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Abstract

In this work, a new approach for the statistical
worst case of full-chip circuit performance and para-
metric yield prediction, using both the Modi�ed-
Principal Component Analysis (MPCA) and the Gra-
dient Method (GM), is proposed and veri�ed. This
method enables designers not only to predict the stan-
dard deviations of circuit performances but also track
the circuit performances associated with the process
shift using wafer test structure measurements. This
new method is validated experimentally during the de-
velopment and production of high density DRAMs.

1 Introduction
As the device feature size of VLSI shrinks with

new technologies, the relative variability of the pro-
cess makes the circuit performances more sensitive to
the 
uctuations in process steps. Accordingly, the sta-
tistical circuit design methodology becomes extremely
crucial for designers to meet the circuit performances
to the tight speci�cation across the entire range of pro-
cess 
uctuations. However, the applications of true
statistical techniques are limited to the research stage
or a few special purpose circuits [1] and most design-
ers still rely on the conventional method. The previous
works for statistical design can be categorized as fol-
lows:

� the statistical modeling of SPICE parameters
� the simulation techniques for yield prediction

An important task in developing a statistical SPICE
model is the identi�cation of the critical model pa-
rameters and the translations of the physical process
variations into the SPICE model. For examples, Bolt
et al. [2] and Cox et al. [3] attempted to describe
the total MOSFET variances in terms of the inter-
die variances of four physically meaningful parame-
ters: channel length, channel width, 
at-band volt-
age, and gate oxide thickness. Since these parameters
are determined by di�erent steps in the manufacturing
process, they can be assumed to be statistically inde-
pendent. The rest model parameters can be expressed
as functions of these four parameters to account for
model parameter correlations. However, each SPICE
model parameter for empiricalmodels such as BSIM or
HSPICE level 28 cannot be represented as a function

of these physically meaningful parameters. There-
fore, an incomplete work on treating statistical SPICE
model parameters could lead to erroneous conclusions
in statistical analysis and optimization. Furthermore,
it cannot trace the parametrized SPICE model asso-
ciated with the process shift which frequently occurs
in the development of products.

Statistical simulation techniques are essential for
estimating yields, designing manufacturable and ro-
bust systems, deriving worst-case models, and test-
ing. The most widely used technique for perform-
ing the statistical characterization is the Monte Carlo
analysis [4]. Unfortunately, the accuracy of the re-
sult produced using the Monte Carlo analysis is only
proportional to the square root of the number of de-
sign variables and statistical parameters. Moreover,
the number of Monte Carlo simulations required to
produce a relatively accurate result increases exponen-
tially with the number of statistical variables. There-
fore, the Monte Carlo analysis is too expensive to ap-
ply to the real VLSI designs at the full-chip level.

One promising approach to deal with these short-
comings is proposed in this paper. In this design
methodology, two statistical methods, the Modi�ed-
Principal Component Analysis (MPCA) and the Gra-
dient Method (GM), are used and veri�ed throughout
various experiments. First, we have used a technique
incorporating the Principal Component Analysis [5],
which takes the distributions of SPICE parameters
and electrical test measurements (E-tests) as inputs.
Thus, each SPICE model parameter can be expressed
as a function of independent E-tests. Then, the Gra-
dient Method [2, 6] is used to predict the standard
deviations of circuit performance with a few indepen-
dent E-tests.

We present our statistical characterization system
for prediction of yield distribution in Section 2. In
Section 3, the Principal Component Analysis and the
Gradient Method for our methodology are introduced
at the point of the mathematical formula. In Sec-
tion 4, an experimental quali�cation of the method is
discussed based on the development and VLSI prod-
ucts such as the full density test vehicle of 256 Mbit
DRAMs. Finally, we summarize this work in Section
5.
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Figure 1: A global view of the statistical characteri-
zation system

2 The Statistical Characterization

System for Worst Case Corners

A global view of the product design and charac-
terization process is shown in Fig. 1. The proposed
procedure constists of two parts: statistical SPICE
modeling with parameter extraction and yield predic-
tion.

First, APEX [7], which uses a nonlinear optimiza-
tion method [8], automatically extracts SPICE model
parameters from the database for I-V, C-V and E-tests
together with the device geometries and layout de-
sign rules. After parameter extraction with mapping
the process variations to SPICE model parameters,
pdPCA [9, 10], a commercial tool exploiting correla-
tions between parameters, interprets the covariance of
correlated SPICE model parameters. Using pdPCA,
we can derive a few independent E-tests which ac-
count for the total variance in SPICE model parame-
ters. The SPICE model parameters can be expressed
as functions of the critical independent E-tests.

