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Abstract
We consider the problem of built-in test generation for syn-
chronous sequential circuits. The proposed scheme leaves the
circuit flip-flops unmodified, and thus allows at-speed test appli-
cation. We introduce a uniform, parametrized structure for test
pattern generation. By matching the parameters of the test pat-
tern generator to the circuit-under-test, high fault coverage is
achieved. In many cases, the fault coverage is equal to the fault
coverage that can be achieved by deterministic test sequences.
We also investigate a method to minimize the size of the test pat-
tern generator, and study its effectiveness alone and in conjunc-
tion with the insertion of test-points.

1. Introduction
A large number of techniques for built-in self-test (BIST) were
developed for combinational circuits and fully-scanned sequen-
tial circuits [1], [2]. BIST for synchronous sequential circuits
has received limited attention [3]-[5]. The need to developBIST
techniques for synchronous sequential circuits is motivated by
the fact that if the combinational logic of the circuit is not tested
separately, then there is no need to configure the circuit flip-flops
into a test pattern generator during test mode, and the circuit flip-
flops can be left unmodified. This allows at-speed testing of the
circuit under its normal operation conditions.

Built-in test generation methods for synchronous sequen-
tial circuits that modify some of the circuit flip-flops were
described in [3] and [4]. In [3], a subset of the flip-flops are
incorporated into a partial scan orBIST register and the resulting
sequential circuit is tested using weighted random patterns. In
[4], a hold mode is added to selected flip-flops. While a flip-flop
is in the hold mode, its value does not change. This mode is
used in order to apply to the combinational logic of the circuit an
appropriately biased set of random patterns. For example, if a
state variabley assumes the value 1 only rarely, then by holding
a state that assigns the value 1 toy, the average frequency with
which a 1 is obtained ony can be increased. A similar method
was used in [6], except that in [6] all the flip-flops are controlled
together, whereas in [4] the hold mode of every modified flip-
flop is controlled independently. The methods of [3] and [4]
modify the circuit flip-flops to increase the set of reachable
states, thus increasing the fault coverage that can be obtained. In
this work, we are interested in maximizing the fault coverage by
selecting a built-in test pattern generator for primary input
sequences without modifying the circuit flip-flops. Techniques
that modify the sequential behavior of the circuit can be used to
further increase the fault coverage if necessary.
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A method to generate input sequences to test a syn-
chronous sequential circuit using built-in test pattern generators
without modifying the circuit flip-flops was proposed in [5]. In
[5], a sequence of pseudo-random primary input patterns pro-
duced by anLFSRis modified by holding selected input values
fixed for several time units. Experimental results for benchmark
circuits are reported in [5], showing fault coverages which are
close to the fault coverages achieved by deterministic test
sequences. Although the fault coverages reported in [5] are very
high, they are not complete. In this work, we propose a test gen-
eration scheme suitable forBIST that allows higher fault cover-
ages to be obtained. In many cases, the fault coverage is as high
as that achieved by deterministic test generation. Under the pro-
posed scheme, a test pattern is applied to the circuit every clock
cycle, and allows at-speed testing of the circuit.

An effective test pattern generator (TPG) for BIST must
be a circuit having an area efficient implementation, capable of
generating test sequences that achieve high fault coverages. To
satisfy these goals we use a preselected parametrizedTPG struc-
ture. We determine the parameters based on circuit properties so
as to maximize the fault coverage achieved; however, the overall
structure of theTPG remains the same. We use in this work a
randomized search for the appropriate parameters. We expect
that a deterministic search using appropriate heuristics or a
directed search such as genetic optimization would allow even
higher fault coverages to be obtained at lower area overheads.

The basic structure of theTPG is as follows. Ak-bit
counter is allowed to cycle through its 2k states a number of
times denoted by the parameterR. The state of the counter at
time unit u is equal to the binary representation ofu, and it is
denoted byQ[u]. The sequence of counter states is denoted by
Q. We haveQ = (0 1 . . . 2k − 1 0 1. . . 2k − 1 . . .). Input i of the
circuit-under-test (CUT) is determined by a decoding logic
driven by the counter and characterized by two parametersLi

andUi such that 0≤ Li ≤ Ui ≤ 2k − 1. Input i is set to 1 when
Li ≤ Q[u] ≤ Ui ; otherwise, inputi is set to 0. Thus, the sequence
assigned to inputi consists ofLi 0s followed byUi − Li + 1 1s
and 2k − 1 − Ui 0s. This sequence is repeatedR times. For
example, fork = 3, Li = 2 andUi = 6, the sequence (00111110),
repeatedR times, is applied to inputi of the CUT. The logic
block used for producing the sequence on inputi has an imple-
mentation called acomparison unitin [7].

