that class while non-static fields or methods are dupli-
cated for each new instance. Data types in Java are either
primitive types such as integers, floats, and characters or
references (pointers) to class instances and arrays [10].
Since Java classes are predominantly linked at run-time,
references to class instances cannot be resolved at compile-
time. This presents a challenge to static analyzers in deter-
mining data flow through data field accesses and control
flow through method calls.

This paper also outlines a control/dataflow analysis
technique that can be used as a framework for detecting
concurrency in the design. Our analysis technique provides
a general solution for the problem of dynamic class alloca-
tion by aggressively pre-allocating most class instances at
compile-time and performing global reference analysis.

The rest of the paper is organized as follows. In Sec-
tion 2 we explain why Java is well-suited for hardware-
software system specification. In Section 3 we identify the
problems that arise when analyzing Java programs and
present a general solution for building control flow and
dataflow dependence information. We apply our technique
to three sample designs and analyze both explicit and im-
plicit concurrency in these designs in Section 4. We con-
clude and briefly discuss future directions in Section 5.

2 Hardware-Software Specification with
Java

It is desirable for the hardware-software co-design
process to use a single specification language for design
entry because specifications using different languages for
software and hardware combine different execution mod-
els. This makes these specifications difficult to simulate
and to analyze. Some researchers begin with a software
programming language usually C++ and extend this lan-
guage with constructs to support concurrency, timing, and
events by providing library packages or by adding new lan-
guage constructs. Examples of these approach are Scenic
[15] and V++ [17]. We take a slightly different approach.
Instead of requiring the designer to specify the hardware
implementation details in the specification, in our approach
the designer models the complete system in an algorithmic
or behavioral fashion. Software languages are well-suited
for this type of modeling. Once the specification is com-
plete, an automatic compilation process is used to analyze
the specification to identify the coarse-grained concurrency
described by the designer and uncover the finer-grained
concurrency implicit in the specification. The partitioning

and synthesis steps of the hardware-software co-design
process use the concurrency uncovered by this analysis to
create an optimized hardware-software system. The speci-
fication language used with this approach must have the
ability to specify explicit concurrency and make it easy to
uncover the implicit concurrency.

Coarse-grained concurrency is intuitive for the design-
er to specify because hardware-software systems are often
conceptualized as sets of concurrent behaviors [2]. Java is
a multi-threaded language and can readily express this sort
of concurrency. Such concurrent behaviors can be modeled
by sub-classing theThread class and overriding itsrun
method to encode the thread behavior as shown in Figure 1.

The Thread class provides methods such assuspend and
resume, yield, andsleep that manipulate the thread. Syn-
chronization, however, is supported at a lower level using
monitors implemented in two bytecode operations that pro-

SYNCHRONIZE

Read Data
loop:
Generate
x-array Proc A

Proc B Readx-array Process
x-array

class system {
static Thread procA, procB;

public static void main(String argv[])
{

procA = new procAClass();
procB = new procBClass(procA);

// Launch threads
procA.start();
procB.start();
...

}

}

system.class

procAClass.class

class procAClass extends Thread {

boolean xready = false;

synchronized void setXArray(...)
{

xready = true;
... // Write x-array data

}

synchronized arr_t getXArray(...)
{

xready = false;
... // Return x-array data

}

public void run()
{

while (...not done...) {
while (this.xready == true)

yield();
for (int i = 0; i < 100; i++)

x[i] = compute_xarray(...);
setXArray(...);

}
}

}

class procBClass extends Thread {

procAClass procA;

procBClass(Thread procA_in)
{

procA = (procAClass) procA_in;
}

public void run()
{

while (...not done...) {
while (this.xready == false)

yield();
getXArray(...);
... // Process data

}
}

}

procBClass.class

Figure 1. Concurrency in Java

vide an entry and an exit to the monitor. The sample design
shown in Figure 1 maintains synchronization when reading
and writing thex-array in methodsgetXArray andsetXAr-
ray which are tagged assynchronized.

