
0-89791-993-9/97 $10.00  1997 IEEE

An Exact Gate Decomposition Algorithm for Low-Power Technology Mapping

Hai Zhou and D.F. Wong
Department of Computer Sciences

University of Texas at Austin
Austin, TX 78712-1188

Abstract
With the remarkable growth of portable application and

the increasing frequency and integration density, power is
being given comparable weight to speed and area in IC de-
signs. In technology mapping, how decomposition is done
can have a significant impact on the power dissipation of
the final implementation. In the literature, only heuristic
algorithms are given for thelow-power gate decomposi-
tion problem. In this paper, we prove many properties an
optimal decomposition tree must have. Based on these op-
timality properties, we design an efficient exact algorithm
to solve the low-power gate decomposition problem. More-
over, the exact algorithm can be easily modified to a heuris-
tic algorithm which performs much better than the known
heuristics.

1 Introduction
With the remarkable growth of portable application and

the increasing frequency and integration density, power is
being given comparable weight to speed and area in IC
designs. Power dissipation in digital CMOS circuits is
dominated by thedynamic dissipation, which is mainly the
charging and discharging of the node capacitances [5]. It
can be modeled as

P = 0:5V 2

dd
fclkCLEsw

whereVdd is the supply voltage,fclk is the clock frequency,
CL is the physical capacitance at the output of the node,
andEsw (referred to as theswitching activity) is the aver-
age number of output transitions per clock cycle. As we
can see,Vdd andfclk are fixed by the technology, butCL

andEsw can be controlled in design process.
In technology mapping, the subject netlist is usually first

decomposed into a netlist composed of only inverters and
two-inputNAND gates. How the decomposition is done can
have a significant impact on the power dissipation of the
final implementation [4, 6, 7]. We deal with thelow-power
gate decompositionproblem in this paper.

The problem appears in a few recent papers. Tiwariet
al. [6] mentioned the importance of a good decomposition
on the final result of technology mapping, but did not give

any solution. At the same time, Tsuiet al. [7] analyzed
the problem and found that Huffman’s algorithm [3] can
only be used in domino dynamic logic. For static logic
which is more important in low-power applications, only a
greedy heuristic called themodified Huffman algorithmis
given. Murgaiet al. [4] also considered the decomposition
problem, but their minimization objective was the power
consumptions due to glitches.

Since the problem for dynamic logics can be easily
solved, we only consider static logics. In our approach,
we first study the structure of an optimal decomposition
tree. This is given by a set of properties an optimal
tree must have. Then, based on these properties, we de-
signed an exact algorithm for the construction of an opti-
mal decomposition tree. The time complexity of the algo-
rithm is O(n2n), which, though still exponential, should
be regarded as efficient considering the total of more than
(2n� 1)n�1 trees in the solution space.

As a by-product, a heuristic algorithm can be easily
derived from the exact algorithm. Its running time is
O(n logn), which is much faster than theO(n2 logn) run-
ning time of the modified Huffman algorithm [7]. Since
the heuristic is strongly based on the optimality properties,
it also performs much better than the modified Huffman
algorithm. In fact our experimental results show that our
heuristic gives optimal results in most cases.

The rest of the paper is organized as follows. In sec-
tion 2, we define the low-power gate decomposition prob-
lem. In section 3, we describe Huffman’s algorithm for tree
construction and identify two special cases of the problem
which can be solved. Section 4 studies the properties of
an optimal decomposition tree. Based on these properties,
section 5 presents two algorithms: one exact algorithm and
one heuristic. Section 6 gives the experimental results and
some concluding remarks. Due to space limit, most of the
proofs are omitted. All of them can be found in [9].

2 Problem formulation
In technology decomposition, we need to decompose a

multi-input gate into a tree of two-input gates. Since an
OR gate can be treated as aNAND gate with negations of

the inputs, what we need to solve is how to decompose an
n-inputAND gate into a tree of 2-inputAND gates. We call
thisgate decomposition.