The paper is organized as follows. TheTPG structure is
described in Section 2. The selection of theTPG parameters is
described in Section 3, including the bounds {Li ,Ui } that deter-
mine the sequences of 1s on theCUT inputs. We describe a
basic scheme where the values of the bounds {Li ,Ui } are unre-
stricted, and then introduce a scheme with restricted bound val-
ues. The latterTPGs have lower hardware overheads. Experi-
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mental results are presented in Section 4, including results of the
basic scheme, results of the extended scheme with restricted
bound values, and results of the latter scheme in conjunction
with test-point insertion. Section 5 concludes the paper.

2. TheTPG structure
The overall structure of theTPG for an n-input circuit is shown
in Figure 1. The boxes containingLi ,Ui for 1 ≤ i ≤ n are com-
parison units whose structure is described below. Ak-bit
counter is used to drive the comparison units. At time unitu, the
i th comparison unit accepts thek-bit stateQ[u] of the counter,
and produces the value 1 if and only ifQ[u] satisfies
Li ≤ Q[u] ≤ Ui .

k-bit counter

L1,U1

L2,U2

Ln,Un

CUT

⋅⋅⋅

input 1

input 2

input n

Figure 1: The TPGstructure
The structure of a comparison unit [7] is shown in Figure

2. The≥ L block produces the value 1 if and only if the input
vector represents a binary number whose value isL or more; and
the≤ U block produces the value 1 if and only if the input vector
represents a binary number whose value isU or less. The com-
parison block inputs are denotedx1, x2, . . . , xk. The counter out-
puts are denotedq1, q2, . . . , qk whereq1 is the most significant
counter bit andqk is the least significant counter bit. In Figure 1,
we connectxi to qi for 1 ≤ i ≤ k. The implementation of a≥ L
or ≤ U block with k inputs requires at mostk − 1 gates [7].

≥ L ≤ U
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Figure 2: A comparison unit
To minimize the number of comparison blocks needed to

implement a givenTPG, we observe that a≤ U block can be
implemented using the complemented output of a≥ L block,
whereL = U + 1. This is because the function≤ U is the comple-
ment of the function >U, or ≥ U + 1. In the implementation of
the TPG, each bound (original lower boundL or one obtained
through complementation of an upper boundU) needs to be
implemented only once. For example, if a three input circuit has
L1 = U2 + 1 = L3, andU1 + 1 = U3 + 1, then the implementation
of Figure 3 can be used. Note that only≥ L blocks are used in
this implementation, and their outputs are complemented when

they replace≤ U blocks.

≥ L1 = U2 + 1 = L3 ≥ U1 + 1 = U3 + 1
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Figure 3: An example of aTPG
In some cases, a singleTPG may not be sufficient to

achieve the desired fault coverage for the circuit. In this case,
multiple TPGs may be used. If more than oneTPG is needed to
achieve the desired fault coverage for a circuit, a multiplexer is
required on each input of theCUT to select the logic correspond-
ing to the appropriateTPG. The control input of the multiplex-
ers can be driven from a counter whose frequency isR2k lower
than the frequency of the counter that drives the comparison
units. This will allow eachTPG to apply a sequence of length
R2k before it is replaced by the nextTPG. As in the case of a
single TPG, if multiple TPGs use the same bound, then the
bound need only be implemented once.