Fine-grained concurrency is usually either non-intui-
tive or cumbersome for the designer to express in the spec-
ification. This implies that an automated co-design tool
must be able to uncover fine-grained concurrency by ana-
lyzing the specification. The primary form of concurrency
to look for is loop-level concurrency where multiple itera-
tions of the same loop can be executed simultaneously.
This form of concurrency is important to detect because al-
gorithms generally spend most of their time within core
loops. Identifying and exploiting parallel core loops can
thus provide significant performance enhancements. De-
termining whether loop iterations are parallel requires anal-
ysis to statically determine if data dependencies exist
across these loop iterations. In therun method ofprocA-
Class shown in Figure 1, if thecompute_xarray call does
not depend on values generated in previous iterations of the
for-loop, then all the iterations of the loop may be executed
simultaneously. The major hurdle that the data dependence
analysis must overcome is dealing with memory references
because these references introduce a level of indirection in
reading and writing physical memory locations. Compile-
time analysis has to be conservative in handling such refer-
ences. This conservatism is necessary to guarantee correct
system behavior across transformations introduced by the
partitioning step based on the results of the analysis. How-
ever, this conservatism causes the analysis to generate false
data dependences which are nonexistent at the system lev-
el. These dependences reduce the data parallelism that the
analysis detects. In the simple design shown in Figure 1,
without the ability to analyze dependences within the for-
loop and across the associated method call, conservative
analysis would determine that the loop iterations are inter-
dependent and hence can only be performed sequentially
reducing the degree of data parallelism in that section of the
specification by 100-fold. The advantage that Java has over
a language like C++ is that Java restricts the programmer’s
use of memory references. In Java, memory references are
strongly typed. Also, references are strictly treated as ob-
ject handles and not as memory addresses. Consequently,
pointer arithmetic is disallowed. This restrictive use of ref-
erences enables more aggressive analysis to reduce false
data dependences.

A co-design specification language should provide
high-performance execution to enable rapid functional val-
idation. Java’s execution environment uses a virtual ma-
chine. The JVM provides platform-independence;
however, this independence requires Java code to be exe-

cuted by an interpreter which reduces execution perfor-
mance compared to an identical specification modeled in
C++. Although this performance degradation is at least an
order of magnitude for Sun’s JDK 1.0 run-time environ-
ment, techniques such as just-in-time compilation are clos-
ing the performance gap to less than two-times that of
C++[12][16]. This evolution in Java tools and technology
has been and will be driven by Java’s success in other do-
mains, especially network-based applications. Moreover,
the Java run-time environment makes it easy to instrument
and gather profiling information which can be used to
guide hardware-software partitioning.

3 Analyzing Java Programs

Control and dataflow analysis of the Java specification
is required for partitioning and co-synthesis steps of the co-
design process. This analysis examines the bytecodes of in-
voked methods to determine their relative ordering and
data dependencies. These bytecodes have operand and re-
sult types that are either primitive types, or classes and ar-
rays. While primitive types are always handledby value,
class and array variables are handledby reference. These
object (class instance) references are pointers; however,
they are well-behaved compared to their C/C++ counter-
parts because these references are strongly typed and can-
not be manipulated.

Object references point to class instances that are
linked dynamically during run-time. So, prior to executing
the Java program, we can only allocate the static fields and
methods of the program’s classes. This makes it difficult to
statically analyze Java programs because if object referenc-
es cannot be resolved, calls to methods of these dynamical-
ly linked objects cannot be resolved either. This makes it
impossible to determine control flow. The only way to deal
with this problem is to conservatively assign the method in-
vocation to software so that the software run-time system
can handle the dynamic resolution. However, this reduces
the opportunities for extracting parallelism in hardware and
thus leads to inferior hardware-software design.

In order to avoid the problem with dynamically linked
objects, the specification could be restricted to use only
static fields and methods or be forced to allocate all neces-
sary objects linearly at the beginning of the program. How-
ever, this would significantly restrict the use of the
language. Our solution is to attempt topre-allocate objects
during static analysis. It should be noted that this approach
does not handle class instantiations within loops or recur-
sive method invocations.

Pre-allocation only partially solves the problem with

dynamically allocated class instances. A class reference
can point to any instance of compatible class type; there-
fore, two references of compatible class types canalias.
Conservative handling of reference aliasing reduces the ap-
parent concurrency in the specification. More aggressive
reference aliasing analysis requires global dataflow analy-
sis to determine a class instance or set of instances that a
reference may point to.