We will treat the signals in a circuit as random variables
and define thesignal probabilityof a signalx as the prob-
ability of x being 1, denoted byp(x). We use the same
model as in [6, 7], that is, we assume thezero delay model
where gate delays are assumed to be zero and thus sig-
nal transitions due to glitching are ignored; primary in-
puts are assumed to be uncorrelated (spatial independent);
and the present input signal value is independent of those
in the past (temporal independent). Under these assump-
tions, given the input signal probabilities and a decompo-
sition tree, the probabilities of internal signals can be com-
puted as follows. Start from the primary inputs, for each
z = x AND y, let p(z) = p(x)p(y). Thus, the signal prob-
ability of any nodev is equal to the product of all leaf prob-
abilities in the subtree rooted atv. For example, Figure 1
shows one gate decomposition and all signal probabilities
of the nodes.

0.4

0.5

0.8
0.5

0.4

0.5

0.8
0.5

0.2

0.4

0.08

Figure 1: Gate decomposition

The switching activityEsw depends on the implemen-
tation logic style. Inp-domino logic designs, the gate out-
puts are pre-discharged to 0, thus the switching activity of a
node is equal to the probability of being 1. LetT = (V;E)

represent the decomposition tree, andp(v), for anyv 2 V ,
denote the output signal probability of nodev. The ob-
jective function we want to minimize in domino logic isP

v2V
p(v). Because of this simple objective function, it

can be shown that Huffman’s algorithm can be used to give
an optimal decomposition tree in domino logic designs [7].

Because of the pre-discharges or pre-charges, domino
logic designs dissipate more power than static logic de-
signs, which never do extra charges or discharges. In static
logic, under the temporal independence assumption, the
switching activityEsw of signalx can be written as

Esw(x) = Pr[x : 0! 1] + Pr[x : 1! 0]

= Pr[x = 0]Pr[x = 1] + Pr[x = 1]Pr[x = 0]

= 2Pr[x = 1]Pr[x = 0]

= 2p(x)(1� p(x))

However, in their recent work [8], Wuet al. showed that,
even in the absence of temporal independence,2p(x)(1 �

p(x)) also gives the expected value of the switching ac-
tivities among all sequences that satisfy the given signal
probability.

The problem we will solve in this paper can be defined
as follows.
Low-power gate decomposition problem: Given an n-
input AND gate with inputss

1
; s
2
; : : : ; sn and their sig-

nal probabilitiesp(s
1
); p(s

2
); : : : ; p(sn), construct a tree

T = (V;E) of 2-inputAND gates withs
1
; s
2
; : : : ; sn as its

leaves such that

Esw(T) =
X

v2V

p(v)(1� p(v))

is minimized.
According to Knuth [2], the number of differentla-

beled orientedbinary trees withn leaves is
�
2n�1

n�1

�
(2n �

2)!=2n�1. In a decomposition tree, only leaves are labeled,
the internal nodes are indistinguishable. Therefore, the
number of different decomposition trees is

�
2n�1

n�1

�
(2n� 2)!

2n�1(n� 1)!
> (2n� 1)n�1:

Thus, an exhaustive enumeration method is prohibitively
expensive. Tsuiet al. [7] found Huffman’s algorithm can
not solve this problem. Instead, they gave a heuristic which
was called modified Huffman algorithm. It starts with a
forest composed of all the inputs, and incrementally com-
bines two trees into one until there is only one tree. It is a
greedy algorithm, and each time tries all pairs and chooses
the combination which gives the minimum increase on the
objective function. The time complexity of the algorithm
isO(n2 logn) [7].

This algorithm is by far not optimal. This can be shown
by a simple example. Here we have six input signals with
the following probabilities: 0.4, 0.4, 0.4, 0.94, 0.94, 0.95.
The decomposition tree constructed by the modified Huff-
man algorithm is shown in Figure 2(a), where the sum-
mation of switching activities is 1.3337. Nevertheless, a
decomposition tree shown in Figure 2(b) has 1.22748 as its
total switching activities.

3 Huffman’s algorithm
Given n leaves v

1
; v
2
; : : : ; vn with their weights

w(v
1
); w(v

2
); : : : ; w(vn), Huffman [3] gave an algorithm

to construct a binary tree with minimum weighted path
length

Pn

i=1
w(vi)li, whereli is the path length from the

root to vi. The algorithm can be described as follows.
Starting from a forest composed of all the leaves, it com-
bines two trees with the minimum weights, use the summa-
tion of the weights as the weight of the combined tree and
substitute the two trees by the combined one; this process
is continued until there is only one tree.