In the discussion above, we ordered the inputs to the com-
parison units in the same way as the counter outputs. Thus, for a
comparison unit with inputsx1, x2, . . . , xk, xi was connected to
the counter outputqi for 1 ≤ i ≤ k. With this configuration, we
obtain a single run of 1s on every input of theCUT every time
the counter goes through a complete cycle. For example, con-
sider a 2-input circuit driven by a 3-bit counter. Suppose that
L1 = 2, U1 = 4, L2 = 4 andU2 = 5. Then the sequence shown in
Table 1(a) is applied to theCUT every time the counter goes
through a complete cycle. The 1s on eachCUT input appear
consecutively in this case. It is possible to achieve more varied
test sequences by permuting the inputs of the comparison units
compared to the counter outputs. For example, let the inputs of
the first comparison unit in the example above bex11, x12, x13.
Suppose thatx11 is connected toq2, x12 is connected toq3, and
x13 is connected toq1. Let us use the same bounds as above,
L1 = 2 andU1 = 4. The sequence applied to the firstCUT input
is determined as follows.
(q1q2q3) = (000) implies (x11x12x13) = (000). 0 is not within the
boundsL1 = 2 andU1 = 4. TheCUT input is 0.
(q1q2q3) = (001) implies (x11x12x13) = (010). 2 is within the
boundsL1 = 2 andU1 = 4. TheCUT input is 1.
The complete sequence on the firstCUT input is shown in Table
1(b) under columnCUT input 1. We also show the values of
x11, x12, x13 for every counter state. For the second comparison
unit with boundsL2 = 4 andU2 = 5, we connect its inputs such
that (x21x22x23) = (q3q1q2). The complete sequence on the sec-
ondCUT input is also shown in Table 1(b).

By permuting the inputs of the comparison units as illus-
trated above, we add another degree of freedom in determining
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Table 1: An example of input permutations
(a) Unpermuted inputs

CUT CUT
q1 q2 q3 input 1 input 2
0 0 0  0 0
0 0 1  0 0
0 1 0  1 0
0 1 1  1 0
1 0 0  1 1
1 0 1  0 1
1 1 0  0 0
1 1 1  0 0

(b) Permuted inputs

x11 x12 x13 CUT x21 x22 x23 CUT
q1 q2 q3 q2 q3 q1 input 1 q3 q1 q2 input 2
0 0 0  0 0 0  0  0 0 0  0
0 0 1  0 1 0  1  1 0 0  1
0 1 0  1 0 0  1  0 0 1  0
0 1 1  1 1 0  0  1 0 1  1
1 0 0  0 0 1  0  0 1 0  0
1 0 1  0 1 1  1  1 1 0  0
1 1 0  1 0 1  0  0 1 1  0
1 1 1  1 1 1  0  1 1 1  0

the TPG output sequences (or theCUT test sequences), and a
higher fault coverage may potentially be obtained by the result-
ing test sequence.

3. Selecting theTPG parameters
Our approach to determining theTPG parameters is based on
simulation of randomly selectedTPGs. We first describe the
basicTPG selection procedure, and then extend it to reduce the
total number of bounds required.

3.1 Basic procedure
The procedure used for selecting a singleTPG is given below as
Procedure 1. The procedure is described for a given counter
length k and a given number of repetitions of the counter
sequenceR1. The procedure selects theTPG out of a set ofNtry

randomly determinedTPGs, as follows. The parametersLi and
Ui (1 ≤ i ≤ n) for eachTPG and its input permutation are ran-
domly selected in Step 2 of Procedure 1. The output sequenceT
produced by eachTPG is computed in Step 3, and the circuit is
simulated underT in Step 4. The length of the sequenceT is
2k R1. The number of faults detected by thej -th TPG is
recorded in variableN j

det. This process is repeated forNtry TPGs
(cf. Steps 1-5 of Procedure 1). TheTPG that results in the high-
est fault coverage is selected in Step 6. ThisTPG is allowed to
generate a sequence of length 2k R2 (R2 > R1) in Steps 7 and 8.
Procedure 1:SelectingTPGparameters
(1) Set j = 1.
(2) For everyCUT input i :

(a) Select a pair of numbers (L j
i ,U

j
i ) such that

0 ≤ L j
i ≤ 2k − 1, 0≤ U j

i ≤ 2k − 1 andL j
i ≤ U j

i .
(b) Select a permutation of the counter outputs

< qj
i1, qj

i2, . . . , qj
ik >.

