Built-In Test Generation for Synchronous Sequential Circuits

Irith Pomeranz and Sudhakar M. Reddy
Electrical and Computer Engineering Department
University of lowa
lowa City, IA 52242

Abstract A method to generate input sequences to test a syn-
We consider the problem of built-in test generation for syn- chronous sequential circuit using built-in test pattern generators
chronous sequential circuits. The proposed scheme leaves thwithout modifying the circuit flip-flops was proposed in [5]. In
circuit flip-flops unmodified, and thus allows at-speed test appli- [5], a sequence of pseudo-random primary input patterns pro-
cation. We introduce a uniform, parametrized structure for testduced by arLFSRis modified by holding selected input values
pattern generation. By matching the parameters of the test patfixed for several time units. Experimental results for benchmark
tern generator to the circuit-under-test, high fault coverage iscircuits are reported in [5], showing fault coverages which are
achieved. In many cases, the fault coverage is equal to the faulglose to the fault coverages achieved by deterministic test
coverage that can be achieved by deterministic test sequencesequences. Although the fault coverages reported in [5] are very
We also investigate a method to minimize the size of the test pathigh, they are not complete. In this work, we propose a test gen-
tern generator, and study its effectiveness alone and in conjunceration scheme suitable f& ST that allows higher fault cover-

tion with the insertion of test-points. ages to be obtained. In many cases, the fault coverage is as high
as that achieved by deterministic test generation. Under the pro-

1. Introduction posed scheme, a test pattern is applied to the circuit every clock

A large number of techniques for built-in self-teBI$T) were cycle, and allows at-speed testing of the circuit.

developed for combinational circuits and fully-scanned sequen- An effective test pattern generatdPG) for BIST must

tial circuits [1], [2]. BIST for synchronous sequential circuits be a circuit having an area efficient implementation, capable of

has received limited attention [3]-[5]. The need to dev&tRT generating test sequences that achieve high fault coverages. To

techniques for synchronous sequential circuits is motivated bysatisfy these goals we use a preselected parameTiz@dtruc-
the fact that if the combinational logic of the circuit is not tested ture. We determine the parameters based on circuit properties so
separately, then there is no need to configure the circuit flip-flopsas to maximize the fault coverage achieved; however, the overall
into a test pattern generator during test mode, and the circuit flipstructure of theTPG remains the same. We use in this work a
flops can be left unmodified. This allows at-speed testing of therandomized search for the appropriate parameters. We expect
circuit under its normal operation conditions. that a deterministic search using appropriate heuristics or a
Built-in test generation methods for synchronous sequen-directed search such as genetic optimization would allow even
described in [3] and [4]. In [3], a subset of the flip-flops are The basic structure of th&PG is as follows. Ak-bit
incorporated into a partial scan BIST register and the resulting counter is allowed to cycle through it§ &tates a number of
sequential circuit is tested using weighted random patterns. Intimes denoted by the paramefer The state of the counter at
[4], a hold mode is added to selected flip-flops. While a flip-flop time unitu is equal to the binary representationupfand it is
is in the hold mode, its value does not change. This mode isdenoted byQ[u]. The sequence of counter states is denoted by
used in order to apply to the combinational logic of the circuit an Q. We haveQ=(0 1--- X_101-.--2k-1..). Inputi of the
appropriately biased set of random patterns. For example, if acircuit-under-test CUT) is determined by a decoding logic
state variabley assumes the value 1 only rarely, then by holding driven by the counter and characterized by two paraméters
a state that assigns the value lytdhe average frequency with andu; such that G L; <U; < 2~ 1. Inputi is set to 1 when
which a 1 is obtained op can be increased. A similar method |, < Q[u] < U;; otherwise, input is set to 0. Thus, the sequence
was used in [6], except that in [6] all the flip-flops are controlled assigned to inpuit consists ofL; Os followed byU; - L; +1 1s
together, whereas in [4] the hold mode of every modified flip- 5,4 % -1-U, 0s. This sequence is repeat&dtimes. For
flop is contro_lled_ |nc_iependently_. The methods of [3] and [4] example, fork = 3, L, = 2 andU, = 6, the sequence (Q01110),
modify the circuit fllp-flops to increase the set of reachable repeatedR times, is applied to inptit of the CUT. The logic
states, thus increasing the fault coverage that can be obtained. IBlock used for producing the sequence on inphas an imple-
this work, we are interested in maximizing the fault coverage by yantation called aomparison unitn [7].
selecting a built-in test pattern generator for primary input
sequences without modifying the circuit flip-flops. Techniques
that modify the sequential behavior of the circuit can be used to
further increase the fault coverage if necessary.