(a)

0.4 0.4 0.4 0.94 0.95 0.95 0.4 0.4 0.4 0.94 0.95 0.95

(b)

Figure 2: (a) Decomposition tree by modified Huffman has
switching activities 1.3337; (b) A decomposition tree with
switching activities 1.22748

If, for each internal noder with two childrenu andv,
we define the weightw(r) = w(u) + w(v), then

nX

i=1

w(vi)li =
X

u2V

w(u);

whereV represents the set of internal nodes. This formula-
tion leads us to consider Huffman’s algorithm for the low-
power gate decomposition problem. Unfortunately, it can
not solve the problem in general case [7]. However, we
find that under some conditions Huffman’s algorithm can
give optimal solutions. Before we give these conditions,
we will describe two variations of Huffman’s algorithm,
which are a little different with the original one.

Min-Huffman algorithm: Start with all the in-
put signals; combine the two signals of minimum
probabilities and substitute the two signals with
the new signal; continue the process until there
remains only one signal.

Max-Huffman algorithm: Start with all the input
signals; combine the two signals of maximum
probabilities and substitute the two signals with
the new signal; continue the process until there
remains only one signal.

As stated by the following theorem, two special cases
can be solved efficiently.

Theorem 1 If all input signal probabilities are not greater
than 0.5, the low-power gate decomposition problem can
be solved by the Min-Huffman algorithm; If the product of
all input signal probabilities is not less than 0.5, it can be
solved by the Max-Huffman algorithm.

4 Optimality properties
In previous section, we identified two special cases of

the low-power gate decomposition problem which can be

solved efficiently. In order to solve the general case, in this
section, we will study the properties of an optimal decom-
position tree.

First, we have the following simple observations.

Lemma 1 On any path from a leaf to the root in a decom-
position tree, the signal probabilities are decreasing. Each
subtree in an optimal decomposition tree is also optimal.

Further analysis gives us the following result.

Lemma 2 In an optimal decomposition tree, all inputs
whose probabilities are not greater than 0.5 must form a
separate subtree.

Lemma 2 tells us, in order to construct an optimal
decomposition tree, we can always combine the signals
whose probabilities are not greater than 0.5 into a sub-
tree. By Lemma 1, this subtree needs to be an opti-
mal one. According to Theorem 1, it can be constructed
by the Min-Huffman algorithm. In fact, since the prod-
uct of two smallest probabilities is still the smallest, in
the Min-Huffman algorithm, signals are combined sequen-
tially from low probability to high probability.

Similar analysis gives the following lemma.

Lemma 3 In an optimal decomposition tree, the internal
nodes whose probabilities are not greater than 0.5 form a
path.

In order to present the next optimality property, we need
to define two labels for each node in an optimal decompo-
sition tree. For eachv, let level(v) be the distance ofv from
the root. That is, the root has level 0, its children have level
1, etc. For eachv, if v is an internal node andp(v) � 0:5,
then letrank(v) = 0. Otherwise, letrank(v) be the mini-
mum distance ofv from any node in rank 0. The property
can be stated as follows.

Theorem 2 Let u and v be any two nodes in an opti-
mal decomposition tree. If rank(u) = rank(v) 6= 0 and
level(u) < level(v), thenp(u) � p(v).

This theorem states that, in an optimal decomposition
tree, for the nodes in the same rank other than 0, the proba-
bilities are non-increasing with respect to their levels. Ac-
cording to the definition, the probability of each internal
node in rank 1 is greater than 0.5. By Theorem 1, each sub-
tree rooted at rank 1 node can be constructed by the Max-
Huffman algorithm. Therefore, it is possible to arrange
each subtree in such a way that, in each rank, the probabil-
ities is non-decreasing from left to right. Under these ar-
rangements, an optimal decomposition tree can be visual-
ized in Figure 3, where the nodes in rank 0 form a path, and
the probabilities in other ranks are non-decreasing along
the arrows.

rank 0
rank 1

rank 2

Figure 3: Probabilities are non-decreasing along the arrows
in an optimal tree

The following theorem gives another important prop-
erty of an optimal decomposition tree.