(3) Generate the test sequenceT produced duringR1 cycles
of the counter by theTPG where (a)CUT input i is char-
acterized by boundsL j

i andU j
i for 1 ≤ i ≤ n, and (b) input

x j
im of the i-th comparison unit is connected to outputqj

im

of the counter for 1≤ m ≤ k and 1≤ i ≤ n.
(4) Fault simulate the circuit under the sequenceT produced

in Step 3. LetN j
det faults be detected.

(5) Set j = j + 1. If j ≤ Ntry, whereNtry is a preselected num-
ber, go to Step 2.

(6) Select theTPG, j0, for which N j0
det is maximum.

(7) Generate the test sequenceT produced byTPG j0 during
R2 cycles.

(8) Fault simulate the circuit under the test sequenceT pro-
duced in Step 7.

(9) Stop: The faults detected are the ones that will be detected
by the selectedTPG.
To increaes the fault coverage obtained by theTPG

selected by Procedure 1, we describe next two extensions.
Let a TPG selected by Procedure 1 produce a test

sequenceT. Simple modifications of theTPG allow modified
versions ofT to be applied to theCUT. These modified versions
of T may detect faults that are not detected byT, thus increasing
the fault coverage. We consider the following modifications ofT
and their combination. First, by adding multiplexers and invert-
ers on theTPG outputs (or theCUT inputs) and allowing com-
plemented values to be applied to theCUT, the sequenceT′
which is the complement ofT can be applied to theCUT. Sec-
ond, by using an up/down counter instead of a counter that can
only count up, the sequenceTr which is the reverse ofT can be
applied to theCUT. In addition, by using both the down count
and the complementedTPGoutputs, it is possible to apply to the
CUT the sequenceT′r which is the complemented sequenceT′
applied in reverse order. An example of the four versions ofT
for a three-input circuit is shown in Table 2. Procedure 1E given
below is the same as Procedure 1 except that the modified
sequences described above are used as well.

Table 2: An example of a modified sequence

T T′ Tr T′r
0 0 0 1 1 1 1 0 1 0 1 0
0 1 1 1 0 0 1 0 0 0 1 1
1 0 0 0 1 1 0 1 1 1 0 0
1 0 1 0 1 0 0 0 0 1 1 1

Procedure 1E:SelectingTPGparameters (extended)
(1) Set j = 1.
(2) For everyCUT input i :

(a) Select a pair of numbers (L j
i ,U

j
i ) such that

0 ≤ L j
i ≤ 2k − 1, 0≤ U j

i ≤ 2k − 1 andL j
i ≤ U j

i .
(b) Select a permutation of the counter outputs

< qj
i1, qj

i2, . . . , qj
ik >.

(3) Generate the test sequenceT produced duringR1 cycles
of the counter by theTPG whereCUT input i is charac-
terized by boundsL j

i andU j
i for 1 ≤ i ≤ n, and inputx j

im

of the i th comparison unit is connected to outputqj
im of

the counter for 1≤ m ≤ k and 1≤ i ≤ n.
(4) Fault simulate the circuit under the test sequenceT pro-

duced in Step 3 (fault simulation with fault dropping
starts from the complete set of target faults). LetN j

det,1

faults be detected.
(5) ComplementT and fault simulate theCUT under the

complemented sequenceT′ (fault simulation with fault
dropping is used starting from the set of faults left unde-
tected in Step 4). LetN j

det,2 faults be detected.
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(6) Reverse the order of the vectors inT′ and fault simulate
theCUT under the reverse test sequenceT′r . Let the num-
ber of detected faults beN j

det,3.
(7) ComplementT′r and fault simulate theCUT under the

resulting sequenceTr . Let the number of detected faults
be N j

det,4.

(8) Let N j
det = N j

det,1 + N j
det,2 + N j

det,3 + N j
det,4.

(9) Set j = j + 1. If j ≤ Ntry, whereNtry is a preselected num-
ber, go to Step 2.

(10) Select theTPG, j0, for which N j0
det is maximum.

(11) Generate the sequenceT produced byTPG j0 during R2
cycles. Fault simulate the circuit underT (start from the
complete set of target faults).

(12) Complement the test sequenceT and fault simulate the
circuit under the complemented test sequenceT′.