The paper is organized as follows. THeG structure is
described in Section 2. The selection of TG parameters is
described in Section 3, including the bounds, {U;} that deter-
mine the sequences of 1s on @YT inputs. We describe a
+ Research supported in part by NSF Grant No. MIP-9220549, and in part ba§|c scheme whgre the values of the bOUI‘ILdSJﬂ} are unre-
by NSF Grant No. MIP-0357581 stricted, and then introduce a scheme with restricted bound val-
ues. The latteTPGs have lower hardware overheads. Experi-

0-89791-993-9/97 $10.00 O 1997 IEEE

mental results are presented in Section 4, including results of thehey replaces U blocks.

basic scheme, results of the extended scheme with restricted
bound values, and results of the latter scheme in conjunction
with test-point insertion. Section 5 concludes the paper.

2. TheTPG structure

The overall structure of th€PG for an n-input circuit is shown
in Figure 1. The boxes containing,U; for 1<i < n are com-
parison units whose structure is described below. k-Ait

counter is used to drive the comparison units. At timewritie

ith comparison unit accepts thebit stateQ[u] of the counter,
and produces the value 1 if and only @[u] satisfies
L; < Q[u] £ U;.

k-bit counter

CuT

£

inputn

Ln Un

Figure 1: The TPG structure

The structure of a comparison unit [7] is shown in Figure
2. The= L block produces the value 1 if and only if the input
vector represents a binary number whose vallileasmore; and
the< U block produces the value 1 if and only if the input vector
represents a binary number whose valud isr less. The com-
parison block inputs are denotgd x,, - - -, X,. The counter out-
puts are denotedy, gy, - - -, qx Whereq, is the most significant
counter bit andy is the least significant counter bit. In Figure 1,
we connectx; to g; for 1<i < k. The implementation of a L
or < U block with k inputs requires at mokt- 1 gates [7].

X1 Xk

Figure 2: A comparison unit
To minimize the number of comparison blocks needed to

implement a giveriTPG, we observe that & U block can be
implemented using the complemented output c | block,

whereL = U + 1. This is because the functiarl is the comple-
ment of the function ®J, or=U +1. In the implementation of
the TPG, each bound (original lower bourld or one obtained
through complementation of an upper bounyl needs to be

2L, =U,+1=1L, >U;+1=Uz+1
—J g input 1
=L,
9 & input 2
—J g input 3

Figure 3: An example of aTPG

In some cases, a singlEPG may not be sufficient to
achieve the desired fault coverage for the circuit. In this case,
multiple TPGs may be used. If more than ofBGis needed to
achieve the desired fault coverage for a circuit, a multiplexer is
required on each input of tl&UJT to select the logic correspond-
ing to the appropriat&é PG. The control input of the multiplex-
ers can be driven from a counter whose frequend2islower
than the frequency of the counter that drives the comparison
units. This will allow eachTPG to apply a sequence of length
R2¥ before it is replaced by the nekPG. As in the case of a
single TPG, if multiple TPGs use the same bound, then the
bound need only be implemented once.

In the discussion above, we ordered the inputs to the com-
parison units in the same way as the counter outputs. Thus, for a
comparison unit with inputg,, x,, - - -, X,, X; was connected to
the counter outpug; for 1<i < k. With this configuration, we
obtain a single run of 1s on every input of @&T every time
the counter goes through a complete cycle. For example, con-
sider a 2-input circuit driven by a 3-bit counter. Suppose that
L, =2,U; =4, L, =4 andU, =5. Then the sequence shown in
Table 1(a) is applied to thEUT every time the counter goes
through a complete cycle. The 1s on e&BT input appear
consecutively in this case. It is possible to achieve more varied
test sequences by permuting the inputs of the comparison units
compared to the counter outputs. For example, let the inputs of
the first comparison unit in the example abovexbgX;s, X;3-
Suppose thak,, is connected ta,, X,, is connected t@s, and
Xy13 IS connected ta};. Let us use the same bounds as above,
L, =2 andU; = 4. The sequence applied to the fiedi T input
is determined as follows.

