
Hierarchical Partitioning for Field-Programmable Systems†

Vi Chi Chan* and David Lewis
Department of Electrical and Computer Engineering, University of Toronto

billy@lsil.com, lewis@eecg.toronto.edu

 Abstract

This paper presents a new recursive bipartitioning
algorithms targeted for a hierarchical field-programmable
system. It draws new insights into relating the quality of
bipartitioning algorithm to circuit structures by the use of
the partitioning tree [11]. The final algorithm proposed
not only forms the basis for the partitioning solution of a
1-million gate Field Programmable System [1] but can
also be applied to general VLSI or multiple-FPGA parti-
tioning problems.

1.0 Introduction

The reprogrammability of FPGAs has made possible a
number of systems for rapid prototyping and emulation.
These multiple-FPGA designs, primarily aimed at ASIC
applications, tend to be severely pin limited. Since the pin
constraints of the FPGA are hard limits, and low in terms
of the number of pins per device, high quality partitioning
is necessary to achieve acceptable utilization of the
FPGA. Most common methods, based on Fiduccia-Mat-
theyses (FM) [2] cannot achieve reasonable utilization.

This paper addresses hierarchical partitioning for Field
Programmable (FP) systems, with particular regard to the
Transmogrifier-2 (TM-2) [1]. This paper focuses on bipar-
titioning with special attention to the quality of overall
partitioning result across all levels of recursive bi-parti-
tioning, rather than a single bi-partitioning. The algorithm
devised is also a high quality bi-partitioner in its own
right. The specific techniques introduced in this paper are:

(1) A new adaptive FM iterative partitioning procedure.

(2) The use of spectral partitioning methods to prune the
network to exploit circuit structure and remove nets
that would otherwise distort the partitioning.

(3) The use of the partitioning tree to explain the effec-
tiveness of FM, KL-FM [3] in terms of circuit struc-
ture.

Our implementation of this algorithm is 10-50% more
effective than previously published bipartitioners.

Section 3 of this paper discusses background informa-
tion of this research. Section 4, 5 and 6 present the above
mentioned research while Section 7 presents the experi-
mental results. Section 8 concludes with summary and
suggestion for future work.

2.0 Previous Work

Traditional partitioning schemes can be divided into
two major categories: iterative or analytical.

The most commonly used iterative method is Fiduccia-
Mattheyses (FM) [2] partitioning. This method consists of
multiple passes. In each pass, random partitions are
improved iteratively by cell movements from one partition
to the other until no further improvement in cutset size is
observed.

Many passes (each begin with a unique random starting
point) are usually needed to produce good results, espe-
cially when circuits are large (as random partition assign-
ment cannot sufficiently cover the solution space). Out of
the many passes, only the best pass results are saved.
Information captured by all the other passes is lost.

Many modifications/improvements of the FM method
are available. Krishnamurthy [3] suggested the use of gain
vectors instead of single gain values to reduce ambiguity
when choosing cells to move; Hagen et. al [4] introduced
locality in cell selection by using LIFO queue as data
structure instead of simple linked list. Although each has
its own benefit, neither of them improves partitioning
result significantly, largely because they do not introduce
any means for the algorithm to climb over steep hills of
valleys where local minima reside.

Another partitioning algorithm suggested by Kernighan
and Lin [5] is more successful in improving the results of
FM[R]. The KLFM algorithm divides the partitions

generated by FM into 4 sub-partitionsA B,{ }† This work was supported by Micronet, Canada.

* Now with the Toronto Design Centre, LSI Logic Corp. of Canada.

0-89791-993-9/97 $10.00  1997 IEEE

 by applying FM partitioning to and

. These 4 sub-partitions are swapped an merged to form

new initial partitions for another pass of FM, i.e.

, or ,

. This procedure of sub-dividing, swapping

and re-partitioning is continued until no further improve-
ment on the cutset is observed.

This method produces much better results per iteration
because it explores different combinations of sub-parti-
tions to form initial partitions, instead of just a single trial
of random partition assignment. By doing so, this method
is effectively exploring different way to construct the par-
titioning tree at the top level (as can be seen later in this
paper).