Theorem 3 Letu andv be any siblings in an optimal de-
composition tree such that0:5 < p(u) < p(v), there can
not exist nodey in the tree such thatp(u) < p(y) < p(v).

5 Decomposition algorithms
In the previous section, we have derived some prop-

erties an optimal decomposition tree must have. Since
these properties are necessary conditions of an optimal
tree, other trees which do not observe them need not to
be considered during the optimization process. This can
reduce the search space and help us to design an efficient
algorithm for the low-power gate decomposition problem.

The following theorem combines all optimality proper-
ties given in previous section and is the basis of our exact
algorithm.

Theorem 4 Givenn input signalss
1
; s
2
; : : : ; sn such that

p(s
1
) � p(s

2
) : : : � p(sn), there is an optimal decompo-

sition tree wheresn either is combined withsn�1 or is a
direct child of the root.

Proof: We have two cases based onp(sn�1).
Case 1.p(sn�1) � 0:5. We claimsn must be a direct

child of the root in an optimal tree. Here we havep(si) �
0:5 for all 1 � i � n � 1. If p(sn) � 0:5, according
to Theorem 1, the optimal tree can be constructed by the
Min-Huffman algorithm andsn will be a direct child of
the root. On the other hand, ifp(sn) > 0:5, according to
Lemma 2, signalss

1
; s
2
; : : : ; sn�1 must form a separate

subtree, which will finally be combined withsn. This also
meanssn is a direct child of the root.

Case 2.p(sn�1) > 0:5. We show there is an optimal
tree wheresn either is combined withsn�1 or is a direct
child of the root. Denote the sibling ofsn in an optimal tree
by s. According to Lemma 1, we havep(s) � p(sn�1). If

p(s) > 0:5 then it must be thatp(s) = p(sn�1). Oth-
erwise, we will have0:5 < p(s) < p(sn�1) < p(sn),
which contradicts with Theorem 3. But ifp(s) = p(sn�1),
we can always exchange the subtree rooted ats with sn�1
and get an optimal tree wheresn is combined withsn�1.
On the other hand, ifp(s) � 0:5, then, letv be the par-
ent ofs andsn�1, we will havep(v) � 0:5. This means
rank(v) = 0 and hencerank(sn) = 1. Sincep(sn) is the
maximum, according to Theorem 2,level(sn) must be the
minimum. Therefore,level(sn) = 1, which meanssn is a
direct child of the root.

In other words, the theorem says that there is always
an optimal tree between the two configurations shown in
Figure 4. More specifically, ifp(sn�1) � 0:5 it must be
configuration I; otherwise, it can be either configuration I
or configuration II.

sn

s(n−1)s1 s2

s(n−2)s1

sns(n−1)

I II

r1 r2

v1

v2

T1

T2

Figure 4: Two configurations of an optimal decomposition
tree

Based on Theorem 4, we can design an exact algorithm
for the low-power gate decomposition problem as follows.
Givenn input signals, we first sort them according to their
probabilities such thatp(s

1
) � p(s

2
) : : : � p(sn). If

p(sn�1) � 0:5, we construct configuration I; otherwise,
we construct both configurations I and II and output the
one with the minimum switching activities. According to
Lemma 1, the subgraphsT

1
andT

2
in Figure 4 must also

be optimal. Since their input sizes are both onlyn � 1,
we can construct them recursively. This algorithm is called
ExDecompand its pseudo-code is given in Figure 5.

The correctness of the algorithm comes directly from
Theorem 4 and can be stated as the following corollary.

Corollary 4.1 The ExDecomp algorithm exactly solves
the low-power gate decomposition problem.