(9:9203) = (000) implies &;1X12X13) = (000). 0 is not within the
boundsL; =2 andU; = 4. TheCUT input is 0.

(0:9,03) = (001) implies &;1X1oX13) =(010). 2 is within the
boundsL; =2 andU; =4. TheCUT input is 1.

The complete sequence on the fE&1T input is shown in Table
1(b) under columrCUT input 1 We also show the values of
X11, X12, X13 fOr every counter state. For the second comparison
unit with boundsL, =4 andU, =5, we connect its inputs such

implemented only once. For example, if a three input circuit hasthat Xa1Xz2Xas) = (Gs0102). The complete sequence on the sec-

L, =U,+1=Ls andU; +1=U;+1, then the implementation
of Figure 3 can be used. Note that only. blocks are used in

ond CUT input is also shown in Table 1(b).
By permuting the inputs of the comparison units as illus-

this implementation, and their outputs are complemented wherfrated above, we add another degree of freedom in determining

Table 1: An example of input permutations of the counter for k m< kand 1<i <n.

(a) Unpermuted inputs (4) Fault simulate the circuit under the sequefiqeroduced
CUT CuT in Step 3. LetN/,, faults be detected.
Ji 92 Qg | inputl input2 (5) Setj=j+1.If j < Ny, whereN,, is a preselected num-
g 8 2 8 8 ber, go to Step 2.
o 1 o0 1 0 (6) SelectthdPG, j,, for which Nl is maximum.
0 1 1 1 0 (7) Generate the test sequeficeroduced byTPG j, during
1 0 0 1 1 R, cycles.
1 0 1 0 1 (8) Fault simulate the circuit under the test sequéhgeo-
i i 2 8 8 duced in Step 7.

(9) Stop: The faults detected are the ones that will be detected
by the selecte@PG.
To increaes the fault coverage obtained by TRG

(b) Permuted inputs

G O O3)((]121)((1132)éllf i%ﬂ-l)((1231)((1212)((1223 irﬁ)ld;rz selected by Procedure 1, we describe next two extensions.

0O 0O 0] o 0 0 0 0 0 0 0 Let a TPG selected by Procedure 1 produce a test
0O 0 1] 0 1 0 1 1 0 0 1 sequencel. Simple modifications of th@PG allow modified

0 1 0|1 0 0 1 0 0 1 0 versions ofT to be applied to th€UT. These modified versions

c 1 1)1 1 0 0 10 1 1 of T may detect faults that are not detectedrbyhus increasing
10 0j0 0 1 0 o 1 0 0 the fault coverage. We consider the following modification§ of

i 2 (1) (1) (1) i é (1) i (1’ 8 and their combination. First, by adding multiplexers and invert-
101 111 1 1 0 1 1 1 0 ers on therPG outputs (or theCUT inputs) and allowing com-

plemented values to be applied to G&T, the sequencd’
the TPG output sequences (or tH&UT test sequences), and a which is the complement &f can be applied to theUT. Sec-
higher fault coverage may potentially be obtained by the result-ond, by using an up/down counter instead of a counter that can
ing test sequence. only count up, the sequen@e which is the reverse df can be
applied to theCUT. In addition, by using both the down count
and the complementéPG outputs, it is possible to apply to the
Our approach to determining thePG parameters is based on CUT the sequencd; which is the complemented sequerice
simulation of randomly selecte@PGs. We first describe the applied in reverse order. An example of the four version$ of
basicTPG selection procedure, and then extend it to reduce thefor a three-input circuit is shown in Table 2. Procedure 1E given
total number of bounds required. below is the same as Procedure 1 except that the modified
sequences described above are used as well.