The other major partitioning technique is analytical
partitioning. Among different methods in this area, the
spectral method (eigenvector embedding [6]) has received
much attention recently. In this method, the circuit is rep-
resented in an hypergraph from which a symmetric non-
negative definite matrix (the Laplacian) is
derived (after transforming multi-point nets into cliques).

The eigenvalue of can be expressed as ,

where is the corresponding eigenvector. If we consider

 as a one-dimensional mapping of the cells in the cir-

cuits, the quantity is equivalent to

, the sum of the quadratic distances

between connected cells. For a normalized eigenvector ,

. Therefore, the smaller the , the smaller the
sum of the quadratic distances between connected cells. In
a connected graph, this quantity can be used as a heuristic
measure of placement or partitioning quality, i.e. by mini-
mizing this sum of quadratic distances, the distances
between heavily connected cells should also be mini-
mized, yielding a natural clustering of cells from which
good quality partitions can be determined. Since has 0
as its smallest eigenvalue, the first non-trivial solution to
this minimization problem is thus the second smallest
eigenvalue of and its corresponding eigenvector.

Although popular, the spectral method has been shown
[10][12] to be sensitive to changes in circuit structures.
This result, however, also implies that if only we can
choose the information processed by the analytical
method (selecting certain connections between cells and
mask out others), we can target specific area of a circuit

A0 A1 B0 B1, , ,{ } A

B

C D,{ }
C A0 B0∪= D A1 B1∪= C A0 B1∪=

D A1 B0∪=

Q D A–=

Q λ x'Qx

x
2

-----------=

x

x

x'Qx

xi xj–()2

vi vj,() EH∈
∑

x

λ x'Qx= λ

Q

Q

for partitioning.

Our interest in partitioning is motivated in particular by
a field-programmable rapid-prototyping called the Trans-
mogrifier-2 (TM-2)[1]. This system contains a number of
FPGAs, up to 32 in a full sized system, and a collection of
partial crossbars providing interconnected between the
FPGAs. At a conceptual level, there are up to 5 levels of
crossbar, where level provides interconnect between a

collection of FPGAs. An overview of the architecture
is given in Fig. 2.1, and for full details consult ref. [1].

3.0 Algorithms

This section of the paper describes our algorithm devel-
opment. There are three main features of our algorithm.

3.1 Adaptive FM

In the traditional FM procedure a large number of
passes is usually required to obtain a good result; several
hundred passes can be required for large circuits.

To avoid this disadvantage, a new method of retaining
information from each of the partitions generated by FM is
proposed. This method adaptively produces new initial
partitions using previous good partitioning results. For
each pass, an initial placement vector is constructed, using
a weighted placement value that depends on all previous
partitioning results. Each gate is initially assigned to the
left or right side depending on the weighted average of its
final position at the end of previous passes. The weighting
factor is based on the quality of the final result in each pre-
vious pass, so that good results are weighted higher than
poor results. The result of each pass is only used if the cut-
set size is within 20% of the best cutset size seen so far. A
minor complication occurs in that left and right are arbi-

i

2
i

FPGA FPGA FPGA FPGA FPGA FPGA FPGA FPGA

XBAR XBAR XBAR XBAR

XBARXBAR

XBAR

Level 1

Level 2

Level 3

Figure 2.1 Hierarchical model of the TM-2
routing architecture

trary partitions (i.e. the partition with each gate swapped
from left to right is identical in cost, but appears to be the
exact opposite partition.) The algorithm must optionally
swap the partitioning to determine the orientation that is
most similar to the previous partition. This is done by
comparing the number of cells that have the same orienta-
tion as in the result of the best pass so far. If this is less
than half, the left and right partitions are swapped before
they are used to calculate their contribution to the initial
weighting of the next pass.

(1) Generate initial partitions by a random
procedure followed by FM, with cutset size and

scaling factor . Generate the orientation

vector where iff

, and iff . From and ,

derive a weighted placement vector:

, where . Record the

best cutset and the best orientation vector (partition
assignments) as and .

(2) Set . Generate a new partition as in

(1).