After this, we can treat circuit performances as
functions of reduced orthogonal spaces of E-tests, in-
stead of fully correlated spaces of SPICE model pa-
rameters and deduce the relationship between the E-
tests and circuit performances, geometrically and ef-
fectively. This result can be directly applied to the
Gradient Method (GM), which lead to a more e�cient
prediction of circuit performances.

3 The Statistical Modeling Approach

3.1 Modi�ed Principal Component

Analysis

The Principal Component Analysis is a technique of
transforming the correlated variables into uncorre-
lated variables, called principal components. Using
this, each variable is a linear or nonlinear combina-
tion of the principal components. Thus, if p1; :::pn are
the principal components for n normalized response
variables x1; x2:::xn, then the following formula for
principal components (pj) can be determined using
the principal components analysis:

xi = ui1p1 + ui2p2 + :::+ uijpj + :::uinpn (1)

i; j = 1; 2; :::n
where

xi is the ith SPICE model parameter,
pj is the jth principal component and
uij is the loading value of xi on pj
(i.e., the correlation between xi and pj).

The coe�cient uij is chosen to satisfy 2 requirements:

V ar(pi) > V ar(pj) where i > j and (2)

pi � pj = 0 (i 6= j): (3)

Eq. (2) implies that the principal components are ar-
ranged in the order of decreasing variances and the
most informative principal component is the �rst, and
the least informative is the last. On the other hand,
the variance of p1 is as large as possible. Eq. (3)
is important to deal with statistical simulation tech-
niques because we want to express the circuit perfor-
mance in terms of statistically uncorrelated, indepen-
dent parameters [2, 3]. Therefore, based on the princi-
pal components, the original covariance of correlated
SPICE model parameters can be explained by a few
independent principal components (or pseudo param-
eters). However, these pseudo parameters represented
in Eq. (1) from the traditional PCA are of no use
because we cannot understand a physical meaning of
them. Knowing the physical interpretation would en-
able us to track how changes in the process impacts
circuit performance. It should be noticed that the
principal components result statistically from the exis-
tence of a set of low level, independently varying phys-
ical quantities, called the process disturbances [11],
that a�ect each process step in terms of the statistical
variations of an IC process. However, since process
disturbances are nonmeasurable quantities in general,
a matching algorithm [12, 13], which looks for similar-
ities between the principal components and E-tests,
was incorporated in this work in order to replace the
principal components with E-tests having the largest
correlation value.

3.2 The Gradient Method

Despite of potential bene�ts of statistical design, it
is di�cult to apply it to statistical prediction of full-
chip circuit performance because all statistical design



tools and algorithms are too expensive in computa-
tional and engineering e�orts. Therefore, a worst case
design method to predict the standard deviations of
circuit performances is more e�ective in terms of sim-
ulation time. The Gradient Method [2, 6] can be used
to predict the standard deviation of the circuit perfor-
mance. It amounts to the following problems:

z = f(x1; x2:::) (4)

where z is the simulated circuit performance (re-
sponse) and xi is an input parameter (design variable
or SPICE model parameter). The standard deviation
of circuit performance z can be predicted as:

�z =

s
(
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@x1
)
2

�x12 + (
@z

@x2
)
2

�x22 + � � � : (5)

The expression of Eq. (5) is valid, if the input pa-
rameters are independent each other and the circuit
performance z is a linear function in 3 � window of
component-space xi (this assumption will be veri�ed
throughout experiments). In this simple equation, the
standard deviation �xi

of xi is measured and the gra-

dient @P
@xi

is calculated using circuit simulation. There-

fore, the statistical distribution of the circuit perfor-
mance can be estimated using GM with the minimum
number of statistically uncorrelated independent fac-
tors that represent the variability in SPICE model pa-
rameters using MPCA.

4 Experimental Results
To demonstrate the use of statistical analysis on

equivalent full-chip circuits of DRAMs, the circuit per-
formances tRAC , which is de�ned as the time-interval
between RAS (Row Address Strobe) and DOUT (Data
Out), was analyzed in the page mode operation. The
primary interest for this example is the variation in
the time delay tRAC as a function of the statistical
device parameters.

4.1 Worst Case Design

The measurements for this work consist of I-V/C-V
curve collections and E-tests with temperature of 357
K. Table 1 lists the number of the devices and the
SPICE model parameters for the parameter extrac-
tion and the statistical SPICE modeling. All sixteen
devices (i.e, eight nMOSFETs and pMOSFETs) were
included in this experiment. To determine the re-
peatability of the parameter extractor, many sets of 31
and 38 model parameters for nMOSFETs and pMOS-
FETs were extracted for the same device size. The
simulation results using extracted SPICE model pa-
rameters agree well with the actual curves for both
nMOSFETs and pMOSFETs, as shown in Fig. 2. The
average RMS (Root of Mean Square) errors for sixteen
devices is less than 5%. The total 69� 69 correlation
matrix for SPICE model parameters was obtained in
order to preserve dependencies between nNMOSFET
and pMOSFET. As described in the previous section,

Table 1: The number of transistors and HSPICE level
28 parameters used for parameter extraction

NMOS PMOS

The number of MOSFETs 8 8
The number of SPICE parameters 31 38
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Figure 2: I-V characteristics of measured (line) and
calculated (symbol) data of L = 0.35 �m nMOSFET

we apply pdPCA to determine the minimum number
of statistically uncorrelated independent factors that
represent the variability in SPICE model parameters.