(13) Reverse the test sequenceT′ and fault simulate the circuit
under the reverse test sequenceT′r .

(14) Complement the test sequenceT′r and fault simulate the
circuit under the reverse test sequenceTr .

(15) Stop: The faults detected in Steps 11-14 are the ones that
will be detected by the selectedTPG.
If the TPGselected by Procedure 1 or Procedure 1E is not

sufficient to detect all the faults in theCUT, we repeat Procedure
1 or Procedure 1E with the faults left undetected to select addi-
tional TPGs, until the accumulated fault coverage reaches the
desired level or no improvement in fault coverage is possible.
This procedure is summarized as Procedure 2 next. Procedure
2E is similar to Procedure 2, except that Procedure 1E is used in
Step 2 instead of Procedure 1.
Procedure 2 (2E):Selecting multipleTPGs
(1) Let F be the set of target faults.
(2) Apply Procedure 1 (1E) to select aTPG that detects the

maximum number of faults out ofF. Let Fdet be the set of
faults detected by the selectedTPG.

(3) If Fdet = φ , stop: No additionalTPGs are selected.
(4) SetF = F − Fdet. If F = φ , stop: All the target faults are

detected by the selectedTPGs.
(5) Go to Step 2.

In our implementation, Procedure 2 (or Procedure 2E) is
applied with counter lengthsk = 10, 11, 12, 13, and the best
result is selected. Theoretically, anyTPG that can be produced
using a counter of lengthk1 can also be produced using a counter
of length k2 > k1 by ignoring the most significant bits of the
counter or by permuting them such that they drive the least sig-
nificant bits of the comparison units and selecting appropriate
bounds. However, in practice, Procedures 1 and 1E explore only
a limited number ofTPGs, and therefore, may not yield increas-
ingly betterTPGs ask is increased.

The area of theTPG selected for a circuit depends on the
number ofdifferent bounds used. Two bounds are said to be the
same if they are computed using the same input permutation, and
their values are the same. For a circuit withn inputs, m TPGs
and a counter of lengthk, the number of different bounds is not
larger than min {2mn, k!2k}. The term 2mn results from the fact
that each circuit input needs two bounds for eachTPG. The
term k!2k results from the fact that there are 2k different bound
values for a counter of lengthk, and there arek! permutations of
the comparison unit inputs, each resulting in a different set of
bound values. Each bound is implemented using at mostk − 1

2-input gates. In addition, at most one 2-input gate is required to
AND the two bounds of each comparison unit. The total number
of 2-input gates is thus≤ (k − 1) ⋅ min {2mn, k!2k} + n. In most
practical cases, 2mn< k!2k, and the number of 2-input gates is at
most (2(k − 1)m + 1)n. This area can be reduced by incorporat-
ing techniques such as test-point insertion to allow a smaller
number ofTPGs to be used. They may also make the approach
described in the following section more effective.

3.2TPGs with limited sets of bounds
Our goal in this subsection is to replace the termk!2k in the
expression determining the worst-case number of bounds by a
smaller value. The new value is a constant, typically smaller than
the term 2mn, thus potentially reducing the number of different
bounds. We achieve this goal by imposing two restrictions on
the bound values. First, we limit the number of permutations
allowed for the comparison unit inputs. In our experiments, we
use only the permutation of the comparison unit inputs where
xi = qi for 1 ≤ i ≤ k. Thus, the termk! is removed. In addition,
we only allow bounds taken out of a preselected setB containing
a preselected number of boundsNB. For a given number of
boundsNB, we defineLr = 2k/NB. We allow only bounds that
are multiples ofLr , i.e., B = {0, Lr , 2Lr , 3Lr , . . . , (NB − 1)Lr }.
For example, fork = 8 and NB = 4, we obtainLr = 256/4= 64
and B = {0, 64, 128, 192}. In Step 2 of Procedure 1 (or Proce-
dure 1E), bounds are randomly selected out of the setB.

As a result of the restrictions above, the number of differ-
ent bounds required to implement a set ofm TPGs for ann-input
circuit using a counter of lengthk is bounded by min {2mn, NB}.
In our experiments we usedNB = 4, ensuring that at most four
bounds would have to be implemented (in fact, a bound of 0
does not need to be implemented, since every counter state is
larger than or equal to 0; therefore, the number of bounds is at
most min {2mn, NB − 1}). With NB = 4, the number of 2-input
gates required to realize theTPG is ≤ 3(k − 1) + n.