(3) If , goto step (4) else (5).

(4) Compare the orientation vector with . If the

majority of partition assignments disagree between

 and (i.e. the sum of)

then flip the orientation of . Update the placement

vector : , where is the i-th

element of the adjusted . If , update

 and , goto step (6).

(5) , if , goto (7); else produce new

partition as in (1), goto step (3).

(6) Sort the placement vector to produce a one-
dimensional embedding of cells. The optimal cut
point is determined within the cutratio constrain,

forming partitions . FM is then

applied to give , Set . if

, goto step (7), else goto step (3).

(7) The best partition result is restored as the out-

put. End.

A0 B0,{ }
c0

s0 1 c0⁄=

P0 p0 p1 … pn, , ,{ }= pi 1–=

vi A0∈ pi 1= vi B0∈ P0 s0

X x0 x1 … xn, , ,{ }= xi pi s0×=

cbest Pbest

k 1= Ak Bk,{ }

0.8
ck

cbest
----------- 1.2≤ ≤

Pk Pbest

Pk Pbest xor Pk Pbest,() n 2⁄>

Pk

X xi xi s1 pi×()+= pi

Pk ck cbest<

Pbest Pk= cbest ck=

k k 1+= k kmax>

Ak Bk,{ }

X

Ak 1+ Bk 1+,{ }

Ak 1+ Bk 1+,{ } k k 1+=

k kmax>

Pbest

This algorithm is graphically represented in Figure 3.1.

Experiments were carried out to compare this new
method with that of traditional random initial placement
scheme. These experiments estimated the number of
passes required to achieve an acceptable result, defined as
within 5% of the best that can be achieved. Since the best
possible is not known, we used FM for 200 passes and
adopted this as an estimate of the best possible. The first
acceptable pass is define as the first pass of FM that comes
within 5% of the final result. On average, it takes 83 passes
of FM to come within 5% the 200 pass result. The adap-
tive method achieves cut counts 23% smaller, and takes
only 35 passes on average. The reduction in CPU time is
much more dramatic because later FM passes converge
much more quickly to their final result. CPU time is
reduced 92%. The results are summarized in Table 1.

3.2 Partitioning Tree Based Placement

The adaptive FM method shows that partitioning results
can be significantly improved if more information about
the circuit is gathered. In fact, as circuits grow larger and
more complex, circuit structure information will be more
important to the success of partitioning of the circuit.

The partitioning tree (Figure 3.2) is a graphical repre-

Figure 3.1 Adaptive FM pass Method

Left Right Iteration Cutset

1

2

3

10

8

Weighed Sums:

12

Left Right

Cut Ratio Boundaries

Search for best cut point

RightLeft

Initial Partitions for Iteration 4

Result of Iteration 4

FM Iteration/cell-exchange

(-1/10) + (1/12) + (-1/8) = -0.1417

(1/10) + (1/12) + (1/8) = 0.3083

(-1/10) + (-1/12) + (-1/8) = -0.3083

sentation of circuit structure as affected by recursive
bipartitioning process. It has been used in placement algo-
rithm or the estimation of circuit parameters [11], but sel-
dom has it been used to motivate the partitioning
algorithm before.

When considering partitioning algorithms, especially
algorithms which involve exchanging cells or groups of
cells, the partitioning tree can be used to demonstrate the

Figure 3.2 Partitioning Tree

Global Connections

Intermediate
Levels

Local Connections

effectiveness in exploring circuit structure by such algo-
rithms, e.g.:

(1) KL-partition exchange scheme exchanges sub-parti-
tions at the top of the tree. Branches at the top 2 lev-
els are affected the most.

(2) FM cell exchanges swap cells individually. The
effect of cell exchanges propagate up from the leaves
of the tree.

The GORDIANL [9] based bipartitioning algorithm PARABOLI [8] recursively
bipartitions down to single cell, effectively traversing the entire partitioning tree and
building it from bottom up to find the best bipartition point for the circuit.