At each recursion inExDecomp, we need to store the
current configuration, which is upper bounded byn. Since
the recursion depth is at mostn, the space usage in the
worst case isn2. Let T (n) represent the running time of

Input: a set of signalsS = fs
1
; : : : ; sng

such thatp(s
1
) � : : : � p(sn)

Output: a decomposition treeT
ExDecomp(S)
f

if jSj = 1

returnsn;
T
1
= ExDecomp(S � fsng);

if (p(sn�1) � 0:5)

return combine(T
1
; sn);

s = combine(sn�1; sn);
T
2
= ExDecomp(S + fsg � fsn�1; sng);

if (Esw(combine(T
1
; sn)) < Esw(T2))

return combine(T
1
; sn);

elsereturnT
2
;

g

Figure 5: Pseudo-code ofExDecomp

ExDecompon an instance of sizen. It is easy to see that

T (n) = 2T (n� 1) + n:

This gives usT (n) = O(n2n). Although in the worst case
it is still need exponential time, compared with the total of
more than(2n�1)n�1 decomposition trees, it is efficient.

Besides the exact algorithm, the optimality properties
can also be used to derive a set of efficient heuristic al-
gorithms. As we can see, the complexity ofExDecomp
comes from the fact that it is not known beforehand which
configuration in Figure 4 will give the minimum switching
activities. Trade accuracy for speed, we can use heuristics
to choose only one configuration at each recursion. This
gives us the algorithm scheme shown in Figure 6 which
can be tuned into different heuristic algorithms based on
different decision criteria.

The heuristic we used in our implementation can be de-
scribed as follows. Since the structures ofT

1
andT

2
in Fig-

ure 4 are not known until we recursively construct them, we
can not compare their switching activities beforehand. But
we can find that, for the two trees, except one leaf, all other
n � 2 leaves are the same. Therefore, we can assume the
difference between the internal switching activities ofT

1

andT
2

is not too much. We also knowp(r
1
) = p(r

2
). So

the only concern comes from the difference betweenv
1

and
v
2
. Our decision criteria then is: ifEsw(v1) < Esw(v2),

choose configuration I, otherwise choose configuration II.
Since only one configuration is chosen at each recursion

in HeuDecomp, we need only keep one copy of the tree

Input: a set of signalsS = fs
1
; : : : ; sng

such thatp(s
1
) � : : : � p(sn)

Output: a decomposition treeT
HeuDecomp(S)
f

if (p(sn�1) � 0:5 or choose configuration I)f
T
1
= HeuDecomp(S � fsng);

return combine(T
1
; sn);

g

elsef
s = combine(sn�1; sn);
T
2
= HeuDecomp(S + fsg � fsn�1; sng);

returnT
2
;

g

g

Figure 6: Pseudo-code ofHeuDecomp

structure, hence the space usage is onlyn. Implemented by
the priority queue data structure [1], the running time can
also be upper bounded byO(n logn), which is much faster
than the modified Huffman algorithm. Furthermore, since
HeuDecomp is strongly based on the optimality proper-
ties, its performance should be better than that of the mod-
ified Huffman algorithm. This is supported by our experi-
mental results.

6 Experimental results
We implement both the exact algorithmExDecomp

and the heuristic algorithmHeuDecompin C++ on a Sun
Sparc 5 workstation. Our experiments focus on two as-
pects: the running time of the exact algorithm and the per-
formance of the heuristic. In order to compare the per-
formance of the heuristic, we also implement the modified
Huffman algorithm [7].

According to Lemma 2 and Theorem 1, the input signals
whose probabilities are not greater than 0.5 can be easily
combined into a subtree by the Min-Huffman algorithm.
Therefore, the complexity only depends on the number of
signals whose probabilities are greater than 0.5. In our ex-
periments, the input signal probabilities are randomly gen-
erate, and based on the above reason, all signal probabili-
ties are generated to be greater than 0.5.