An outline of our analysis technique is shown in
Figure 2. The analysis starts with the staticmain method.
For each method processed, local analysis is performed to
determine local control and dataflow. Next, all methods in-
voked by the current method are recursively analyzed. Fi-
nally, reference point-to values are resolved in order to
determine global data dependence information. Before
elaborating on the techniques used to perform the local and
global analyses, we describe the target representation of the
CDFG.

The CDFG representation shown in Figure 3 involves
two main structures. The first structure is a table of static
and pre-allocated class instances. Aside from object ac-
counting information, this table maintains a list of entries
per object; each entry represents either a method or a non-

Figure 2. Analysis technique outline

ProcessMethod (current_method) {
Perform local analysis oncurrent_method to build local control

flow information and resolve local dependencies.
Pre-allocate new instantiationsif not inside loops or recursion.
For each method invoked {

ProcessMethod (invoked_method)
Resolve reference global analysis impacted byinvoked_method

}
Resolve global dependencies given complete reference analysis

}

ProcessMethod (main)

Figure 3. Target representation

...

Method Call
Graph

Basic Block
Control Flow

Pre-allocated Entities

Static Entities

...

Graph

primitive type data field. The data field entry is necessary
for global analysis because data fields have a global scope
during the life of their instances. Arrays are treated exactly
as class instances. In fact, arrays are modeled as classes
with no methods. The method entries point to portions of
the second main structure in the representation. The second
structure is the control dataflow information. Its nodes are
bytecode basic blocks. The edges represent local control
flow between basic blocks within a methods as well as glo-
bal control flow across method invocations and returns.

The CDFG representation models multi-threading and
exceptions using special control flow edges that annotate
information about the thread operation performed or the
exception trapped. Thread operations in Java are imple-
mented in methods of theThread class. The CDFG ab-
stracts invocations of these methods by encoding the
associated operation in the control flow edge correspond-
ing to the method call. For example, Java threads are initi-
ated by invokingThread classstart method. When the
CDFG encounters an invocation of the start method, a new
control flow edge is inserted between the invocation and
the start of the thread’srun method. This edge also indi-
cates that a new thread is being forked. On the other hand,
Exceptions in Java usetry-catch blocks where the code
which may cause an exception is placed inside thetry
clause followed by one or more subsequentcatch clauses.
Catch blocks trap on a specifiedthrown exception and ex-
ecute the corresponding handler code. The CDFG inserts
special control flow edges between the block that may
cause the exception and the handler block. These edges are
annotated with the type of exception the handler is trap-
ping. An example of how exceptions are handled in shown
in Figure 4.

3.1 Local Analysis

This step targets a particular method, identifying and
sequencing its basic blocks to capture the local control
flow. It also resolves local dependencies at two distinct lev-
els. First, since Java bytecodes rely on an operand stack for

result = a/b

Arithmetic

Handler
Code

x =x + 1

Exception

Figure 4. Exception edges in CDFG

try {
int result = a / b;

}
catch

(ArithmeticException e) {
// handler code...

}

x = x + 1;

the intermediate results, the extra level of dependency indi-
rection through the stack needs to be factored out. This is
achieved usingbytecode numbering. Second, dependencies
through local method variables are identified using reach-
ing definition dataflow analysis.

Local Control Flow. Local control flow is represented by
the method’s basic blocks and the corresponding sequenc-
ing. Basic blocks are sequences of bytecodes such that only
the first bytecode can be directly reached from outside the
block and if the first bytecode is executed, then all the byte-
codes are sequentially executed. The control flow edges
simply represent the predecessor-successor ordering of all
the basic blocks.

Local Dataflow Analysis.Dependencies exist between
bytecodes through an extra level of indirection - the oper-
and stack. We resolve this indirection by using “bytecode
numbering.” Bytecode numbering simply denotes the re-
placement of the stack semantics of each bytecode ana-
lyzed with physical operands that point to the bytecode that
generated the required result. This is simply achieved by
traversing the method’s bytecodes in program order. In-
stead of executing the bytecode, its stack behavior is simu-
lated using a compile-time operand stack,OpStack. If the
bytecode reads data off the stack, entries are popped off
OpStack, and new operands are created with the values re-
trieved from the stack. If the bytecode writes a result to the
stack, a pointer to it is pushed onto OpStack. This process
has to account for data that requires more than one stack en-
try such as double precision floating point and long integer
results. Also, stack-manipulating bytecodes such asdup
(duplicate top entry) orswap (swap top two entries) are in-
terpreted by manipulating OpStack accordingly. Then,
these bytecodes are discarded since they are no longer
needed for the purposes of code functionality. An outline
and an example of bytecode numbering are shown in
Figure 5.