4. Experimental results
In this section, we describe the results obtained by applying Pro-
cedure 2 and Procedure 2E to ISCAS-89 benchmark circuits.
For comparison purposes, we include in Table 3 the fault cover-
age reported in [5] using the hold method proposed there. We
also report in Table 3 the highest fault coverage reported for sev-
eral deterministic test generation procedures. Finally, we include
in the last column of Table 3 the fault coverage obtained by
applying 100,000 random patterns.

Table 3: Comparison

circuit hold determ rand
s208 NA 63.72 43.72
s298 NA 86.04 84.74
s344 NA 96.20 96.20
s382 86.0 90.73 13.28
s386 NA 81.77 71.35
s420 NA 41.63 33.72
s444 80.4 87.76 12.66
s526 NA 80.00 9.37
s641 NA 86.51 86.51
s820 57.8 95.76 49.29
s1196 NA 99.76 98.79
s1423 86.3 90.89 62.97
s1488 NA 97.17 71.27
s5378 74.4 78.47 66.54
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The following parameters were used in the implementa-
tion of Procedures 2 and 2E. The numbers of repetitions of the
counter sequence areR1 = 1 and R2 = 2. The counter lengths
considered arek = 10, 11, 12 and 13. We report only the short-
est counter length that resulted in the best fault coverage using
the smallest number ofTPGs. The number ofTPGs tried in Pro-
cedure 1 and 1E isNtry = 5.

When a TPG is allowed to produceR2k test patterns
which are then simulated on theCUT, we capture the last pattern
ueff effective in detecting any new fault. We refer to the length of
the test sequence up toueff as theeffective test length. If multiple
TPGs are used, the total effective test length is the sum of the
effective test lengths for all theTPGs used.

In the following subsections we describe the results
obtained with unlimited bound values, and when the bound val-
ues are restricted. We also present results of the latter scheme in
conjunction with test-point insertion.

4.1 Unlimited bounds
The results obtained for several benchmark circuits by applying
Procedure 2 using the parameters above are given in Table 4.
After circuit name we show the counter lengthk, the number of
TPGs used, the total effective length for all theTPGs, and the
fault coverage achieved. Following the fault coverage we show
how the fault coverage compares to the maximum fault coverage
reported for deterministic test generation, and to the fault cover-
age reported in [5]. We enter <, > or= to indicate that the fault
coverage achieved by the proposed method is smaller than,
larger than or equal to the fault coverage it is compared to. We
also enter a ? when the corresponding fault coverage is not
known. It can be seen that the fault coverage is higher than that
reported in [5] in all the cases considered; however, the fault
coverage is lower in many cases than that achievable by deter-
ministic test generation. Increasing the values ofR1, R2 and
Ntry, or allowing Procedure 2 to go through additional iterations,
did not have significant effects on the results of Table 4.

Table 4: Results of Procedure 2

circuit k e.len TPGs f.c targ [5]
s208 11 2428 4 63.26 < ?
s298 11 721 2 86.04 = ?
s344 12 3908 4 96.20 = ?
s382 10 3066 5 88.97 < >
s386 12 10714 4 79.95 < ?
s420 13 4264 2 41.16 < ?
s444 11 5208 3 87.76 = >
s526 13 19819 3 78.92 < ?
s641 11 8739 6 86.51 = ?

The results of Procedure 2E for the same benchmark cir-
cuits and for additional ones are shown in Table 5. The same
parameters used to obtain Table 4 are used in this case. The
effective length for Procedure 2E is computed as follows. For
eachTPG, we compute the maximum effective length of its out-
put sequenceT, its complementT′, its reverseTr and its comple-
mented reverseT′r . We then add up all the maximum effective
lengths. It can be seen by comparing Tables 4 and 5 that Proce-
dure 2E achieves higher fault coverages than Procedure 2 using
fewer TPGs. Procedure 2E reaches the target fault coverage set
by deterministic test sequences more often than Procedure 2.