Table 2: An example of a modified sequence

3. Selecting therpG parameters

3.1 Basic procedure

The procedure used for selecting a singREG is given below as T ‘ T T, T
Procedure 1. The procedure is described for a given counter 0 0 Ol 1 1 1/ 1 0 1l 0 1 o
length k and a given number of repetitions of the counter 0 1 1|1 0 0o/ 1 0 O 0 1 1
sequenceR,. The procedure selects tfi@G out of a set oNy,, 1 0 0[O0 1 1, 0 1 1, 1 0 O
1 0 1,0 1 0[O0 O O 1 1 1

randomly determinedPGs, as follows. The parameteks and
U; (1<i <n) for eachTPG and its input permutation are ran-

domly selected in Step 2 of Procedure 1. The output seqdence)
produced by eachPGis computed in Step 3, and the circuit is
simulated undefT in Step 4. The length of the sequenicas @
2“R,. The number of faults detected by theth TPG is
recorded in variabl®}.. This process is repeated i, TPGs
(cf. Steps 1-5 of Procedure 1). THEG that results in the high-
est fault coverage is selected in Step 6. TS is allowed to
generate a sequence of lengtiR2(R, > R;) in Steps 7 and 8. 3)
Procedure 1:SelectingTPG parameters
(1) Setj=1.
(2) ForeveryCUT inputi:

(@) Select a pair of numbersL)(U/) such that

0<L!<2¥-1,0cU)<2"-1andL! <U/. 4
(b) Select a permutation of the counter outputs
<, b g >

(3) Generate the test sequenic@roduced duringR; cycles
of the counter by th&PG where (a)CUT inputi is char- (3

acterized by bounds! andU/ for 1<i < n, and (b) input
x4, of thei-th comparison unit is connected to outgit

Procedure 1E: SelectingTPG parameters (extended)

Setj = 1.

For everyCUT inputi:

(@) Select a pair of numbersL)(U)) such that
0<L!<2¥-1,0cU)<2"-1andL! <U/.

(b) Select a permutation of the counter outputs
< ql, G, Ol >

Generate the test sequeric@roduced duringR; cycles

of the counter by th&PG whereCUT inputi is charac-

terized by bounds.! andU/ for 1<i < n, and inputx!

of theith comparison unit is connected to outp#',l,; of

the counter for k m< kand 1<i < n.

Fault simulate the circuit under the test sequéangeo-

duced in Step 3 (fault simulation with fault dropping

starts from the complete set of target faults). Ngt,;

faults be detected.

ComplementT and fault simulate theCUT under the

complemented sequendé (fault simulation with fault

dropping is used starting from the set of faults left unde-

tected in Step 4). Lel/,,, faults be detected.

Reverse the order of the vectorsTinand fault simulate
the CUT under the reverse test sequefite Let the num-

ber of detected faults Uﬂém.

)

(7) ComplementT; and fault simulate th&€UT under the
resulting sequencg,. Let the number of detected faults
be Njgi4-

(8) Let Ncliet = N(]Jetl + chieLZ + N(]Jet3 + chiet4'

(9) Setj=j+1.1f j < Ny, whereNy, is a preselected num-
ber, go to Step 2.

(10) Select th@PG, j,, for which NJS, is maximum.

(11) Generate the sequenteroduced byTPG |, during R,
cycles. Fault simulate the circuit under(start from the
complete set of target faults).

(12) Complement the test sequenteand fault simulate the
circuit under the complemented test sequérice

(13) Reverse the test sequefi¢eand fault simulate the circuit
under the reverse test sequefte

(14) Complement the test sequeniGeand fault simulate the
circuit under the reverse test sequence

(15) Stop: The faults detected in Steps 11-14 are the ones th

will be detected by the selecté®G.
If the TPG selected by Procedure 1 or Procedure 1E is not
sufficient to detect all the faults in t@JT, we repeat Procedure

2-input gates. In addition, at most one 2-input gate is required to
AND the two bounds of each comparison unit. The total number
of 2-input gates is thus (k — 1) Cmin {2mn k!2} + n. In most
practical cases,r@n< k!2¥, and the number of 2-input gates is at
most (2k —1)m+1)n. This area can be reduced by incorporat-
ing techniques such as test-point insertion to allow a smaller
number of TPGs to be used. They may also make the approach
described in the following section more effective.