Data dependencies across local variables are resolved
by computing the reaching definitions for the particular
method. A definition of a variable is a bytecode that may
assign a value to that variable. A definitiond reaches some
pointp if there exists a path from the position ofd top such
that no other definition that overwritesd is encountered.
Once all the reaching definitions are computed, it would be
clear that there exists a data dependency between bytecode
m and bytecoden if m defines a local variable used byn and
m’s definition reaches the point immediately followingn.

Computing the reaching definitions uses the iterative
dataflow Worklist algorithm [8]. This algorithm iterates
over all the basic blocks. A particular basic block propa-

gates definitions it does not overwrite. At a join point of
multiple control branches, the set of reaching definitions is
the union of the individual sets. The algorithm iterates over
the set of successors of all basic blocks whose output set of
reaching definitions changes and converges when no more
changes in these sets of reaching definitions materialize.

3.2 Global Analysis

To handle data dependencies between references, glo-
bal analysis generates for each reference the set of object
instances to which it may point out of the set of pre-allocat-
ed instances. Once this points-to relation is determined,
simple dataflow analysis techniques such as global reach-
ing definition can compute dataflow dependencies between
these references.

A straightforward solution is to examine the entire
control flow graph while treating method invocations as
regular control flow edges. Then, iterative dataflow analy-
sis can generate the points-to information for every refer-
ence. However, this approach suffers from the problem of
unrealizable paths which cause global aliasing information
to propagate from one invocation site to a non-correspond-
ing return site [9].

Figure 5. Bytecode numbering example

0

1

4

7

8

9

10

iload_1

ldc_w #4

if_icmplt 9

iconst_1

ireturn

iconst_m1

ireturn

Initialize symbolic operand stack,OpStack, to empty.
Traverse basic blocks in reverse postorder.

If current bytecodereads data from the stack,
pop OpStack into the appropriate bytecode

operand slot.
If current bytecodewrites data to the stack,

push the bytecode’s PC untoOpStack.

push local variable onto operand stack

push constant onto operand stack

pop two entries, if first < second -> jump to PC= 9

push constant = 1

pop entry and return from method with entry as return value

push constant = -1

pop entry and return from method with entry as return value

iload_1[PC = 0]

iload_1[PC = 0]

ldc_w[PC = 1]

OpStack StatusCurrent Bytecode
0 iload_1
1 ldc_w #4
4 if_icmplt 9

9 iconst_m1
10 ireturn

7 iconst_1
8 ireturn

0 iload_1

1 ldc_w #4

4 if_icmplt 9

..
.

A more context-sensitive solution motivated by [9] is
to generate a transfer function for each method to summa-
rize the impact of invoking that method on globally acces-
sible data and references. The variables that this transfer
function maps are the formal method parameters that are
references. In addition, this set of variables is extended to
include global references used inside the method through
(1) creating new instances, (2) invoking other methods that
return object references, or (3) accessing class instance
fields that are references. Input to this transfer function is
the initial points-to values of the extended parameters set.
Output generated by this transfer function is the final
points-to values of the extended parameters due to the
method invocation.

This transfer function is a summary of the accesses
(reads and writes) of the method’s extended parameters
generated using interval analysis [8]. These accesses are
ordered according to the method’s local control flow infor-
mation. Accesses can be one of the following five primitive
operations:read, assign, new, meet and invoke. The read
primitive requires one operand which is a reference; the re-
sult is the set of potential class instances to which the ref-
erence points. Theassign primitive is used to summarize an
assignment whose left-hand side is an extended parameter.
It requires two operands the first of which is the target ref-
erence. The second is a set of potential point-to instances.
Thenew primitive indicates the creation of a new class in-
stance. This primitive returns a set composed of a single in-
stance, if pre-allocation is possible (not within loop or
recursion). Otherwise, it conservatively points-to the set of
compatible class instances. Themeet primitive is necessary
to handle joining branches in the control flow. At a meet
point, the alias set of some reference assigned in one or
more of the meeting branches is the union of the alias sets
for that reference from each of the meeting control flow
edges. Finally, theinvoke primitive is used to resolve
change in reference alias sets due to invoking some meth-
od. Effectively, this primitive causes the transfer function
of the invoked method to be executed.