The number of different bounds obtained for theTPGs in
Tables 4 and 5 is typically equal to the worst-case of
min {2mn, k!2k}. In the following subsection we report the

Table 5: Results of Procedure 2E

circuit k e.len TPGs f.c targ [5]
s208 11 2599 3 63.26 < ?
s298 10 899 1 86.04 = ?
s344 12 3407 1 96.20 = ?
s382 12 4694 2 89.47 < >
s386 12 4840 2 81.77 = ?
s420 12 15670 5 41.63 = ?
s444 12 4603 2 87.76 = >
s526 13 19864 4 79.28 < ?
s641 13 6352 1 86.51 = ?
s820 13 46973 8 82.82 < >
s1196 13 43574 8 99.11 <  ?
s1423 11 17629 8 90.89 = >
s1488 12 12194 3 97.17 = ?
s5378 12 39141 12 75.34 < >

results obtained by restricting the possible bounds to a subsetB
of sizeNB, as described in Section 3.2

4.2 Restricted bounds
In the experiments reported in this section we use Procedure 2E
with the value ofk used in Table 5. We restrict the number of
different bounds toNB = 4. The results are reported in Table 6.
The results of Table 5 are repeated in columnNB = unl for ease
of comparison. It can be seen that the fault coverage for
restricted bounds is lower than the fault coverage when the
bounds are unrestricted. However, even this lower fault cover-
age is higher than that of [5] for most of the circuits where a
comparison is possible. In addition, the loss of fault coverage
may be justified by the reduced number of bounds and thus the
reduced hardware complexity of theTPGs. Techniques such as
test point insertion may be used to compensate for this effect.

Table 6: Results using restricted bounds

NB=4 NB = unl
circuit TPGs f.c TPGs f.c
s208/11 3 61.40 3 63.26
s298/10 4 85.06 1 86.04
s344/12 4 92.98 1 96.20
s382/12 2 87.72 2 89.47
s386/12 8 73.44 2 81.77
s420/12 3 40.23 5 41.63
s444/12 1 86.08 2 87.76
s526/13 1 78.38 4 79.28
s641/13 10 83.51 1 86.51
s1423/11 19 77.49 8 90.89

4.3 Restricted bounds with test-point insertion
In this subsection, we consider theTPGs selected in Table 6 for
NB = 4. TheseTPGs have the lowest area overhead of all the
TPGs considered in the previous subsections; however, they usu-
ally result in the lowest fault coverage. To increase the fault cov-
erage, we consider two schemes for test point insertion as
described next.

We describe the test point insertion schemes for aTPG
made ofm TPGs, TPG1, TPG2, . . . , TPGm, designed for a circuit
with a set of faultsF. In both schemes, we simulate the
sequences produced by theTPGs in the order
TPG1, TPG2, . . . , TPGm, and drop all the faults detected by each
TPG before the next one is considered. In the first scheme, test-
points are inserted after everyTPG is considered. As a result,
whenTPGj1 is considered, test-points may be inserted to detect
faults that are also detected byTPGj2 where j2 > j1. In the sec-
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ond scheme, we first drop all the faults detected by all theTPGs,
and then reconsider eachTPG for test-point insertion. In the first
scheme, it may be possible to omit aTPG, sayTPGj , if all the
faults it detects are already detected byTPG1, . . . , TPGj−1, simu-
lated earlier. In the second scheme, all theTPGs will remain nec-
essary. However, the first scheme may require more test-points,
since test-points are inserted even for faults that may be detected
by a TPG simulated later. The two schemes are described in
more detail next. For simplicity of presentation, we refer to the
sequencesT, T′, Tr andT′r produced by aTPG as theTPG out-
put sequencẽT.