3.2TPGs with limited sets of bounds

Our goal in this subsection is to replace the téd&f in the
expression determining the worst-case number of bounds by a
smaller value. The new value is a constant, typically smaller than
the term 2nn, thus potentially reducing the number of different
bounds. We achieve this goal by imposing two restrictions on
the bound values. First, we limit the number of permutations
allowed for the comparison unit inputs. In our experiments, we
use only the permutation of the comparison unit inputs where
x; = q; for 1<i < k. Thus, the ternk! is removed. In addition,

we only allow bounds taken out of a preselecteds=intaining

a preselected number of bountl. For a given number of

a[SoundsNB, we defineL, = 2/Ng. We allow only bounds that

are multiples ofL,, i.e., B={0, L,,2L,,3L,,---,(Ng—1)L,}.
For example, fok =8 and Ng = 4, we obtainL, = 256/4= 64
and B ={0, 64, 128,192}. In Step 2 of Procedure 1 (or Proce-

1 or Procedure 1E with the faults left undetected to select addi-dure 1E), bounds are randomly selected out of thB.set

tional TPGs, until the accumulated fault coverage reaches the
desired level or no improvement in fault coverage is possible.

This procedure is summarized as Procedure 2 next. Procedur

2E is similar to Procedure 2, except that Procedure 1E is used i
Step 2 instead of Procedure 1.
Procedure 2 (2E):Selecting multipleTPGs

(1) LetF be the set of target faults.

(2) Apply Procedure 1 (1E) to seleciT®G that detects the
maximum number of faults out &f. Let F 4, be the set of
faults detected by the selectERBG.

(3) If Fget= @, stop: No additional PGs are selected.

(4) SetF =F —-Fy. If F=g, stop: All the target faults are
detected by the select@PGs.

(5) Goto Step 2.

In our implementation, Procedure 2 (or Procedure 2E) is
applied with counter length& =10,11,12,13, and the best
result is selected. Theoretically, am{?G that can be produced
using a counter of length can also be produced using a counter
of length k, > k; by ignoring the most significant bits of the

counter or by permuting them such that they drive the least sig-

nificant bits of the comparison units and selecting appropriate

bounds. However, in practice, Procedures 1 and 1E explore only

a limited number offPGs, and therefore, may not yield increas-
ingly betterTPGs ask is increased.

The area of th@PG selected for a circuit depends on the
number ofdifferentbounds used. Two bounds are said to be the
same if they are computed using the same input permutation, an
their values are the same. For a circuit witmputs,m TPGs
and a counter of lengtk, the number of different bounds is not
larger than min {2nn k!2}. The term 2nnresults from the fact
that each circuit input needs two bounds for ed&tG. The
term ki2¥ results from the fact that there aredifferent bound
values for a counter of lengl and there ar&! permutations of
the comparison unit inputs, each resulting in a different set of
bound values. Each bound is implemented using at kesgt

As a result of the restrictions above, the number of differ-
ent bounds required to implement a setnof PGs for ann-input
Gircuit using a counter of lengthis bounded by min {&hn, Ng}.
™ our experiments we usedg = 4, ensuring that at most four
bounds would have to be implemented (in fact, a bound of 0
does not need to be implemented, since every counter state is
larger than or equal to O; therefore, the number of bounds is at
most min{2mn, Ng —1}). With Nz =4, the number of 2-input
gates required to realize thi®Gis< 3(k — 1) +n.

4. Experimental results

In this section, we describe the results obtained by applying Pro-
cedure 2 and Procedure 2E to ISCAS-89 benchmark circuits.
For comparison purposes, we include in Table 3 the fault cover-
age reported in [5] using the hold method proposed there. We
also report in Table 3 the highest fault coverage reported for sev-
eral deterministic test generation procedures. Finally, we include
in the last column of Table 3 the fault coverage obtained by
applying 100,000 random patterns.