The traditional partitioning scheme of KLFM (KL-par-
tition exchange followed by FM passes) attempts to
explore different combination of the upper level branches
while allow the cell movement at the bottom to refine the
results. For small circuits, such an approach can suffi-
ciently cover the entire partitioning tree structure. For
large circuits, a considerable subset of the middle portion
of the circuits is not explored (since the effect of FM cell
movement weaken as it propagates upward, affecting
fewer upper level branches).

Test
Circuits

Size - #
of

Logic
Gates

Conventional FM Adaptive FM

% Improvement
on Cutset Size

First
Acceptable

 Pass

Best
Cutset
Size

CPU Time
(sec.)

First
Acceptable

Pass

Best
Cutset
Size

CPU Time
(sec.)

balu 801 183 84 19.33 183 84 19.45 0.00%

primary1 833 24 58 2.87 24 58 3.90 0.00%

bm1 882 166 60 31.63 9 76 0.97 -26.67%

test4 1515 18 132 5.80 98 140 29.63 -6.06%

test3 1607 22 109 10.23 60 115 27.64 -5.50%

test2 1663 66 186 23.02 40 183 13.28 1.61%

test6 1752 150 108 65.51 150 108 61.53 0.00%

struct 1952 18 162 8.85 10 46 3.73 71.60%

test5 2595 38 273 31.82 9 251 7.97 8.06%

19ks 2844 78 244 145.79 6 160 9.42 34.43%

primary2 3024 66 314 162.11 9 173 10.42 44.90%

s9234 5866 36 312 213.29 7 212 34.58 32.05%

biomed 6514 179 364 1303.78 6 182 32.40 50.00%

s13207 8772 79 311 1069.42 8 163 121.06 47.59%

s15850 10470 30 481 526.38 7 316 111.63 34.30%

industry2 12637 177 609 7415.62 8 224 169.56 63.22%

s35932 18148 7 1103 669.27 4 871 239.64 21.03%

s38584 20995 100 1751 8812.52 30 1327 1841.39 24.21%

s38417 23949 147 1082 23493.47 8 524 899.39 51.57%

avg. 83 7743 2316.35 35 5213 191.45 23.49%

Table 3.1 Adaptive FM vs. Conventional FM

3.3 New Bipartitioning Algorithm

From the above section, it is clear that a good partition-
ing algorithm must be able to extract information from the
entire partitioning tree to be effective. However, little is
known about how the middle portion of the partitioning
tree can be explored.

Considering the spectral method, we realize that since
the entire circuit is transformed into the Laplacian matrix

, any connectivity information must also be stored in the
matrix and partitions generated by the spectral method
will have information related to the middle portion of the
partitioning tree too. Therefore, our first attempt is to
combine the KLFM algorithm with the spectral method,
forming a new algorithm called KLEFM.

The KLEFM algorithm uses the spectral method to
produce an initial partition (by determining cut point in
the one-dimensional embedding generated by the eigen-
vector) which is then processed by one pass of KLFM.
The results are encouraging (Table 3.2): on average, it is
55% better than 20 passes of FM and 40% better than
EIG1 [6].

Table 3.2 Comparison of Adaptive FM to Eigenvalue
and KLFM

However, straight-forward application of the spectral
method is not desirable because of it is sensitive to circuit
structure. In another experiment [12], a small number (<
5%) of nets were removed from test circuits. The spectral

Circuit

Cut Count

20 Adaptive
FM Passes EIG1 KLEFM

19ks 251 179 141

bm1 64 75 61

primary1 59 75 52

primary2 314 254 161

test02 186 196 109

test03 109 85 60

test04 132 207 57

test05 279 167 107

test06 134 295 67

balu 89 110 39

struct 162 49 54

biomed 394 286 153

s13207 311 110 89

s15850 481 125 72

industry2 700 525 384

Total 3665 2738 1655

Q

method shows large variance in the partition results over
small changes in circuit structure. Because we are only
interested in using the spectral method to extract the infor-
mation related to medium connectivities, feeding the spec-
tral method with the entire circuit seem unnecessary. In
light of the fact that spectral method is sensitive to changes
in circuit structure, it is also possible that by giving the
spectral method the entire netlist, some connectivity infor-
mation at the global or local levels would interfere with
our objective. If we can select connectivities related only
to the middle portion of the partitioning tree, we can use
the spectral technique to produce partition that only
reflects the circuit information in that area of the partition-
ing tree.