As shown in Fig. 3 [10], total 12 principal compo-
nents account for 100% of total variances in SPICE
model parameters and each SPICE model parame-
ter can be represented as a function of those, as in
Eq. (1). Using the matching algorithm [13], the �rst
4-components can be replaced with Gmmax of L =
0.40 �m pMOSFET (Gmmax), the junction capaci-
tance of n+p type (Cj), the sheet resistance of plate
poly (Rspp), and the threshold voltage of L = 25 �m

pMOSFET (Vth), as shown in Fig. 4. The �rst fac-
tor accounts for 34% of the variance of the key I-
V points and device physicals (E-tests and SPICE
model parameters). The �rst factor mainly accounts
for the variance of gate oxide thickness (TOXM), lin-
ear Vds threshold coe�cient (ETA0), weak inversion
factor (WFAC), back bias correction (X2M), and mo-
bility reduction related sensitivity parameters (LU0
and LU1). Similarly, factors 2, 3, and 4 account for
15%, 12%, and 11%, respectively.

In Eq. (5), the GM is modeled assuming that the
circuit performance is a linear function of principal
components. This assumption has been veri�ed us-
ing measurements for tRAC versus the �rst component
variation, as shown in Fig. 5. In this plot, we have
observed that tRAC can be approximated as a linear
function of the �rst component (Gmmax). In [14],
the algorithms are investigated in the case that the
data points look like they could be better �t with a
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Figure 3: Cumulative percentage of total variances in
SPICE model versus the selected number of principal
components

FACTOR1 FACTOR2 FACTOR3 FACTOR4

Tracking
E-tests

Gmmax Cj Rspp Vth SUM[%]

Ave. 34.0 15.0 12.0 11.0 72.0

toxm 90.8 1.3 2.2 0.0 94.3

eta0 78.6 4.8 1.8 0.0 85.2

k1 43.5 0.1 9.6 0.2 53.4

k2 1.6 3.3 26.2 10.1 41.1

muz 12.6 15.1 4.5 45.4 77.6

phi0 14.3 30.8 0.7 13.7 59.4

u00 1.9 15.1 12.3 7.6 36.9

u1 0.0 5.3 20.4 25.9 51.7

vfb0 45.7 33.7 0.1 0.3 79.9

wfac 76.8 1.1 1.4 7.4 86.6

x2m 82.6 0.6 0.1 1.2 84.5

leta 19.5 1.9 40.6 1.8 63.9

lk1 28.8 11.9 15.7 26.5 82.9

lk2 7.2 2.6 22.9 44.5 77.2

lmuz 5.9 1.2 25.0 51.7 83.8

lu0 72.0 1.1 12.6 1.0 86.7

lu1 80.4 0.7 4.5 0.7 86.3

lvfb 17.0 30.4 0.4 0.1 47.8

wk1 13.9 20.1 15.1 13.0 62.2

wk2 5.3 10.2 7.5 39.1 62.1

wmuz 51.1 4.9 20.8 7.3 84.1

wu0 26.3 8.1 0.2 9.1 43.7

wu1 0.2 25.7 23.8 6.2 55.9

wvfb 37.6 12.5 14.4 17.6 82.1

cj 2.3 88.0 5.9 0.1 96.3

cjsw 87.2 1.9 5.7 4.2 99.0

pb 4.3 22.2 31.5 8.6 66.6

mj 12.8 44.1 15.6 6.0 78.5

php 86.1 3.0 2.8 4.4 96.3

njsw 88.5 1.7 3.5 4.5 98.0

CGSO 35.5 0.2 6.1 12.1 54.0

Figure 4: Percentages of the HSPICE level 28 param-
eter variances which can be monitored by E-tests for
nMOSFETs
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Figure 5: Experimental (box symbol) read access
time, tRAC , versus Gmmax of L = 0.40 �m pMOS-
FET (The solid line is a linear interpolation of data.)

piecewise-linear function.
As an example of the proposed approach, we com-

pared the variations of tRAC of 256 Mbit DRAMs
with the predicted performances. The typical set of
SPICE model parameters for the nominal design was
determined by setting a mean value of Gmmax, Cj,
Rspp, and Vth from measured data in Eq. (1). Then,
best/worst values of tRAC for statistical design can
be obtained using GM. It is shown that the predicted
performance variations agree well with the measured
variations, as shown in Fig. 6.