Table 3: Comparison

circuit hold | determ rand
s208 NA 63.72| 43.72
$298 NA 86.04| 84.74
s344 NA 96.20| 96.20
s382 86.0 90.73 13.28
s386 NA 81.77| 71.35
d s420 NA 41.63| 33.72
s444 80.4 87.760 12.66
s526 NA 80.00 9.37
s641 NA 86.51| 86.51
s820 57.8 95.76 49.29
s1196 NA 99.76| 98.79
s1423 86.3 90.89 62.97
s$1488 NA 97.17| 71.27
s5378 74.4 78.47 66.54

The following parameters were used in the implementa- Table 5: Results of Procedure 2E
tion of Procedures 2 and 2E. The numbers of repetitions of the

counter sequence am@, =1 and R, =2. The counter lengths gggglt kll e.2|e5r;9 TPG; 2;2‘ targ< [5]?
considered ar& = 10, 11, 12 and 13. We report only the short- 5298 10 899 1 86.0 = ?
est counter length that resulted in the best fault coverage using s344 12 3407 1 96.2 = 2
the smallest number @PGs. The number of PGs tried in Pro- $382 12 4694 2 894 < >
cedure 1 and 1E i, = 5. s386 12 4840 2 817 = ?
When aTPG is allowed to produceR2® test patterns 234212 ig 15’2;2: g g%'s _ :
which are then simulated on tB&JT, we capture the last pattern S526 13 19864 4 792 - 2
Uerr effective in detecting any new fault. We refer to the length of s641 13 6352 1 865 = ?
the test sequence upug; as theeffective test lengthlf multiple s820 13 46973 8 828 < >
TPGs are used, the total effective test length is the sum of the s1196 13 43574 8 991 < ?
effective test lengths for all thHeEPGs used. Siigg E g%i g gg-? - 2
. . - s . = :

In the following subsections we describe the results <5378 12 39141 12 753 < N

obtained with unlimited bound values, and when the bound val-

ues are restricted. We also present results of the latter scheme iresults obtained by restricting the possible bounds to a sBbset
conjunction with test-point insertion. of sizeNg, as described in Section 3.2

4.1 Unlimited bounds 4.2 Restricted bounds

The results obtained for several benchmark circuits by applyingin the experiments reported in this section we use Procedure 2E
Procedure 2 using the parameters above are given in Table 4with the value ofk used in Table 5. We restrict the number of
After circuit name we show the counter lengtithe number of different bounds tdNg = 4. The results are reported in Table 6.
TPGs used, the total effective length for all theGs, and the The results of Table 5 are repeated in coludyr unl for ease

fault coverage achieved. Following the fault coverage we showof comparison. It can be seen that the fault coverage for
how the fault coverage compares to the maximum fault coverageestricted bounds is lower than the fault coverage when the
reported for deterministic test generation, and to the fault cover-bounds are unrestricted. However, even this lower fault cover-
age reported in [5]. We enter <, > ®arto indicate that the fault age is higher than that of [5] for most of the circuits where a
coverage achieved by the proposed method is smaller thancomparison is possible. In addition, the loss of fault coverage
larger than or equal to the fault coverage it is compared to. Wemay be justified by the reduced number of bounds and thus the
also enter a ? when the corresponding fault coverage is noteduced hardware complexity of th®Gs. Techniques such as
known. It can be seen that the fault coverage is higher than thatest point insertion may be used to compensate for this effect.
reported in [5] in all the cases considered; however, the fault Table 6: Results using restricted bounds

coverage is lower in many cases than that achievable by deter-

S . . Ng=4 Ng =unl
ministic test generation. Increasing the valuesRef R, and circuit TPGSB feo TP(%S u feo
Ny, or allowing Procedure 2 to go through additional iterations, S208/11 3 6140 3 63.26
did not have significant effects on the results of Table 4. $298/10 4 85.06 1 86.04
Table 4: Results of Procedure 2 $344/12 4 92.98 1 96.20
circuit k elen TPGs f.c \ targ [5] zgggﬁg ; %Z‘i g gi‘;’;
Sggg ﬁ ng g gg-g < 2 s420/12 3 4023 5 4163
5344 12 3008 4 96.2 - 5 s444/12 1 86.08 2 87.76
5382 10 3086 e - N $526/13 1 7838 4 79.28
5386 12 10714 2 79'9 < > s641/13 10 83.51 1 86.51
s : i $1423/11 19 77.49 8 90.89
$420 13 4264 2 411 < ?
s444 11 5208 3 877 = >
$526 | 13 19819 3 189 < 2 4.3 Restricted bounds with test-point insertion
s641 11 8739 6 86.5 = ?