The middle portion of the partitioning tree represents
cells that are connected in medium connectivities (i.e. not
too locally nor globally connected). The spectral technique
produces a linear embedding of cells related to the quad-
ratic distances between connected cells. It is a heuristic
measure of how the cells should be placed to minimize the
sum of the quadratic distances between connected cells.
Thus, it is reasonable to assume that cells that are placed
close together have local connectivities and that cells
placed far apart have global connectivities.

We define thespan of a net to be the distance (in the 1-
dimensional embedding) between the farthest cells con-
nected by the net. The assumption made earlier allows us
to remove nets with extremely large or extremely small
spans, in order to extract nets with medium connectivities.
By reconstructing a new graph with only those nets and
partition it with the spectral method, we screen out the
global and local portions of the nets from the circuit,
allowing the spectral method to just focus on the medium
connectivity information. The algorithm is thus as follows:

(1) Transform circuit into graph using a clique
model.

a11 … a1n

… … …
an1 … ann

Eigenvector Embedding

Figure 3.3 Eigenvector Embedding and Net Spans

Circuit

net n1 net n2 net n3

Comparison of net spans: n1 < n3 < n2

Laplacian Matrix

G V E,()

(2) Generate the Laplacian matrix and extract the

2nd smallest eigenvalue/vector pair .

(3) For each net , calculate the span

, where

 are coordinates of cells connected to .

(4) Sort vector .

(5) Remove the top 5% and bottom 5% of the sorted list,
which represent the global and local connections of
the original circuit.

(6) Construct a new graph with the remaining
nets. Repeat step (2) for this new graph.

(7) Partition the eigenvector embedding as in the spec-
tral method.

(8) The partition is then processed by KLFM.

(9) 20 passes of Adaptive FM is the followed to refine
the result.

Figure 3.4 shows the algorithm flow while Table 3.3

Q

λ x,()

ni

si max xi0 … xik, ,() min xi0 … xik, ,()–=

xi0 … xik, , ni

S so … sN, ,{ }=

G' V' E',()

n n n

Sorted List of Net Spans:

b11 … b1n

… … …
bn1 … bnn

Cut off top and bottom 5% of nets

New Circuit Created
with the Pruned netlist

New Laplacian Matrix

New Eigenvector Embedding for Partitioning

KLFM
Initial Partitions

Final Partitions

Figure 3.4 Hierarchical Partitioning Algorithm

20 passes of Adaptive FM

A B

presents the experimental results. On average, the pro-
posed algorithm out-performs EIG1, PARABOLI [8] and
MELO [7] by 50%, 17% and 10% respectively.

4.0 TM-2 specific algorithms

Several other changes were also implemented to tailor
the proposed algorithm to the TM-2 routing structure:

(1) The original FM cost function (simple cutset), was
replaced by a pin usage cost function. In multiple
FPGA systems, a wire between 2 FPGAs introduces
two pins (one for each FPGA) while a primary IO
introduces one pin. When nets divided at the top
level of the hierarchy is further divided in the lower
level, more and more pins are introduced. At the
lower level, the simple cutset cost function no longer
reflects the wire resources usage accurately. To accu-
rately model the FPGA pin cost, a pin usage gain
function was developed for the FM procedure, out-
lined as follows. An appropriate gain update func-
tion is also necessary, and is described in [12].

Pinuage Gain Calculation:

Given: - any given cell in the circuit

- nets connected to

, I/O pins connected to

 - partition contains , - the opposite partition

 and are number of pins in and

- set of partitions that have the highest pin usage

Output: - the gain of cell c
begin

Use original FM gain calculation to calculate

for all in , begin

group cells connected to into , where

contains cells in , is defined similarly.

if (and) then

if (or (and)) then

end if
end if

if (and) then

end if
end for

end

c

N n0 … nk, ,{ }= c

P p0 … pm, ,{ }= c

A c B

UA UB A B

℘max

g

g 0←

g

pi P

pi ℘A ℘B,{ } ℘A

A ℘B

℘A 1= A ℘max∈

℘B 0> ℘B 0= UA UB 1+>

g g 1+←

℘B 0= B ℘max∈

g g 1–←

(2) A post-processing stage was also introduced to route
the crossbar structure to remove congestion in any
overly crowded crossbars (see [12]). Because of the
implementation of the TM-2 [1], higher level cross-
bars can be used to route lower level connections,
but not vice versa.