Table 2 shows the comparison of the old method
[2, 3, 15] and the new method. The old method uses
the physically measurable model parameters and the
key parameters in order to predict the actual circuit
response to the extreme conditions of a manufactur-
ing process. These physically measurable model pa-
rameters are called skew parameters [15] or principal
factors [3]. The skew parameters are generally chosen
to be independent of each other so that the combina-
tions of skew parameters can be used to represent the
worst case. The typical skew parameters for a CMOS
technology include:

� XL - poly silicon variations
� XW - active width variations
� TOX - gate oxide thickness variations
� RSH - active layer resistivity variations
� DELVTO - threshold voltage variations

The worst case is simulated by taking all variables to
their 2-� or 3-� worst case value (3-� in this work).
From Table 2, the new method models the real distri-
bution of tRAC more accurately than the old method.

4.2 The Estimation of the Process

Shift E�ects

The proposed method is also applied to 64 Mbit
DRAMs. In this case, we have found that the �rst
4 components account for 75% of the total variance in
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Figure 6: Experimental (bars) and simulated (lines)
read access time, tRAC , from 256 Mbit DRAM

Table 2: The comparison of thw new method and the
old method

tRAC [ns] measured new method old method

best 39 39 41
typical 46 46 46
worst 57 53 52

the process variations and these components can be
replaced with Tox, V th and so on using the matching
algorithm. From this result, we can resolve the prob-
lems related to the process shift. Actually, under de-
velopment of the CMOS DRAM, gate oxide thickness
(Tox), the channel implant for nMOSFETs, and heat
annealing conditions were changed in order to obtain
the margin of electrical characteristics on the dynamic
condition of some critical circuits. The changed pro-
cess conditions are shown in Table 3. From a param-
eterized SPICE model associated with some E-tests,
a uni�ed approach to SPICE model parameter moni-
toring can be maintained as the process shifts. Thus,
the model parameter set corresponding to the process
shift can be determined. In order to verify the shift
model parameters, the threshold voltage and satura-
tion current of L = 0.40 �m nMOSFET and L = 0.45
�m pMOSFET are shown in Table 4. The predicted
values of Vth and Idsat agree well with the measured
values. In Table 5, the experiments and simulation
results are compared. We can see that the calculated
value of tRAC agrees well with experimental data while
the traditional method does not provide this result.

Yield estimation has been performed on the same
product with an inexpensive Monte Carlo analysis
[1, 16, 17]. As mentioned previously, since only a
few statistical variables are responsible for the most
of the process-induced variations on circuit perfor-
mances, the parametric yield can be estimated e�-
ciently using the RSM [18] model and the Monte Carlo
analysis. Circuit simulations are performed by sam-
pling from the normal distributions of the principal

Table 3: The conditions of process shifts

Process Changed rate [%]
Channel dose -10
Field-stop dose 12.5

Gate oxide thickness 11
Heat cycle time 100

Table 4: Calculated and measured V th [V] and Idsat
[mA] of NMOS and PMOS

NMOS PMOS

V th Idsat V th Idsat
Measured 0.58 2.27 0.80 1.07
Calculated 0.60 2.28 0.80 1.15

Table 5: The comparison of measured and calculated
typical tRAC [ns]

Measured Calculated Error rate[%]

43 42.4 1.5

34 36 38 40 42 44 46 48 50 52 54 56 58 60
tRAC [nsec]
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Figure 7: The comparison of measured (white bars)
and predicted (black bars) distribution of tRAC



components which are the results of PCA. Because
it is su�cient to �t the linear model to the relation-
ship between circuit performances and E-tests, we ap-
ply an Orthogonal Array (OA) design [19] which does
not consider interactions of two variables. In the ex-
amples, the corresponding yield was estimated to be
approximately 90% with 2057 Monte Carlo runs, as
shown in Fig. 7. The measurement estimation gives
us the yield of 80%.

5 Conclusions
An e�cient methodology for yield prediction of full-

chip circuit performance has been described in this
paper. These algorithms are based on the Modi�ed-
Principal Component Analysis the and the Gradient
Method. There are several distinct features in this
work: 1) the Gradient Method allows a great simpli-
�cation in obtaining the statistical worst case of full-
chip circuit performance, 2) this methodology enables
designers to track the circuit performance according to
the process shift using measured E-tests, and 3) the
parametric yield can be estimated e�ectively with an
inexpensive Monte Carlo analysis without any need for
the usual multitude of circuit simulations. Through-
out the application to the full-chip circuits of high
density DRAMs, it is proved that the new method
provides designers with the accurate distributions of
circuit performance and yield prediction.
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