In this subsection, we consider thiPGs selected in Table 6 for
The results of Procedure 2E for the same benchmark cir-Ns = 4. TheseTPGs have the lowest area overhead of all the
cuits and for additional ones are shown in Table 5. The samel PGs considered in the previous subsections; however, they usu-
parameters used to obtain Table 4 are used in this case. Thally result in the lowest fault coverage. To increase the fault cov-
effective length for Procedure 2E is computed as follows. For€rage, we consider two schemes for test point insertion as
eachTPG, we compute the maximum effective length of its out- described next.
put sequenc@, its complemenT”, its reverseTl, and its comple- We describe the test point insertion schemes foP&
mented revers@,. We then add up all the maximum effective made ofm TPGs, TPG,, TPG,, - - -, TPG,,, designed for a circuit
lengths. It can be seen by comparing Tables 4 and 5 that Procewith a set of faultskF. In both schemes, we simulate the
dure 2E achieves higher fault coverages than Procedure 2 usingequences produced by theTPGs in the order
fewer TPGs. Procedure 2E reaches the target fault coverage seTPG,, TPG,, - -, TPG,, and drop all the faults detected by each
by deterministic test sequences more often than Procedure 2. TPG before the next one is considered. In the first scheme, test-
The number of different bounds obtained for THRGs in points are inserted after evefyPG is considered. As a result,
Tables 4 and 5 is typically equal to the worst-case of whenTPG, is considered, test-points may be inserted to detect
min{2mn k!2¥}. In the following subsection we report the faults that are also detected BG;, wherej, > j;. In the sec-

ond scheme, we first drop all the faults detected by allBs,
and then reconsider ea€PRG for test-point insertion. In the first
scheme, it may be possible to omiTBG, say TPG;, if all the
faults it detects are already detectedl®G, - - -, TPG;_y, simu-
lated earlier. In the second scheme, allTR&s will remain nec-

that some detectable faults are never activated by the selected
TPGs. The fault coverage can be increased by performing test-
point insertion together witiPG selection. We did not imple-
ment this option. We point out that the area overhead for com-
parison units in this case includes the implementation of at most

essary. However, the first scheme may require more test-pointsthree bounds, requiring at mostk3(1) + n) 2-input gates.
since test-points are inserted even for faults that may be detected Table 7: Results using restricted bounds and test-points

by a TPG simulated later. The two schemes are described in
more detail next. For simplicity of presentation, we refer to the
sequenced, T', T, and T, produced by &PG as theTPG out-
put sequencé.

The first test-point insertion scheme proceeds as follows.
For TPG,, we generate th&PG output sequencé,, and simu-
late the set of target fauls underT,. Let T, detect a subset of
faults F,. We simulate every faulf 00 F - F; under the test
sequencd; again, this time capturing every lirveto which 0/1
or 1/0 values are propagated in the presencé.oEach such
line, if selected as a test-point, will ensure thatan be detected

scheme 1 scheme 2
circuit TPGs tp f.c targg TPGs tp f.c targ
s208/11 2 10 63.72 = 3 5 63.72 =
$298/10 2 9 86.04 = 4 2 86.04 =
s344/12 4 21 95.61 < 4 8 9561 <
s$382/12 1 8 8947 < 2 7 89.47 <
s$386/12 4 65 8151 < 8 22 8151 <
s420/12 2 12 41.63 = 3 5 4163 =
s444/12 1 8 87.76 = 1 8 87.76 =
s526/13 1 9 80.00 = 1 8 87.76 =
s641/13 4 64 86.30 < 10 13 86.30 <

by 'I~'1. We use a covering procedure to select a minimal numberg, Concluding remarks

of test-points to cover all the faults ih— F, that are detectable
through test-points. Let the set of faults detected through test
points beF). We drop fromF all the faults inF, [Fi. Next,

we considefTPG,. We generate th@PG output sequencé,,

and simulateF underT,. Let T, detect a subset of faulfs,.

We simulate every faulf O F - F,, and capture potential test-
point locations for the fault. We then check whether the fault is
detected by any one of the test-points already selectddPGy.