(3) A balancing scheme was devised to determine the
appropriate cut-ratios at each level of bi-partition.
This scheme dynamically determines the cut-ratio to
use at each level by considering the cutset produced
and the number of levels below the hierarchy, trying
to avoid congestion at the lower level induced by
unbalanced top level partitions. The detail of this
scheme can also be obtained from ref. [12].

5.0 Experimental Results

The new hierarchical partitioning algorithm was
applied to all the large (>1500 4-LUTs) circuits in the
MCNC LGSynth93 benchmark. Since there are multiple
levels of wiring resources, the results have been graphed
and compared on each of the levels. Figure 4.1 shows a
comparison of the routing resources required the top level
of an 8-FPGA system. It compares recursive FM to our
algorithm since no direct comparison could be made with
other published results. Because it is difficult to find cir-
cuits of sufficient size to fill a significant proportion of the
TM-2, we used a scaled version for the experiments. This

defines a boundary of feasible systems based on hypothet-

ical FPGAs with pin counts that scale as , where is
the number of gates per FPGA. The partitioner is also
capable of using the capacity of the FPGAs to determine
the utilization necessary at each stage in partitioning. As
the required utilization of the FPGAs decreases, the imbal-
ance of partition sizes increases, causing lower wire
counts, but requiring larger FPGAs. Each curve in the plot
shows the cut count as the utilization of the FPGAs is var-
ied from 80% down to 20%. The solid lines show results
for our algorithms and the dashed for recursive FM. The
solid curve at the lower portion of the graph shows the

TM-2 feasible boundary (the curve). As FPGA sizes
increases, the partitioner has more freedom to perform bet-
ter partitioning, thus the solid lines drop down below the
feasible boundary, indicating that the design is imple-
mentable with the TM-2 structure. From this graph, we
can see clearly that FM fails to produce partitions that are
feasible under the TM-2 architecture. 10 out of the 11 test
circuits could be mapped into a scaled 8-FPGA TM-2 sys-
tem with utilization ranging from 20 to 80%. If recursive
FM is used, only 2 out of the 11 circuits could fit into the
scaled system. Comparisons are also made in 4, 16 and 32-
FPGA system and the results are presented in [12].

n n

n

Circuit

Cut Count % Improvement Compare to:

EIG1 PAR MELO Our Algo. EIG1 PAR MELO

19ks 179 - 119 129 27.93% - -8.40%

bm1 75 - 48 47 37.33% - 2.08%

prim1 75 53 64 49 34.67% 7.50% 23.44%

prim2 254 146 169 160 37.01% -9.50% 5.33%

test02 196 - 106 100 48.98% - 5.67%

test03 85 - 60 66 22.35% - -10.00%

test04 207 - 61 69 66.67% - -13.11%

test05 167 - 102 90 46.11% - 11.76%

test06 295 - 90 66 77.63% - 26.67%

balu 110 41 28 27 75.46% 34.15% 3.57%

struct 49 40 38 36 26.53% 10.00% 5.26%

biomed 286 135 115 83 70.98% 38.52% 27.83%

s9234 166 74 79 49 70.48% 33.78% 37.97%

s13207 110 91 104 75 31.82% 17.59% 27.88%

s15850 125 91 52 55 56.00% 39.56% -5.77%

ind2 525 193 319 224 57.33% -16.06% 29.78%

TOTAL 2904 1554 1324 avg. 49.30% avg. 17.28% avg. 10.62%

Table 3.3 Comparison between EIG1, PARABOLI, MELO and the Proposed Algorithm

6.0 Conclusions

This paper presents a top-to-bottom partitioning
scheme for a hierarchical FPGA system. The bi-partition-
ing procedure, when applied alone, produces results that
are 10-50% better than previously published bi-partition-
ing methods. The effective use and combination of the
spectral method and KLFM allows us to explore circuit
information at different level of the partitioning tree.
When applied to hierarchical system, the proposed algo-
rithm produces more fits (10 vs. 2) than recursive FM pro-
cedure, allowing logic utilization to increase while
maintaining a feasible wiring requirement.