On each different input size ranging from 5 to 20, we
randomly generated 100 instances. We runExDecomp,
HeuDecompand the modified Huffman algorithm on each
of them. We compute the average running time ofExDe-
comp on each input size. To measure the performance

Table 1: Experimental results
ExDecomp Modified Huffman HeuDecomp

#input time(sec.) #bad MaxRatio AvgRatio #bad MaxRatio AvgRatio
5 0.0009 43 5.51% 0.76% 6 0.430% 0.010%
6 0.0014 66 5.59% 1.29% 6 0.187% 0.006%
7 0.0028 83 7.33% 2.30% 9 0.288% 0.008%
8 0.0057 89 11.31% 4.05% 9 0.268% 0.007%
9 0.0105 93 9.95% 5.02% 8 0.254% 0.008%

10 0.0187 93 14.87% 5.97% 5 0.265% 0.005%
11 0.0424 96 14.61% 7.55% 1 0.108% 0.001%
12 0.0752 97 16.17% 8.45% 2 0.111% 0.002%
13 0.1377 100 19.41% 9.78% 0 0.000% 0.000%
14 0.3050 97 19.97% 9.83% 0 0.000% 0.000%
15 0.5465 100 20.44% 11.32% 0 0.000% 0.000%
16 1.1539 98 20.82% 11.09% 0 0.000% 0.000%
18 3.9232 99 25.23% 12.25% 0 0.000% 0.000%
20 14.2497 100 29.55% 12.32% 0 0.000% 0.000%

of HeuDecompand the modified Huffman algorithm, we
compare their solutions with the optimal solution given
by ExDecomp. The number of non-optimal solutions is
counted. For each instanceI , let Opt(I) represent the op-
timal solution, we use the ratio

R =
S(I)�Opt(I)

Opt(I)

to measure the performance of solutionS(I). For each
algorithm, the maximum and average ratios are computed.

Based on the results reported in Table 1, we have the fol-
lowing conclusions. First,ExDecompis efficient in prac-
tice. For 20 input probabilities which are greater than 0.5,
the average running time is less than 15 seconds. In real-
ity, usually only half of the input probabilities are greater
than 0.5. This means a problem with 40 inputs can be
solved in less than 15 seconds. Second, the performance
of HeuDecompis very good. Among all the 1400 solu-
tions reported in Table 1, only 46 of them are not optimal.
Among these non-optimal solutions, the largest deviation
from the optimal solution is only 0.43%. Finally, an inter-
esting phenomenon is that, with the increasing of the in-
put size,HeuDecompperforms better and better. Starting
from 13 inputs, all solutions given byHeuDecompare op-
timal. Based on this phenomenon and the fact thatExDe-
comp runs very fast when the input size is not too large,
we can use the following strategy for the low-power gate
decomposition problem: if the input size is not too large,
useExDecomp; otherwise, useHeuDecomp.

References
[1] T.H. Cormen, C.E. Leiserson, and R.L. Rivest,Intro-

duction to Algorithms. MIT Press, 1990.

[2] D.E. Knuth, Fundamental Algorithms, Volume 1 of
The Art of Computer Programming. Addison-Wesley,
1968. Second edition, 1973.

[3] D.A. Huffman, A Method for the Construction of
Minimum Redundancy Codes. InProceedings of the
IRE, volume 40, pages 1098-1101, Sept. 1952.

[4] R. Murgai, R.K. Brayton, and A. Sangiovanni-
Vincentelli, Decomposition of Logic Functions for
Minimum Transition Activity.Proceeding of the In-
ternational Workshop on Low Power Design, 1994.

[5] M. Pedram, Power Minimization in IC Design: Prin-
ciples and Applications.ACM Trans. on Design Au-
tomation of Electronic Systems, Jan., 1996.

[6] V. Tiwari, P. Ashar, and S. Malik, Technology Map-
ping for Low Power.ACM/IEEE Design Automation
Conference, 1993.

[7] C.-Y. Tsui, M. Pedram, and A.M. Despain, Tech-
nology Decomposition and Mapping Targeting Low
Power Dissipation.ACM/IEEE Design Automation
Conference, 1993.

[8] Q. Wu, M. Pedram, and X. Wu, A Note on the Re-
lationship Between Signal Probability and Switching
Activity. Asian and South Pacific Design Automation
Conference, 1997.

[9] H. Zhou and D.F. Wong, An Exact Gate Decomposi-
tion Algorithm for Low-Power Technology Mapping.
Technical Report TR97-21, Department of Computer
Sciences, University of Texas at Austin, 1997.

	CD-ROM Home Page
	ICCAD97
	Front Matter
	Table of Contents
	Session Index
	Author Index