some_method
(obj a, obj b)

{
...
a = new obj();
...
if (test1)

b = a;
}

Figure 6. Transfer functions for global reference
analysis

TF{some_method}:

a = {a0} , b = {b0}

a = {new_obj} , b = {new_obj, b0}

assign (a ,new (obj))
meet ({} , assign (b , a))

4 Experimental Results

Hardware-software systems are multi-process sys-
tems, so partitioning and co-synthesis tools which map be-
havioral specifications to these systems need to make
hardware-software trade-offs [13]. To make these trade-
offs with the objective of maximizing the cost-performance
of the mixed implementation, it is necessary to be able to
identify the concurrency in the input specification. We
have implemented our Java front-end analysis step as a
stand-alone compilation pass that reads the design’s class
files and generates a corresponding CDFG representation.
We tested our technique using the designs listed in Table 1.

The first design,raytracer, is a simple graphical appli-
cation. It renders two spheres on top of a plane with shad-
ows and reflections due to a single, specular light source.
The second application,robotarm, is a robot arm control-
ler. The third design,decoder, is a digital signal processing
application featuring a video decoder for H.263-encoded
bitstreams [14].

The resulting control-dataflow graphs were analyzed
to identify concurrency in the specification. The analysis
examined concurrency at three levels: thread-level, loop-
level, and bytecode-level. Thread-level concurrency is ex-
hibited as communicating, concurrent processes which can
span the control flow of several methods. Loop-level con-
currency is exhibited by core loops usually confined to a
single method. Bytecode-level concurrency is exhibited by
bytecode operations that can proceed provided their data
dependencies are satisfied irrespective of a control flow or-
dering. This form of concurrency exists within basic
blocks.

Thread-level concurrency is explicitly expressed by
the designer through Java threads. Since threads are
uniquely identified in the CDFG, no work is required to un-
cover this form of parallelism. Loop-level concurrency re-
quires analysis of control and dataflow information
associated with inner loops to identify data dependencies
spanning different loop iterations and determine if these are
true dependencies, that is, dependencies between a write in
some iteration of the loop and a read in a subsequent itera-
tion. So, loops with independent iterations can execute
these iterations concurrently as mini-threads. The coarse-
grained concurrency expressed at the thread or loop level

Lines of Java Classes Instances Basic Blocks

raytracer 698 6 37 358

robotarm 1325 10 53 583

decoder 3177 23 136 2342

Table 1: Design characteristics

can be exploited by allocating these threads to different
subsystems in our target architecture.

On the other hand, bytecode-level concurrency in the
CDFG does not span multiple basic blocks; it exists at the
bytecode level within each basic block. Its degree depends
on the basic block’s “inter-bytecode” data dependencies.
This fine-grained concurrency impacts the performance
improvement of a hardware implementation of the basic
block. Hardware is inherently parallel; therefore, parallel-
ism in the design is implemented without any cost over-
head given enough structural resources to support the
parallelism. The only limitation on the degree of parallel-
ism is synchronization due to data dependencies. Hence the
execution time of some block in hardware decreases with
increased data parallelism.

Table 2 presents the results of analyzing the three dif-
ferent forms of parallelism in our sample designs . The first

column indicates the number of designer-specified threads.
The second column shows the number of parallelizable
loops while the third column indicates the average number
of bytecodes per loop. The fourth column shows the aver-
age number of bytecodes per basic block while the fifth
column assesses the average data parallelism in these basic
blocks. This bytecode-level concurrency is measured as the
average number of bytecodes that can execute simulta-
neously during a cycle of the JVM. These results show that
it is possible to extract parallelism at various levels of gran-
ularity for Java programs.