The first test-point insertion scheme proceeds as follows.
For TPG1, we generate theTPG output sequencẽT1, and simu-
late the set of target faultsF underT̃1. Let T̃1 detect a subset of
faults F1. We simulate every faultf ∈ F − F1 under the test
sequencẽT1 again, this time capturing every linev to which 0/1
or 1/0 values are propagated in the presence off . Each such
line, if selected as a test-point, will ensure thatf can be detected
by T̃1. We use a covering procedure to select a minimal number
of test-points to cover all the faults inF − F1 that are detectable
through test-points. Let the set of faults detected through test-
points beF′1. We drop fromF all the faults inF1 ∪ F′1. Next,
we considerTPG2. We generate theTPG output sequencẽT2,
and simulateF under T̃2. Let T̃2 detect a subset of faultsF2.
We simulate every faultf ∈ F − F2, and capture potential test-
point locations for the fault. We then check whether the fault is
detected by any one of the test-points already selected forTPG1.
For the remaining faults inF − F2, we select additional test-
point locations using a covering procedure. We denote the set of
faults detected byTPG2 through test-points byF′2. We drop
from F all the faults inF2 ∪ F′2. The same process is repeated
for all theTPGs. If F j ∪ F′j = φ for TPG j, thenTPG j can be
omitted without reducing the fault coverage.

The second test-point insertion scheme proceeds as fol-
lows. We first generate theTPG sequencẽTj for every TPGj ,
and drop the faults detected fromF. We then reconsider each
TPG separately. WhenTPGj is considered, we simulate every
fault f ∈ F under the test sequenceT̃ j again, this time captur-
ing every linev to which 0/1 or 1/0 values are propagated in the
presence of f . Every fault detectable through an already
selected test-point is dropped fromF. We then use a covering
procedure to select a minimal number of test-points to cover all
the faults inF that are detectable through test-points whenT̃ j is
applied. The same process is repeated for all theTPGs.

The results of test-point insertion using theTPGs pro-
duced for NB = 4 in Table 6 are shown in Table 7. For each
scheme, we show the number ofTPGs that were useful for
detecting any new faults (for Scheme 2, this number is equal to
the number ofTPGs in Table 6). We then show the total number
of test-points inserted, and the final fault coverage obtained.
Under columntarg we mark whether the fault coverage is lower
than or equal to the fault coverage achievable by deterministic
test generation. For this comparison to be meaningful, we only
consider faults that can be detected by deterministic test genera-
tion without test-points. It can be seen that Scheme 1 places
more test-points, but requires fewerTPGs. Scheme 2 places
fewer test-points but uses all theTPGs of Table 6. Compared to
Table 6, the fault coverage is always increased. The fault cover-
age is not always equal to the target fault coverage achievable by
deterministic test generation procedures. This is due to the fact

that some detectable faults are never activated by the selected
TPGs. The fault coverage can be increased by performing test-
point insertion together withTPG selection. We did not imple-
ment this option. We point out that the area overhead for com-
parison units in this case includes the implementation of at most
three bounds, requiring at most (3(k − 1) + n) 2-input gates.

Table 7: Results using restricted bounds and test-points

scheme 1 scheme 2
circuit TPGs t.p f.c targ TPGs t.p f.c targ
s208/11 2 10 63.72 = 3 5 63.72 =
s298/10 2 9 86.04 = 4 2 86.04 =
s344/12 4 21 95.61 < 4 8 95.61 <
s382/12 1 8 89.47 < 2 7 89.47 <
s386/12 4 65 81.51 < 8 22 81.51 <
s420/12 2 12 41.63 = 3 5 41.63 =
s444/12 1 8 87.76 = 1 8 87.76 =
s526/13 1 9 80.00 = 1 8 87.76 =
s641/13 4 64 86.30 < 10 13 86.30 <

5. Concluding remarks
We proposed a structure for a built-in test pattern generator for
synchronous sequential circuits. The motivation for considering
built-in test of synchronous sequential circuits is that the circuit
flip-flops may be left unmodified, and test application may be
done at-speed. The proposed test pattern generator had a uni-
form, parametrized structure. By matching the parameters of the
test pattern generator to the circuit-under-test, high fault cover-
age was achieved for benchmark circuits. In many cases, the
fault coverage was equal to the fault coverage that can be
achieved by deterministic test sequences. Reduced area over-
heads were achieved by restricting the parameter values and
inserting test-points to compensate for the lower fault coverage
that may result.

Several extensions of the proposed approach may be use-
ful in reducing the hardware overhead and increasing the fault
coverage. More careful selection ofTPG parameters may yield
improved results at lower hardware overheads. Incorporation of
test-points during theTPG selection process may allow fewer
TPGs and fewer bounds to be used.
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