For the remaining faults i — F,, we select additional test-

We proposed a structure for a built-in test pattern generator for

synchronous sequential circuits. The motivation for considering
built-in test of synchronous sequential circuits is that the circuit
flip-flops may be left unmodified, and test application may be
done at-speed. The proposed test pattern generator had a uni-
form, parametrized structure. By matching the parameters of the
test pattern generator to the circuit-under-test, high fault cover-
age was achieved for benchmark circuits. In many cases, the
fault coverage was equal to the fault coverage that can be

point locations using a covering procedure. We denote the set ofchieved by deterministic test sequences. Reduced area over-

faults detected byTPG, through test-points by,. We drop
from F all the faults inF, [] F5. The same process is repeated
for all theTPGs. If F; || F} = ¢for TPG j, thenTPG jcan be
omitted without reducing the fault coverage.

heads were achieved by restricting the parameter values and
inserting test-points to compensate for the lower fault coverage
that may result.

Several extensions of the proposed approach may be use-

The second test-point insertion scheme proceeds as folfy| in reducing the hardware overhead and increasing the fault

lows. We first generate thEPG sequencéf'j for every TPG;,

and drop the faults detected frofn We then reconsider each
TPG separately. WheTPG; is considered, we simulate every
fault f O F under the test sequeni’@ again, this time captur-
ing every linev to which 0/1 or 1/0 values are propagated in the
presence off. Every fault detectable through an already
selected test-point is dropped frofn We then use a covering

procedure to select a minimal number of test-points to cover all

the faults inF that are detectable through test-points wlﬁgfrs
applied. The same process is repeated for all Bfés.
The results of test-point insertion using theGs pro-

coverage. More careful selection DPG parameters may yield
improved results at lower hardware overheads. Incorporation of
test-points during th@PG selection process may allow fewer
TPGs and fewer bounds to be used.

References

[1] V. D. Agrawal, C. R. Kime and K. K. Saluja, "A Tutorial on
Built-In Self-Test Part 1: Principles", IEEE Design and Test of
Computers, March 1993, pp. 73-82.

V. D. Agrawal, C. R. Kime and K. K. Saluja, "A Tutorial on
Built-In Self-Test Part 2: Applications", IEEE Design and Test of
Computers, June 1993, pp. 69-77.

(2]

duced forNg =4 in Table 6 are shown in Table 7. For each [3]
scheme, we show the number ®PGs that were useful for
detecting any new faults (for Scheme 2, this number is equal to
the number ofPGs in Table 6). We then show the total number [4]
of test-points inserted, and the final fault coverage obtained.
Under columrtarg we mark whether the fault coverage is lower
than or equal to the fault coverage achievable by deterministic
test generation. For this comparison to be meaningful, we only[5]
consider faults that can be detected by deterministic test genera-
tion without test-points. It can be seen that Scheme 1 placeie]
more test-points, but requires few&PGs. Scheme 2 places
fewer test-points but uses all th®Gs of Table 6. Compared to
Table 6, the fault coverage is always increased. The fault coveryy)
age is not always equal to the target fault coverage achievable by
deterministic test generation procedures. This is due to the fact

H. Wunderlich, "The Design of Random-Testable Sequential Cir-
cuits”, in Proc. 19th Fault-Tolerant Computing Symp., June
1989, pp. 110-117.

F. Muradali, T. Nishida and T. Shimizu, "A Structure and Tech-
nigue for Pseudorandom-Based Testing of Sequential Circuits",
Journal of Electronic Testing: Theory and Applications, 1995, pp.
107-115.

L. Nachman, K. K. Saluja, S. Upadhyaya and R. Reuse, "Ran-
dom Pattern Testing for Sequential Circuits Revisited", in Proc.
26th Fault-Tolerant Computing Symp., June 1996, pp. 44-52.

M. Abramovici, K. Rajan and D. Miller, "FREEZE: A New
Approach for Testing Sequential Circuits”, in Proc. 29th Design
Autom. Conf., June 1992, pp. 22-25.

I. Pomeranz and S. M. Reddy, "On Synthesis-for-Testability of
Combinational Logic Circuits", in Proc. 32nd Design Automa-
tion Conf., June 1995, pp. 126-132.

	CD-ROM Home Page
	ICCAD97
	Front Matter
	Table of Contents
	Session Index
	Author Index