5 Conclusions and Future Work

The specification language is the starting point of the
hardware-software co-design process. We have described
key requirements of such a language. A specification lan-
guage should be expressive so that design concepts can be
easily modeled but should provide a representation that is
relatively easy to analyze and optimize for performance.
The language should also provide high-performance exe-
cution. We have shown that the Java programming lan-
guage satisfies these requirements.

Thread-level
Concurrency

Loop-level
Concurrency

Bytecode-level
Concurrency

Number of
threads

Number
of loops

Avg.
bytecodes
per loop

Avg.
bytecodes/
basic block

Avg.
bytecode

parallelism

raytracer 2 10 20 6.6 2.0

robotarm 3 9 31 6.9 2.1

decoder 3 28 27 7.1 2.5

Table 2: Parallelism assessment results

To be able to partition and eventually co-synthesize in-
put Java specifications, we must be able to analyze the
specification. However, a major problem facing this analy-
sis step in Java are dynamic links to class instances. To
make static analysis possible, we proposed a technique that
relies on aggressive reference analysis to resolve ambiguity
in global control and dataflow. This technique generates a
control dataflow graph representation for the specification.
Our results show that using this technique it is possible to
extract concurrency which can be exploited from the Java
specification.

In the future, our analysis technique will serve as a
front-end to a co-design tool which maps the Java system
specification to a target architecture composed of one or
more microprocessors tightly coupled to programmable
hardware resources.

Acknowledgments

This work was sponsored by ARPA under grant no.
MIP DABT 63-95-C-0049.

References

[1] J. Henkel, F. Vahid, and L. Ramachandran.Hardware/
Software Codesign of Embedded Systems Tutorial.
ICCAD 1995.

[2] M. Horowitz and K. Keutzer. “Hardware-Software Co-
Design,” in theProceedings of the Synthesis and
Simulation Meeting and International Interchange
(SASIMI), 1993.

[3] D. Gajski and F. Vahid. “Specification and Design of
Embedded Hardware-Software Systems,” inIEEE
Design & Test of Computers, pp. 53-67, Spring 1995.

[4] D. Gajski, F. Vahid, S. Narayan, and J, Gong.Specification
and Design of Embedded Systems. Prentice Hall, 1994.

[5] D. Thomas and P. Moorby.The Verilog Hardware
Description Language. Kluwer Academic Publishers,
1991.

[6] IEEE Inc., NY.IEEE Standard VHDL Language
Reference Manual, 1988.

[7] G. Berry and G. Gonthier. “The Esterel Synchronous
Programming Language: Design, Semantics,
Implementation,”Science of Computer Programming
vol. 19, n˚2, pp 87-152, 1992.

[8] A. Aho, R. Sethi, and J. Ullman.Compilers Principles,
Techniques and Tools. Addison-Wesley, 1986.

[9] R. Wilson and M. Lam. “Efficient Context-Sensitive
Pointer Analysis for C Programs,” in theProceedings of
the Conference on Programming Language Design and
Implementation, June 1995.

[10] J. Gosling, B. Joy, and G. Steele.The Java Language
Specification. Addison-Wesley, 1996.

[11] T. Lindholm and F. Yellin.The Java Virtual Machine
Specification. Addison-Wesley, 1996.

[12] B. Case. “Java Performance Advancing Rapidly,” in
Microprocessor Report, pp. 17-19, vol. 10, issue 7, May
27, 1996.

[13] J. Adams and D. Thomas. “Multiple-Process Behavioral
Synthesis for Mixed Hardware-Software Systems,” in the
Proceedings of the International Symposium on System
Synthesis, 1995.

[14] Telenor, Norway.Enhanced H.263. at
http://www.fou.telenor.no/brukere/DVC/mpeg4/
H.263+.html.

[15] S. Liao, S. Tjiang, and R. Gupta. “An Efficient
Implementation of Reactivity for Modeling Hardware in
Scenic Design Environment,” in theProceedings of the
34th Design Automation Conference, June 1997.

[16] T. Cramer, et al. “Compiling Java Just in Time,” inIEEE
Micro, pp. 36-43, Vol. 17, No. 2, May-June 1997.

[17] R. McGeer. “The V++ Systems Design Language,” a talk
sponsored by the Stanford CAD group, May 1997.

	CD-ROM Home Page
	ICCAD97
	Front Matter
	Table of Contents
	Session Index
	Author Index