As circuit designs become more complex and highly
integrated, circuit partitioning must look for ways to
improve the partition result for placement and routing.
This research along with other recent partitioning
research [13] show that one of the way to improve circuit
partitioning is by extracting information from circuit
structure, be it through clustering or through heuristic
approach of the partitioning tree. This research also pro-
vides insights into partitioning problem relating to circuit
structure and hierarchical partitioning.

7.0 References

 [1] D.M. Lewis, D.R. Galloway, M. van Ierrsel, J. Rose and P.
Chow, “ The Transmogrifier-2: A 1-Million Gate Rapid
Prototyping System”, FPGA 97.

 [2] C.M. Fiduccia and R.M. Mattheyses, “A Linear-time Heu-
ristic for Improving Network Partitioning”, 19th Design
Automation Conference, 1982, pp. 175-181.

 [3] B. Krishnamurthy “An Improved Min-Cut Algorithm For
Partitioning VLSI Networks”, IEEE Transactions On Com-
puters, Vol. C-33, No. 5., 1984, pp 438-446.

 [4] L. Hagen, D. Huang and A. Kahng, “On Implementation
Choices for Iterative Improvement Partitioning Algo-
rithms”, 1995.

 [5] B.W. Kernighan and S. Lin, “An Efficient Heuristic Proce-
dure for Partitioning Graphs”, Bell System Technical Jour-
nal, Vol. 49, No. 2, 1970, pp. 291-307.

 [6] L.Hagen and A. Kahng “Fast Spectral Methods for Ratio
Cut Partitioning and Clustering”, ICCAD, 1991, pp. 10-13.

 [7] C.J. Alpert and S. Yao “Spectral Partitioning: The More
Eigenvectors, The Better”, 32nd Design Automation Con-
ference, 1995, pp. 195-200.

 [8] B.M. Riess, K. Doll and F.M. Johannes “Partitioning Very
Large Circuits Using Analytical Placement Techniques”,
31st Design Automation Conference, 1994, pp 646-651.

 [9] G. Sigl, K. Doll, F.M. Johannes “Analytical Placement: A
Linear or a Quadratic Objective Function?”, 28th Design
Automation Conference, 1991, pp. 427-431.

 [10] S. Guattery and G. Miller, “On The Performance of Spec-
tral Graph Partitioning Methods”, 6th Annual ACM/SIAM
Symposium on Discrete Algorithms 1995.

 [11] L. Hagen, A. Kahng, F. Kurdahi and C. Ramachandran,
“On the Intrinsic Rent Parameter and Spectral-based Parti-
tioning Methodologies”, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, Vol. 13.
No. 1. 1994, pp. 27-37

 [12] Vi Chi Chan, “M.A.Sc. Thesis: A Partitioning Algorithm
for the Transmogrifier-2”, University of Toronto, 1997.

 [13] S. Dutt and W. Deng, “VLSI Circuit Partitioning by Clus-
ter-Removal Using Iterative Improvement Techniques”,
ICCAD, 1996, pp. 194-200.

0

100

200

300

400

500

600

700

0 1000 2000 3000 4000 5000 6000

m
ax

im
um

 w
ire

 c
ou

nt
 a

t l
ev

el
 3

size of each FPGA

Level 3 maximum wire requirement for size 8 TM-2 systems

TM-2 feasible boundary
clma
frisc
spla

s38584
clma - fm
frisc - fm
spla - fm

s38584 - fm

Figure 4.1 Proposed Algorithm vs. FM (8-FPGA System)

	CD-ROM Home Page
	ICCAD97
	Front Matter
	Table of Contents
	Session Index
	Author Index

